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Chapter 1

Introduction

General Relativity is the physical theory of gravity formulated by Einstein in 1915. It is
based on the Equivalence Principle of Gravitation and Inertia, which establishes a founda-
mental connection between the gravitational field and the geometry of the spacetime, and on
The Principle of General Covariance. General Relativity has changed quite dramatically our
understanding of space and time, and the consequences of this theory, which we shall inves-
tigate in this course, disclose interesting and fascinating new phenomena, like for instance
the existence of black holes and the generation of gravitational waves.

The language of General Relativity is that of tensor analysis, or, in a more modern
formulation, the language of differential geometry. There is no way to understand the theory
of gravity without knowing what is a manifold, or a tensor. Therefore we shall dedicate a
few lectures to the the mathematical tools that are essential to describe the theory and its
physical consequences. The first lecture, however, will be dedicated to answer the following
questions:

1) why does the Newtonian theory become unappropriate to describe the gravitational
field.

2) Why do we need a tensor to describe the gravitational field, and we why do we need to
introduce the concept of manifold, metric, affine connections and other geometrical objects.

3) What is the role played by the equivalence principle in all that.

In the next lectures we shall rigorously define manifolds, vectors, tensors, and then, after
introducing the principle of general covariance, we will formulate Einstein’s equations.

But first of all, since as we have already anticipated that there is a connection between
the gravitational field and the geometry of the spacetime, let us introduce non-euclidean
geometries, which are in some sense the precursors of general relativity.

1.1 Non euclidean geometries

In the prerelativistic years the arena of physical theories was the flat space of euclidean
geometry which is based on the five Euclide’s postulates. Among them the fifth has been
the object of a millennary dispute: for over 2000 years geometers tried to show, without
succeeeding, that the fifth postulate is a consequence of the other four. The postulate states
the following:
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Consider two straight lines and a third straight line crossing the two. If the sum of the two
internal angles (see figures) is smaller than 18(° , the two lines will meet at some point on
the side of the internal angles.

o+rB < 180 ©

The solution to the problem is due to Gauss (1824, Germany), Bolyai (1832, Austria),
and Lobachevski (1826, Russia), who independently discovered a geometry that satisfies all
Euclide’s postulates except the fifth. This geometry is what we may call, in modern terms,
a two dimensional space of constant negative curvature. The analytic representation of this
geometry was discovered by Felix Klein in 1870. He found that a point in this geometry is
represented as a pair of real numbers (z',z?) with

(a)* + (2%)* < 1, (1.1)
and the distance between two points  and X, d(x,X) , is defined as

1 — ' X —22X2
\/1 — (z1)? — (xQ)Z\/l — (X1)2 — (X2)?

where a is a lenghtscale. This space is infinite, because

d(z, X) = acosh™ : (1.2)

d(z, X) — o0

when
(X2 4+ (X2 = 1.
The logical independence of Euclide’s fifth postulate was thus established.

In 1827 Gauss published the Disquisitiones generales circa superficies curvas, where for
the first time he distinguished the inner, or intrinsic properties of a surface from the outer,
or extrinsic properties. The first are those properties that can be measured by somebody
living on the surface. The second are those properties deriving from embedding the surface
in a higher-dimensional space. Gauss realized that the fundamental inner property is the
distance between two points, defined as the shortest path between them on the surface.

For example a cylinder has the same inner properties of a plane. The reason is that it can
be obtained by a flat piece of paper suitably rolled, without distorting its metric relations,
i.e. without stretching or tearing. This means that the distance between any two points
on the surface is the same as it was in the original piece of paper, and parallel lines remain
parallel. Thus the intrinsic geometry of a cylinder is flat. This is not true in the case
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of a sphere, since a sphere cannot be mapped onto a plane without distortions: the inner
properties of a sphere are different from those of a plane. It should be stressed that the
intrinsic geometry of a surface considers only the relations between points on the surface.

However, since a cylinder is “round” in one direction, we think it is a curved surfaces.
This is due to the fact that we consider the cylinder as a 2-dimensional surface in a 3-
dimensional space, and we intuitively compare the curvature of the lines which are on the
cylinder with straight lines in the flat 3-dimensional space. Thus, the extrinsic curvature
relies on the notion of higher dimensional space. In the following, we shall be concerned only
with the intrinsic properties of surfaces.

The distance between two points can be defined in a variety of ways, and consequently we
can construct different metric spaces. Following Gauss, we shall select those metric spaces
for which, given any sufficiently small region of space, it is possible to choose a system of
coordinates (£1,€%) such that the distance between a point P = (£,£?), and the point
P (&' +de', €% 4 d€?) satisfies Pythagoras’ law

ds® = (dg')” + (d€*). (1.3)
From now on, when we say the distance between two points, we mean the distance between
two points that are infinitely close.

This property, i.e. the possibility of setting up a locally euclidean coordinate system, is a
local property: it deals only with the inner metric relations for infinitesimal neighborhoods.
Thus, unless the space is globally euclidean, the coordinates (£;,&;) have only a local mean-
ing. Let us now consider some other coordinate system (z1,z2) . How do we express the
distance between two points? If we explicitely evaluate dé' and d€? in terms of the new
coordinates we find

1

¢ =Mt 2?) — det = ai-ld +@d 2 (1.4)
2 2

& = (at, 2?) — d¢* = ggld + gidx

ds® = [(§§>2 + (gf;)z] (dz')? + ((2;)2 + (gﬁiﬂ (dz?)? (1.5)

ot (o€ 0%\ (0€® 12
2 =) (== =) 2
* [(&7&1) (8952 + Ox' ) \ 0z ddu
= gu(da')? + goo(da?)? + 2g1pda’ da® = ga,gdxadasﬁ.
In the last line of eq. (1.5) we have defined the following quantities:

e ? e\ 2]
g1 = (&il> + (E):il> (1.6)
- ” ) " =
922 = (ax> - (m)
B agl 851 852 852
2= 1\ 91 ) \ 0a2 + oxt ) \ox2 )|’
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namely, we have defined the metric tensor g,3 ! i.e. the metric tensor is an object
that allows us to compute the distance in any coordinate system. As it is clear from the
preceeding equations, g,z is a symmetric tensor, (gag = gsa). In this way the notion of
metric associated to a space, emerges in a natural way.

EINSTEIN’s CONVENTION

In writing the last line of eq. (1.5) we have adopted the convenction that if there is a product
of two quantities having the same index appearing once in the lower and once in the upper
case (“dummy indices”), then summation is implied. For example, if the index «a takes the
values 1 and 2 )
vV = ZviVi = 0, V! 4 0 V2 (1.7)
i=1

We shall adopt this convenction in the following.

EXAMPLE: HOW TO COMPUTE g,,

Given the locally euclidean coordinate system (&;,&) let us introduce polar coordinates

(r,0) = (x1,72) . Then

& =rcost — d¢ = cosOdr — rsin §d6 (1.8)
& =rsinf — d€* = sinOdr + r cos 0d6
(1.9)
ds® = (de*)? + (d€?)? = dr® + r2de?, (1.10)
and therefore
g1 = 1, g =12, g12 = 0. (1.11)

1.2 How does the metric tensor transform if we change
the coordinate system

We shall now see how the metric tensor transforms under an arbitrary coordinate transfor-
mation. Let us assume that we know g,s expressed in terms of the coordinate (z!,z?),
and we want to change the reference to a new system (2, z%) . In section 1 we have shown
that, for example, the component g¢q; is defined as (see eq. 1.7)

o8
ozl

g = (25 + (25477, (112)

where (£1,€?%) are the coordinates of the locally euclidean reference frame, and (z!, 2?) two

. . / / I /
arbitrary coordinates. If we now change from (x!,2?) to (z',2?), where z! = 2'(z!, 2%)
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/ / . . . .
,and x? = z%(z",2?) | the metric tensor in the new coordinate frame (z',z?) will be

;o o¢t o&?
G = o = [+ (e (1.13)
08t ozt 0gt 9a® 0&? Oxt O0€? D22
N [(&Bl ozt + 0x2 8:1:1') [(8:1:1 ozt * 0x2 8351')
o¢!t 2 o€ 2 O’ 2 o¢t 2 o€ 2
[(@) +(@) ](&51/) +[(@) +(@) ](6$1/)
ot ot 0t ot o' on?
ozt 0x2  Oxl 022’ 0zY OV
ox! ox? ox' 0x?
= 911(@)2 + 922(@)2 + 2912(@@)

+

In general we can write
. oxt Oz¥
Jos = G g e’ g’
This is the manner in which a tensor transforms under an arbitrary coordinate
transformation
(this point will be illustrated in more detail in following lectures).
Thus, given a space in which the distance can be expressed in terms of Pythagoras’ law,
if we make an arbitrary coordinate transformation the knowledge of g,, allows us to express
the distance in the new reference system. The converse is also true: given a space in which

(1.14)

ds® = gapdrda”, (1.15)

if this space belongs to the class defined by Gauss, at any given point it is always possible
to choose a locally euclidean coordinate system (£*) such that

ds® = (d€')? + (d€?)*. (1.16)

This concept can be generalized to a space of arbitrary dimensions.

The metric tensor determines the intrinsic properties of a metric space.

We now want to define a function of g¢,3 and of its first and second derivatives, which depends
on the inner properties of the surface, but does not depend on the particular coordinate
system we choose. Gauss showed that in the case of two-dimensional surfaces this function
can be determined, and it is called, after him, the Gaussian curvature, defined as

1 2) _ i l g1 g 82922]

oxlox?  9x?? Ox1?

922 [(59911) (26912 _ 6922 8g11

k(z, x (1.17)

oxt 02 895 8x2 ]
+@ 991 (092 _ (0911 (092
ox! 0x? ox2 ) \ ozt

9912 _ Ogu\ (,0012 _ 09z
* (2 ozt Ox? ) (2 or?  Oxt
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0922 28912_8911 _ % ?
0x? ox! 0x? ozl

where g is the determinant of the 2-metric gns

o
442

9= 911922 — Gio- (1.18)

For example, given a spherical surface of radius a, with metric ds?> = a?df? + a?sin® §dy?,
(polar coordinates) we find
1
k= (1.19)
no matter how we choose the coordinates to describe the spherical surface, we shall always
find that the gaussian curvature has this value. For the Gauss-Bolyai-Lobachewski geometry
where

o a[1 — (22)?] o a[1 — (') s PRI
[1— (a1)? = (22)2]" [1— (21)? = (a2)2]" [1— (21)? = (22)2]”
(1.20)
we shall always find
k= —;2; (1.21)

if the space is flat, the gaussian curvature is k = 0. If we choose a different coordinate
system, gop(x',2?) will change but & will remain the same.

1.3 Summary

We have seen that it is possible to select a class of 2-dimensional spaces where it is possible
to set up, in the neighborhoods of any point, a coordinate system (£',£?) such that the
distance between two close points is given by Pythagoras’ law. Then we have defined the
metric tensor g.g, which allows to compute the distance in an arbitrary coordinate system,
and we have derived the law according to which ¢,3 transforms when we change reference.
Finally, we have seen that there exists a scalar quantity, the gaussian curvature, which
expressees the inner properties of a surface: it is a function of g.s and of its first and
second derivatives, and it is invariant under coordinate transformations.

These results can be extended to an arbitrary D-dimensional space. In particular, as we
shall discuss in the following, we are interested in the case D=4, and we shall select those
spaces, or better, those spacetimes, for which the distance is that prescribed by Special
Relativity.

45 = —(d€°)? + (d€")? + (d?)? + (d€?)”. (1.22)

For the time being, let us only clarify the following point. In a D-dimensional space we
need more than one function to describe the inner properties of a surface. Indeed, since g;;
is symmetic, there are only D(D 4+ 1)/2 independent components. In addition, we can
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choose D arbitrary coordinates, and impose D functional relations among them. Therefore
the number of independent functions that describe the inner properties of the space will be

D(D+1) D_D(D—l)

2 B 2
If D=2, as we have seen, C=1. If D=4, C=6, therefore there will be 6 invariants to be
defined for our 4-dimensional spacetime. The problem of finding these invariant quantities
was studied by Riemann (1826-1866) and subsequently by Christoffel, LeviCivita, Ricci,

Beltrami. We shall see in the following that Riemaniann geometries play a crucial role in
the description of the gravitational field.

C = (1.23)

1.4 The Newtonian theory

In this section we shall discuss why the Newtonian theory of gravity became unappropriate
to correctly describe the gravitational field. The Newtonian theory of gravity was published
in 1685 in the “Philosophiae Naturalis Principia Mathematica”, which contains an incredible
variety of fundamental results and, among them, the cornerstones of classical physics:
1) Newton’s law
F =m,a, (1.24)
2) Newton’s law of gravitation
Fe = med, (1.25)

where
G > Mgi(7 — 77)

7P

j=— (1.26)
depends on the position of the massive particle with respect to the other masses that generate
the field, and it decreases as the inverse square of the distance g ~ %2 The two laws combined
together clearly show that a body falls with an acceleration given by

i= (mG) . (1.27)

mr

If ¢ is a constant independent of the body, the acceleration is the same for every infalling
body, and independent of their mass. Galileo (1564-1642) had already experimentally dis-
covered that this is, indeed, true, and Newton itself tested the equivalence principle studying
the motion of pendulum of different composition and equal lenght, finding no difference in
their periods. The validity of the equivalence principle was the core of Newton’s arguments
for the universality of his law of gravitation; indeed, after describing his experiments with
different pendulum in the Principia he says:

But, without all doubt, the nature of gravity towards the planets is the same as towards
the earth.

Since then a variety of experiments confirmed this crucial result. Among them Eotvos
experiment in 1889 (accuracy of 1 part in 10?), Dicke experiment in 1964 (1 part in 10),
Braginsky in 1972 (1 part in 10'?) and more recently the Lunar-Laser Ranging experiments
(1 part in 10'3). All experiments up to our days confirm The Principle of Equivalence of
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the gravitational and the inertial mass. Now before describing why at a certain point the
Newtonian theory fails to be a satisfactory description of gravity, let me briefly describe the
reasons of its great success, that remained untouched for more than 200 years.

In the Principia, Newton formulates the universal law of gravitation, he develops the
theory of lunar motion and tides and that of planetary motion around the Sun, which are
the most elegant and accomplished descriptions of these phenomena.

After Newton, the law of gravitation was used to investigate in more detail the solar
system; its application to the study of the perturbations of Uranus’ orbit around the Sun
led, in 1846, Adams (England) and Le Verrier (France) to predict the existence of a new
planet which was named Neptune. A few years later, the discovery of Neptun was a triumph
of Newton’s theory of gravitation.

However, already in 1845 Le Verrier had observed anomalies in the motion of Mercury.
He found that the perihelium precession of 35”/100 years exceeded the value due to the
perturbation introduced by the other planets predicted by Newton’s theory. In 1882 New-
comb confirmed this discrepancy, giving a higher value, of 43”/100 year. In order to explain
this effect, scientists developed models that predicted the existence of some interplanetary
matter, and in 1896 Seelinger showed that an ellipsoidal distribution of matter surrounding
the Sun could explain the observed precession.

We know today that these models were wrong, and that the reason for the exceedingly
high precession of Mercury’s perihelium has a relativistic origin.

In any event, we can say that the Newtonian theory worked remarkably well to explain
planetary motion, but already in 1845 the suspect that something did not work perfectly
had some experimental evidence.

Let us turn now to a more philosophical aspect of the theory. The equations of Newtonian
mechanics are invariant under Galileo’s transformations

' = RoZ+ 0t +do (1.28)
' = t+71

where Ry is the orthogonal, constant matrix expressing how the second frame is rotated
with respect to the first (its elements depend on the three Euler angles), ¥ is the relative
velocity of the two frames, and dy the initial distance between the two origins. The ten
parameters (3 Euler angles, 3 components for ¢ and d, + the time shift 7 ) identify the
Galileo group.

The invariance of the equations with respect to Galileo’s transformations implies the
existence of inertial frames, where the laws of Mechanics hold. What then determines
which frames are inertial frames? For Newton, the answer is that there exists an absolute
space, and the result of the famous experiment of the rotating vessel is a proof of its existence
. inertial frames are those in uniform relative motion with respect to the absolute space.

!The vessel experiment: a vessel is filled with water and rotates with a given angular velocity about the
symmetry axis. After some time the surface of the water assumes the typical shape of a paraboloid, being
in equilibrium under the action of the gravity force, the centrifugal force and the fluid forces. Now suppose
that the masses in the entire universe would rigidly rotate with respect to the vessel at the same angular
velocity: in this case, for Newton the water surface would remain at rest and would not bend, because the
vessel is not moving with respect to the absolute space and therefore no centrifugal force acts on it.
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However this idea was rejected by Leibniz who claimed that there is no philosophical need
for such a notion, and the debate on this issue continued during the next centuries. One of
the major opponents was Mach, who argued that if the masses in the entire universe would
rigidly rotate with respect to the vessel, the water surface would bend in exactely the same
way as when the vessel was rotating with respect to them. This is because the inertia is a
measure of the gravitational interaction between a body and the matter content of the rest
of the Universe.

The problems I have described (the discrepancy in the advance of perihelium and the
postulate absolute space) are however only small clouds: the Newtonian theory remains The
theory of gravity until the end of the ninentheenth century. The big storm approaches with
the formulation of the theory of electrodynamics presented by Maxwell in 1864. Maxwell’s
equations establish that the velocity of light is an universal constant. It was soon understood
that these equations are not invariant under Galileo’s transformations; indeed, according to
eqs. (1.28), if the velocity of light is ¢ in a given coordinate frame, it cannot be ¢
in a second frame moving with respect to the first with assigned velocity v. To justify
this discrepancy, Maxwell formulated the hypothesis that light does not really propagate in
vacuum: electromagnetic waves are carried by a medium, the luminiferous ether, and the
equations are invariant only with respect to a set of galilean inertial frames that are at rest
with respect to the ether. However in 1887 Michelson and Morley showed that the velocity of
light is the same, within 5km/s (today the accuracy is less than 1km/s), along the directions
of the Earth’s orbital motion, and transverse to it. How this result can be justified? One
possibility was to say the Earth is at rest with respect to the ether; but this hypothesis was
totally unsatisfactory, since it would have been a coming back to an antropocentric picture of
the world. Another possibility was that the ether simply does not exist, and one has to accept
the fact that the speed of light is the same in any direction, and whatever is the velocity of
the source. This was of course the only reasonable explanation. But now the problem was to
find the coordinate transformation with respect to which Maxwell’s equations are invariant.
The problem was solved by Einstein in 1905; he showed that Galileo’s transformations have
to be replaced by the Lorentz transformations

2 = L*a7, (1.29)

. . . —1
Ly=nv, L%=L= %% L'j=0d+ 77%'%'- “,j=13 (1.30)

and v are the components of the velocity of the boost.

As it was immediately realised, however, while Maxwell’s equations are invariant with
respect to Lorentz transformations, Newton’s equations were not, and consequently one
should face the problem of how to modify the equations of mechanics and gravity in such a
way that they become invariant with respect to Lorentz transformations. It is at this point
that Einstein made his fundamental observation.
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1.5 The role of the Equivalence Principle in the for-
mulation of the new theory of gravity

Let us consider the motion of a non relativistic particle moving in a constant gravitational
field. Be F} some other forces acting on the particle. According to Newtonian mechanics,

the equation of motion are
d*7 . -
mp——> =mag+ ) Fx (1.31)
dt k
Let us now jump on an elevator which is freely falling in the same gravitational field, i.e. let
us make the following coordinate transformation

1
F=7— §§t2, t =t (1.32)

In this new reference frame eq. (1.31) becomes

d*7 -
k

Since by the Equivalence Principle m; = mg, and since this is true for any particle, this

equation becomes
i -
= F}.. 1.34
mrs Ek & ( )

Let us compare eq. (1.31) and eq. (1.34). It is clear that that an observer O’ who is in the
elevator, i.e. in free fall in the gravitational field, sees the same laws of physics as the initial
observer O, but he does not feel the gravitational field. This result follows from the
equivalence, experimentally tested, of the inertial and gravitational mass. If m;
would be different from mg, or better, if their ratio would not be constant and the same for
all bodies, this would not be true, because we could not simplify the term in ¢ in eq. (1.33)!
It is also apparent that if § would not be constant eq. (1.34) would contain additional
terms containing the derivatives of §. However, we can always consider an interval of time
so short that ¢ can be considered as constant and eq. (1.34) holds. Consider a particle
at rest in this frame and no force Fj, acting on it. Under this assumption, according to eq.
(1.34) it will remain at rest forever. Therefore we can define this reference as a locally
inertial frame. If the gravitational field is constant and unifom everywhere, the coordinate
transformation (1.32) defines a locally inertial frame that covers the whole spacetime. If this
is not the case, we can set up a locally inertial frame only in the neighborhood of any given
point.

The points discussed above are crucial to the theory of gravity, and deserve a further
explanation. Gravity is distinguished from all other forces because all bodies, given the
same initial velocity, follow the same trajectory in a gravitational field, regardless of their
internal constitution. This is not the case, for example, for electromagnetic forces, which act
on charged but not on neutral bodies, and in any event the trajectories of charged particles
depend on the ratio between charge and mass, which is not the same for all particles. Simi-
larly, other forces, like the strong and weak interactions, affect different particles differently.
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It is this distinctive feature of gravity that makes it possible to describe the effects of gravity
in terms of curved geometry, as we shall see in the following.

Let us now state the Principle of Equivalence. There are two formulations:

The strong Principle of Equivalence

In an arbitrary gravitational field, at any given spacetime point, we can choose a locally
inertial reference frame such that, in a sufficiently small region surrounding that point, all
physical laws take the same form they would take in absence of gravity, namely the form
prescribed by Special Relativity.

There is also a weaker version of this principle

The weak Principle of Equivalence

Same as before, but it refers to the laws of motion of freely falling bodies, instead of all
physical laws.

The preceeding formulations of the equivalence principle resembles very much to the
axiom that Gauss chose as a basis for non-euclidean geometries, namely: at any given point
in space, there exist a locally euclidean reference frame such that, in a sufficiently small region
surrounding that point, the distance between two points is given by the law of Pythagoras.

The Equivalence Principle states that in a locally inertial frame all laws of physics must
coincide, locally, with those of Special Relativity, and consequently in this frame the distance
between two points must coincide with Minkowsky’s expression

ds? = —2dt* + da® + dy® + d2* = —(d€°)? + (d€")” + (de€?)* + (d€®)?. (1.35)

We therefore expect that the equations of gravity will look very similar to those of Riema-
niann geometry. In particular, as Gauss defined the inner properties of curved surfaces in
terms of the derivatives 257(; (which in turn defined the metric, see egs. (1.5) and (1.7)),
where &% are the “locally euclidean coordinates” and x* are arbitrary coordinates, in
a similar way we expect that the effects of a gravitational field will be described in terms
of the derivatives g% where now &¢ are the “locally inertial coordinates”, and z* are
arbitrary coordinates. All this will follow from the equivalence principle. Up to now we have
only established that, as a consequence of the Equivalence Principle there exist a connection

between the gravitational field and the metric tensor. But which connection?

1.6 The geodesic equations as a consequence of the
Principle of Equivalence

Let us start exploring what are the consequences of the Principle of Equivalence. We want
to find the equations of motion of a particle that moves under the exclusive action of a
gravitational field (i.e. it is in free fall), when this motion is observed in an arbitrary
reference frame. We shall now work in a four-dimensional spacetime with coordinates (2° =
ct, 't 2% 13).

First we start analysing the motion in a locally inertial frame, the one in free fall with
the particle. According to the Principle of Equivalence, in this frame the distance between

two neighboring points is

ds® = —(da®)? + (da")? + (d2?)? + (da®)? = 1, dE"dE”, (1.36)
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where 1), = diag(—1,1,1,1) is the metric tensor of the flat, Minkowsky spacetime. If 7
is the particle proper time, and if it is chosen as time coordinate, for what we said before
the equations of motion are
d2 ga
=0
dr?
We now change to a frame where the coordinates are labelled z® = 2*(£*), i.e. we assign a
transformation law which allows to express the new coordinates as functions of the old ones.
In a following lecture we shall clarify and make rigorous all concepts that we are now using,
such us metric tensor, coordinate transformations etc. In the new frame the distance is

(1.37)

o€ ocs .
where we have defined the metric tensor g, as
oot
I = Oxt Oxv o

(1.39)

This formula is the 4-dimensional generalization of the 2-dimensional gaussian formula (see
eq. (1.5)). In the new frame the equation of motion of the particle (1.37) becomes:

2. « 2¢A m v
dx+[aa: 0°¢ 1[0@ dw]:(), (1.40)

dr? 0N Oxtoxv | | dr dr
(see the detailed calculations in appendix A). If we now define the following quantities

81‘0‘ (925)‘

e = — 141
9 Qxkrdxy (1.41)
eq. (1.40) become
d>z® dx* dz”
a =0. 1.42
dr? By l dr dr ] 0 ( )

The quantities (1.41) are called the affine connections, or Christoffel’s symbols, the
properties of which we shall investigate in a following lecture. Equation (1.42) is the
geodesic equation, i.e. the equation of motion of a freely falling particle when observed
in an arbitrary coordinate frame. Let us analyse this equation. We have seen that if we
are in a locally inertial frame, where, by the Equivalence Principle, we are able to eliminate
the gravitational force, the equations of motion would be that of a free particle (eq. 1.37).
If we change to another frame we feel the gravitational field (and in addition all apparent
forces like centrifugal, Coriolis, and dragging forces). In this new frame the geodesic equation
becomes eq. (1.42) and the additional term

re [dﬂ dm”} (1.43)

o dr dr

expresses the gravitational force per unit mass that acts on the particle. If we were in
Newtonian mechanics, this term would be ¢ (plus the additional apparent accelerations,
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but let us assume for the time being that we choose a frame where they vanish), and § is
the gradient of the gravitational potential. What does that mean? The affine connection
I['%, contains the second derivatives of (§%). Since the metric tensor (1.39) contains the first
derivatives of (£%) (see eq. (1.39)), it is clear that I'*,, will contain first derivatives of

guv- This can be shown explicitely, and in a next lecture we will show that

1 ag v ag)ﬂ! ag/\
9 — Zgv° H _ lad . 1.44
AH 29 {ax)‘ + oz ox” } ( )

Thus, in analogy with the Newtonian law, we can say that the affine connections
are the generalization of the Newtonian gravitational field, and that the metric
tensor is the generalization of the Newtonian gravitational potential.

I would like to stress that this is a physical analogy, based on the study of the motion of
freely falling particles compared with the Newtonian equations of motion.

1.7 Summary

We have seen that once we introduce the Principle of Equivalence, the notion of metric
and affine connections emerge in a natural way to describe the effects of a gravitational
field on the motion of falling bodies. It should be stressed that the metric tensor g,
represents the gravitational potential, as it follows from the geodesic equations. But in
addition it is a geometrical entity, since, through the notion of distance , it characterizes the
spacetime geometry. This double role, physical and geometrical of the metric tensor, is a
direct consequence of the Principle of Equivalence, as I hope it is now clear.

Now we can answer the question “ why do we need a tensor to describe a gravitational
field”: the answer is in the Equivalence Principle.

1.8 Locally inertial frames

We shall now show that if we know g,, and I'}, (ie. g, and its first derivatives) at a

point X, we can determine a locally inertial frame £%(x) in the neighborhood of X in the
following way. Multiply Fﬁy by i

oz

oc8 0P o 0%¢e

R IO T T e (1.45)
; P
*Ozrdzr  OxHOzY’
1.€. 8255 agﬁ )
=T (1.46)

oxrdxr  Oxr M
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This equation can be solved by a series expansion near X

p T
#) = e+ B0 0 - x) (1.47)
1.06°(x A i (o y
b ) e XX

1 v v
= P+ - XN+ ibfffw(x” — XM)(2¥ — X") + ...
On the other hand we know by eq. (1.39) that

0 (x 088 (x o
() = 1o S, (149

and from this equation we compute bﬁ. Thus, given g, and I7, at a given point X we
can determine the local inertial frame to order (z — X)? by using eq. (1.47). This equation
defines the coordinate system except for the ambiguity in the constants a*. In addition
we have still the freedom to make an inhomogeneous Lorentz transformation, and the new
frame will still be locally inertial, as it is shown in appendix B.

1.9 Appendix 1A

Given the equation of motion of a free particle

d2€a B

=0 Al
=0, (A1)
let us make a coordinate transformation to an arbitrary system x®
ag* o€~ dx”
(e% — o Y g
eq. (A1) becomes
d (0™ dx” d?x7 O 0%¢>  daP da
dr <3x”f d7'> ~dr? OxY + 0xP0xY dr dr 0. (43)
Multiply eq. (A3) by ‘g%z remembering that
0§* 0x°  Ox° 57
oxy 9> gxv

where 07 is the Kronecker symbol (= 1if o=+~ 0 otherwise), we find

a7 0z %€ daf dx
i o owpor ar ar @AY

which finally becomes
A’z 0x® 0%~ daPdxY

dr? +[8§a 0xBox dr dr =0, (45)

which is eq. (1.40).
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1.10 Appendix 1B

Given a locally inertial frame &
ds® = n,,dE"de".

let us consider the Lorentz transformation

&=Ly,
where
i iy —1 VU5
L = bi+v'v; R L?—j% Ly =", 7=
The distance will now be
o ogv
2 v 7 .

ds® = n,,dEHde” = m‘”@@@" ag’de”

Since o
afi' = LMB(Sﬁi/ = Luih

it follows that -
ds® = N LH iy LY 5,d€" dE.

Since L} is a Lorentz transformation,

LTy,
n/wL L g1 = Mirjr,

consequently the new frame is still a locally inertial frame.

ds2 = 1y, dEM dE”".
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(B4)

(B5)

(B6)

(B7)



Chapter 2

Topological Spaces, Mapping,
Manifolds

In chapter 1 we have shown that the Principle of Equivalence allows to establish a relation
between the metric tensor and the gravitational field. We used vectors and tensors, we
made coordinate transformations, but we did not define the geometrical objects we were
introducing, and we did not discuss whether we are entitled to use these notions. We shall
now define in a more rigorous way what is the type of space we are working in, what is a
coordinate transformation, a vector, a tensor. Then we shall introduce the metric tensor
and the affine connections as geometrical objects and, after defining the covariant derivative,
we shall finally be able to introduce the Riemann tensor. This work is preliminary to the
derivation of Einstein’s equations.

2.1 Topological spaces

In general relativity we shall deal with topological spaces. The word topology has two distinct
meanings: local topology (to which we are mainly interested), and global topology, which
involves the study of the large scale features of a space.

Before introducing the general definition of a topological space, let us recall some prop-
erties of R™, which is a particular case of topological space; this will help us in the under-
standing of the general definition of topological spaces.

Given a point y = (y*, 52, ...y") € R", a neighborhood of y is the collection of points z
such that

n

[z =yl =\ [> (&' —y)? <, (2.1)

i=1

where 7 is a real number. (This is sometimes called an ‘open ball’).
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A set of points S€ R" is open if every point x €S has a neighborhood entirely contained
in S. This implies that an open set does not include the points on the boundary of the set.
For instance, an open ball is an open set; a closed ball, defined by |z — y| < r, is not an
open set, because the points of the boundary, i.e. |z —y| = r, do not admit a neighborhood
contained in the set.

Intuitively we have an idea that this is a continuum space, namely that there are
points of R™ arbitrarily close to any given point, that the line joining two points can be
subdivided into arbitrarily many pieces which also join points of R™. A non continuous
space is, for example, a lattice. A formal characterization of a continuum space is the
Haussdorff criterion: any two points of a continuum space have neighborhoods which do not
intersect.

a b
The open sets of R" satisfy the following properties:
(1) if O; and O, are open sets, so it is their intersection.
(2) the union of any collection (possibly infinite in number) of open sets is open.

Let us now consider a general set T. Furthermore, we consider a collection of subsets of
T, say O={0;}, and call them open sets. We say that the couple (T,0) formed by the set
and the collection of subsets is a topological space if it satisfies the properties (1) and (2)
above.

We remark that the space T is not necessarily R": it can be any kind of set; the only
specification we give is the collection of subsets O, which are by definition the open sets,
and that satisfy the properties (1), (2). In particular, in a topological space the notion of
distance is a structure which has not been introduced: all definitions only require the notion
of open sets.

2.2 Mapping

A map f from a space M to a space N is a rule which associates with an element x of M,
a unique element y = f(x) of N
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D &N

M and N need not to be different. For example, the simplest maps are ordinary real-valued
functions on R

EXAMPLE  y =23, r € R, and y€ER. (2.2)

In this case M and N coincide.
A map gives a unique f(z) for every x, but not necessarily a unique x for every f(x).
EXAMPLE

= A =) A

map many to one map one to one
If f maps M to N then for any set S in M we have an image in N, i.e. the set T of all

points mapped by f from S in N

Conversely the set S is the inverse image of T

S =f"'(T). (2.3)
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Inverse mapping is possible only in the case of one-to-one mapping. The statement “f maps
M to N” is indicated as
f:M— N. (2.4)

f maps a particular element x € M to y € N is indicated as
fix | =y (2.5)

the image of a point x is f(z).

2.3 Composition of maps

Given two maps f: M — N and ¢g: N — P | there exists a map g¢go f that maps M
to P
gof:M—P. (2.6)

This means: take a point x € M and find the image f(x) € N, then use ¢ to map
this point to a point ¢ (f(z)) € P

EXAMPLE f: 2 |—y y =2’ (2.7)
g: y |—=z 2=y
gof: x |—>z 2z =2

Map into: If a map is defined for all ponts of a manifold M, it is a mapping from M into
N.
Map onto: If, in addition, every point of N has an inverse image (but not necessarily a
unique one), it is a map from M onto N.

EXAMPLE: be N the unit open disc in R?, i.e. the set of all points in R? such that the
distance from the center is less than one, d(0,z) < 1. Be M the surface of an emisphere
¢ < 5 belonging to the unit sphere.
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e
S LN

There exists a one-to one mapping f from M onto N.

f(q) f(p)

2.4 Continuous mapping

A map f:M — N is continuous at x € M if any open set of N containing  f(z)
contains the image of an open set of M. M and N must be topological spaces, otherwise the
notion of continuity has no meaning.

This definition is related to the familiar notion of continuous functions. Suppose that f
is a real-valued function of one real variable. That is f is a map of R to R

f:R—=R. (2.8)

In the elementary calculus we say that f is continuous at a point 0 if for every € >0
there exists a ¢ > 0 such that

|f(z) — f(20)] <e, Vx such that |z — 20| <. (2.9)
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Let us translate this definition in terms of open sets. From the figure it is apparent that any
open set containing f(z0), ie. |f(x)— f(z0)| <r with r arbitrary, contains an image
of an open set of M . This is true at least in the domain of definition of f. This definition
is more general than that of continuous functions, because it is based on the notion of open
sets, and not on the notion of distance.

2.5 Manifolds and differentiable manifolds

The notion of manifold is crucial to define a coordinate system.

A manifold M s a topological space, which satisfies the Haussdorff criterion, and such
that each point of M has an open neighborhood which has a continuous 1-1 map onto an
open set of R"™. n is the dimension of the manifold.

In this definition we have used the concepts defined in the preceeding pages: the space
must be topological, continuous, and we want to associate an n-tuple of real numbers, i.e. a
set of coordinates to each point. For example, when we consider the diagram

we are just using the notion of manifold: we take a point P, and map it to the point
(z',4') € R? . And this operation can be done for any open neighborhood of P. It should
be stressed that the definition of manifold involves open sets and not the whole of M and
R"™, because we do not want to restrict the global topology of M . Moreover, at this stage
we only require the map to be 1-1. We have not yet introduced any geometrical notion as
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lenght, angles etc. At this level we only require that the local topology of M is the same as
that of R". A manifold is a space with this topology.

DEFINITION OF COORDINATE SYSTEMS

A coordinate system, or a chart, is a pair consisting of an open set of M and its map
to an open set of R™. The open set does not necessarily include all M | thus there will be
other open sets with the associated maps, and each point of M must lie in at least one of
such open sets.

AND NOW WE WANT TO MAKE A COORDINATE TRANSFORMATION.

Let us consider, for example, the following situation: U and V are two overlapping open
sets of M with two distinct maps onto R”

RII
r
£(U)
1 )
Z
Z >
=3 — g(V)

The overlapping region is open (since it is the intesection of two open sets), and is given two
different coordinate systems by the two maps, thus there must exist some equation relating
the two. We want to find it.

R —

g(V) ¢ A

Pick a point in the image of the overlapping region belonging to  f(U), say the point
(2',..2"). The map f has an inverse f~' which brings to the point P. Now from P, by
using the map ¢, we go to the image of P belonging to ¢(V), i.e. to the point (3!, ...y")
in R"

gof':R" = R" (2.10)
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The result of this operation is a functional relation between the two sets of coordinates:

| (2.11)
y" =y (zt, 2",

If the partial derivatives of order < k of all the functions {y‘} with respect to all {z'}
exist and are continuous, then the charts (U, f) and (V,g) aresaid to be C* related.
If it is possible to construct a system of charts such that each point of M belongs at least to
one of the open sets, and every chartis C* related to every other one it overlaps with, then
the manifold is said to be a C* manifold. If k=1, it is called a differentiable manifold.

The notion of differentiable manifold is crucial, because it allows to add “structure” to
the manifold, i.e. one can define vectors, tensors, differential forms, Lie derivatives etc.

In order to complete our definition of a coordinate transformation we still need another
element. Egs. (2.11) can be written as

Y= fi(t,..a"), i=1,..n, (2.12)

where f' are CF differentiable. Be J the jacobian of the transformation

of. of. oft

A

Af*,...f") Cr N
J= s =det 2.13
D) S (2.13)

o o ap

Ozt oz - 9zn

If J is non zero at some point P, then the inverse function theorem ensures that the map f
is 1-1 and onto in some neighborhood of P. If J is zero at some point P the transformation
is singular.

AN EXAMPLE OF MANIFOLD.

Consider the 2-sphere (also called S?). It is defined as the set of all points in R? such
that (z')? + (2%)? + (2*)? = const. Suppose that we want to map the whole sphere to R?
by using a single chart. For example let us use spherical coordinates 6 = z!, and ¢ = 22
The sphere appears to be mapped onto the rectangle 0<z!' <7, 0<2%<2r
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(note that this manifold has no boundary). But now consider the north pole 6 =0: this
point is mapped to the entire line

vt =0, 0<a2?<2r (2.14)

Thus there is no map at all.
In addition all points of the emicircle ¢ =0 are mapped in two places

7? =0, and  2° =2m. (2.15)

Again there is no map at all. In order to avoid these problems, we must restrict the map to
open regions
0<z'<m 0<2®<2m (2.16)

The two poles and the semicircle ¢ = 0 are left out. Then we may consider a second
map, again in spherical coordinates but “rotated” in such a way that the line ¢ = 0
would coincide with the equator of the old system. Then every point of the sphere would be
covered by one of the two charts, and in principle one should be able to find the coordinate
transformation for the overlapping region. It is interesting to note that

1) this mapping does not preserve angles and lenghts.

2) there exist manifolds that cannot be covered by a single chart, i.e. by a single coordi-
nate system.
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Vectors and One-forms

3.1 The traditional definition of a vector

Let us consider an N-dimensional manifold, and a generic coordinate transformation

/

a2 = 2% (zt), o, p=1,...,N. (3.1)

A comment on notation
Here and in the following, we shall use indices with and without primes to refer to different
coordinate frames.
Strictly speaking, eq. (3.1) should be written as

2 =2 @),  o,p=1,...,N, (3.2)

because the coordinate with (say) o/ = 1 belongs to the new frame, and is then different from
the coordinate with 4 = 1, belonging to the old frame. However, for brevity of notation, we
will omit the primes in the coordinates, keeping only the primes in the indices.

A contravariant vector -
V —0 {V“}, w=1,2...N, (3.3)

where the symbol — indicates that V' has components {V#} with respect to a given frame
O, is a collection of N numbers which transform under the coordinate transformation (3.1)
as follows:

/

’ a.f'ul al‘“
B a «
v > e Ve =SSV (3.4)

a=1,...,

Notice that in writing the last term we have used Einstein’s convenction. V* are the
components of the vector in the new frame. If we now define the N x N matrix

ozV oV
Oxl 0x?

A= . . ], (3.5)
BIN/ 6xIN,
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the transformation law can be written in the general form
Ve =AY V8, (3.6)

In addition, covariant vectors are defined as objects that transform according to the following

rule 5
Ox
A= o rds = A’ Ag, (3.7)
where AP, is the inverse matrix of A u- However, a vector is a geometrical object. In
fact it is an oriented segment that joins two points of a given space. We can associate to this
object the components with respect to an assigned reference frame; when we change frame
the vector components change, but the vector itself does not change. We shall now give a

more adequate definition.

3.2 A geometrical definition

In order to define a vector as a geometrical object we need to introduce the notions of paths
and curves.

PATH

A path is a connected series of points in the plane (or in any arbitrary N-dimensional
manifold)

S~

CURVE

A curve is a path with a real number associated with each point of the path, i.e. it is a
mapping of an interval of R! into a path in the plane (or in the N-dimensional manifold).
The number is called the parameter. For example

curve : {z' = f(s),2% = g(s),a < s < b}, (3.8)

means that each point of the path has coordinates that can be expressed as functions of = s.
The path is called the image of the curve in the plane (or in the manifold). What happens
if we change the parameter? If s = s'(s) we shall get a new curve

{8 =f(s),2" = g(5),a <" <V}, (3.9)
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L4

where [’ ¢’ are new functions of s'. This is a new curve, but with the same image. Thus
there are an infinite number of curves corresponding to the same path.

FOR EXAMPLE: The position of a bullet shot by a gun in the 2-dimensional plane (x,z)
is a PATH; when we associate the parameter ¢ (time) at each point of the trajectory, we
define a CURVE; if we change the parameter, say for instance the curvilinear abscissa, we
define a new curve.

VECTORS

A vector is a geometrical object defined as the tangent vector to a given curve
at a point P. .

The set of numbers %} = (%, %) are the components of a vector tangent to the curve.
(In fact if {dz'} are infinitesimal displacements along the curve, dividing them by ds
only changes the scale but not the direction of the displacement). Every curve has a unique

tangent vector '

— dx’

V—{ 7 }. (3.10)
One must be careful and not to confuse the curve with the path. In fact a path has, at
any given point, an infinite number of tangent vectors, all parallel, but with different lenght.
The lenght depends on the parameter s that we choose to label the points of the path,
and consequently it is different for different curves having the same image. A curve has a
unique tangent vector, since the path and the parameter are given.
It should be reminded that a vector is tangent to an infinite number of different curves , for
two different reasons. The first is that there are curves that are tangent to one another in
P, and therefore have the same tangent vector:

-
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The second is that a path can be reparametrized in such a way that its tangent vector
remains the same.

We shall now derive how does a vector transform if we change the coordinate system,

1 2%). The parameter s is unaffected,

’ ! / /
and put for example ' = 2! (2!, 2?),2% = 2% (2!, 2
dat’ 9zt dzt 4 ozt dz? da’ 8:571/ dzt dz!
ds — 9zl ds Ox? ds ds, — 8:v1/ BwQI . d52
dz?’ _ 92? dx! 4 922 dx? dz? 0z? x> dz®
ds — 9Ozl ds 82 ds dz? Ox! Oz? ds

thus
As expected, this is the same transformation as (3.6) that was used to define a contravariant
vector

VH = A VP, (3.11)

3.3 The directional derivative along a curve form a vec-
tor space at P

In order to understand the meaning of the statement contained in the heading of this section,
let us consider a curve, parametrized with an assigned parameter A\, and a differentiable
function ®(z!,...2"), in a general N-dimensional manifold. The directional derivative of ®
along the curve will be

dd 09 da! - 0b dxN 0% dx’
d\  Oxld\x T 0zN d\ Ozt d\’
Since the function @ is totally arbitrary, we can rewrite this expression as
d dz' 0
d\  d\ Oxi’
where % is now the operator of directional derivative, while ‘il—”f\i} are the components
of the tangent vector.
Let us consider two curves z° = x'(\) and =z’ = x%(u) passing through the same point
P, and write the two directional derivatives along the two curves
d dx' 9 d dxz' 9
d\  d\ Ozt dy  dp 0xt

i=1,..N. (3.12)

(3.13)

(3.14)

{%} are the components of the vector tangent to the second curve. Let us also consider
a real number a.

e We define the sum of the two directional derivatives as the directional derivative
d d (dmi dmi> 0

T dp = \ax T ) o

(3.15)

The numbers (%\i + Z—’fj) are the components of a new vector, which is certainly
tangent to some curve through P. Thus there must exist a curve with a parameter, say,
s, such that at P

ds

d dz*  dz'\ 0O d d
(d)\+d,u>8x’ " dn (3.16)
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e We define the product of the directional derivative 0/0A with the real number a as the
directional derivative p PN
:L.Z
— = . 1
“ax (%M)M@ (3:17)
dz?

The numbers (aﬁ) are the components of a new vector, which is certainly tangent

to some curve through P. Thus there must exist a curve with a parameter, say, ¢/,

such that at P p i\ 8 p
xl
e ( d/\> FERaLre (3.18)

In this way we have defined two operations on the space of the directional derivatives along
the curves passing through a point P: the sum of two directional derivatives, and the mul-
tiplication of a directional derivative with a real number.
We remind the mathematical definition of a vector space’.
A wector space is a set V' on which two operations are defined:

1. Vector addition
(U, W) = U+ @ (3.19)

2. Multiplication by a real number:
(a,?) — av (3.20)

(where U, € V, a € IR), which satisfy the following properties:

e Associativity and commutativity of vector addition

—

U+ (W+u
v+

~"

= (T+d)+a
YT, VOG,deV. (3.21)

=

g

e Ezistence of a zero vector, i.c. of an element 0 € V such that
i+0=17 VieV.

o FEuxistence of the opposite element: for every w € V there exists an element v € V' such
that
v4+w=0.

o Associativity and distributivity of multiplication by real numbers:
a(bt) = (ab)v
a(U+w) = av+ aw
(a+b)y = av+bv VYoeV Vabe R. (3.22)

ITo be precise, what we are defining here is a real vector space, but we will omit this specification, because
in this book only real vector spaces will be considered.
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o Finally, the real number 1 must act as an identity on vectors:

19=0 V7. (3.23)

Coming back to directional derivatives (taken at a given point P of the manifold), it is easy
to verify that the operations of addition and multiplication by a real number defined in
(3.15),(3.17) respectively, satisfy the above properties. For instance:

e Commutativity of the addition:

d d _<dxi dx’) 0 _(d:ci d:ci> 0 d d

a4 _ _t, e 3.4
D dp \ax ") or @ Ty ) oar T an T an (3:24)

e Associativity of multiplication by real numbers:
d dz*\ 0O
(i) = o((5) 50)
_ bda:i o bdxi 0
- \"\an ) ) o T \Max ) ow
d

= ab—. 2
ab— (3.25)

e Distributivity of multiplication by real numbers:
" d N dy " dx’ n dz"\ 0

d\ dp) d\  dp ) 0x

B dx’ n dx’ g dx’ N dz*\ 0O

—\"\a T ) ) o T \Yan T Yan ) ox

= (adx) 0 +<adx> 0 :aci\—kad (3.26)

d\ | Oxt dp ) Ox du

e The zero element is the vector tangent to the curve * = const., which is simply the
point P.

e The opposite of the vector ¢ tangent to a given curve is obtained by changing sign to
the parametrization

A= —A. (3.27)

The proof of the remaining properties is analogous.
Therefore, the set of directional derivatives is a vector space.

In any coordinate system there are special curves, the coordinates lines (think for example
to the grid of cartesian coordinates). The directional derivatives along these lines are

d di* 9 L0 0

dei  dri OzF 1 ozk  oxt
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Eq. (3.13) shows that the generic directional derivative -k can always be expressed as a
linear combination of 821" It follows that dii = azi are a basis for this vector space, and

%} are the components of % on this basis. But %\i} are also the components of a

tangent vector at P. Therefore the space of all tangent vectors and the space of all derivatives
along curves at P are in 1-1 correspondence. For this reason we can say that % is the
vector tangent to the curve z‘(\).

TO SUMMARIZE: the vectors tangent to the coordinate lines in a point P, i.e. the direc-
tional derivatives in P along these lines in a coordinate system (x!,...z"), have the following

components

o = (100, o5 =(01,..0), e =(0,0,.0).

d

<, tangent to the curve (), with

B
21
If we use the { 8(;-} as a basis for vectors, the vector

respect to this basis has components {25},

Vectors do not lie in M, but in the tangent space to M, called TpFor example in the two-
dimensional case analysed above the tangent plane was the plane itself, but if the manifold
is a sphere, since we cannot define a vector as an “arrow” on the sphere, we need to define
the tangent space, i.e. the plane tangent to the sphere at each point. For more general
manifolds it is not easy to visualize Tp. In any event Tphas the same dimensions as the
manifold M.

3.4 Coordinate bases

Any collection of n linearly independent vectors of Tpis a basis for Tp. However, a natural

basis is provided by the vectors that are tangent to the coordinate lines, i.e. {é'(,-)} =
65@} ; this is the coordinate basis.

IMPORTANT:

To hereafter, we shall enclose within () the indices that indicate which vector of the basis

we are choosing, not to be confused with the index which indicates the vector components.

For instance 6%2) indicates the component 1 of the basis vector €).
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x> = const

Any vector Aat a point P, can be expressed as a linear combination of the basis vectors
A= Ay, (3.28)

(Remember Einstein’s convention: Y ; A'€;) = A’€(;)) where the numbers {A’} are the

components of Awith respect to the chosen basis.
If we make a coordinate transformation to a new set of coordinates (z'', z%,...z""), there

-

will be a new coordinate basis:  {€(i)} = {af(i’)} :

We now want to find the relation between the new and the old basis, i.e we want to express
each new vector €(;/) as a linear combination of the old ones {€(;)}. In the new basis, the

vector A will be written as

A=A, (3.29)

where {A7'} are the components of Awith respect to the basis {é(j/)} . But the vector

Ais the same in any basis, therefore
A'eyy = A . (3.30)

From eq. (3.11) we know how to express A’ as functions of the components in the old basis,
and substituting these expressions into eq. (3.30) we find

Ay = N ARG . (3.31)
By relabelling the dummy indices this equation can be written as
(A" K&y — & A =0, (3.32)

1.e.
— i/

€k) = AN kﬂ(il). (333)
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Multiplying both members by A*; and remembering that

-/ axk al’il 8&:i/ .
AN, = == = =4, 3.34
PR 9xd Ok Ot J (3:34)

we find the transformation we were looking for

ey = Npég. (3.35)
Summarizing;:
€y = A 5( o8
{ Ery = Aruéy (3.36)

We are now in a position to compute the new basis vectors in terms of the old ones.
EXAMPLE
Consider the 4-dimensional flat spacetime of Special Relativity, but let us restrict to the
(x-y) plane, where we choose the coordinates (ct,z,y) = (2°, 2, 2%). The coordinate basis

is the set of vectors

sror = €0) = (1,0,0) (3.37)
am =€y = (0,1,0)
a9

or, in a compact form
el = 0h. (3.38)

(The superscript [ now indicates the [-component of the a-th vector). In this basis
any vector A can be written as

A= A% + Aleyy + A% = A8, a=0,.2 (3.39)

where {42} = (A% A', A%) are the components of A with respect to this basis. Let us
consider the following coordinate transformation

(2% z,y) = (2% 1,0)
20 = 2¥
! =rcosf (3.40)
2% = rsinb,
ie. " =r 2% = 6. The new coordinate basis is
J g 4 g _ J .
9200 ~ O g T ) T A g T ga) T ) (341)
From eq. (3.35) we find
S o« - N Ox“
6(0/) =A Ofe(a), A o (342)
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In the example we are considering only A% # 0 and it is equal to 1. It follows that

— 5 —
€0) = 7@y = €0)- (3.43)
In addition
5(1/) = Aalfg(a), (344)
and since
ozY ozt oz?
Aol/ = W = O, A11/ = ? = COS (9, A21/ = W = sin 9, (345)
3
€y = 5 = cos () + sin 0€ ). (3.46)
Similarly
€2y = N9 €q), (3.47)
and since o 92
A% =0, Ay = a—xe = —rsiné, A%y = a—xe = rcosf, (3.48)
hence .
0
5( = 07 = —rsin 95(1) + 7 cos «95(2). (349)
Summarizing,
€)= €o)
€y = €y = cos Be() + sin €(s) (3.50)
€2y = €(g) = —Tsin 06 ) + TCOS 0ea) -

It should be noted that we do not need to choose necessarily a coordinate basis. We may
choose a set of independent basis vectors that are not tangent to the coordinate lines. In
this case the matrix which allows to transform from one basis to another has to be assigned
and will not be A% as in eq. (3.35).

3.5 One-forms

A one-form is a linear, real valued function of vectors. This means the following: a
one-form (or 1-form) ¢ at the point P takes the vector Vat P and associates a number
to it, which we call cj(‘?) To hereafter a “ = 7 will indicate 1-forms, as an arrow “—”
indicates vectors.

By definition, a one-form is linear. This means that, for every couple of vectors ‘7, W,
for every couple of real numbers a, b, for every one-form ¢,

q(aV +bW) = ag(V) + bg(W'). (3.51)

We define two operations acting on the space of one-forms:
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e Multiplication by real numbers: given a one-form ¢ and a real number a, we define the
new one-form aq such that, for every vector V,

—

(a@)(V) = al(V)]- (3.52)

e Addition: given two one-forms ¢,d, we define the new one-form ¢ + & such that, for
every vector V,

— —

G+ 51(V) = q(V) + 6(V). (3.53)
One-forms satisfy the axioms (3.21-3.23). Let us show this for some of the axioms.

e Commutativity of addition. Given two one-forms ¢, 5, we have that, for every vector

field V/,
G+0)(V)=a(V)+5(V) =6 (V) +q(V) =G+ (V). (3.54)

e Distributivity of multiplication with real numbers. Given two one-forms ¢, & and a real
number a, we have that, for every vector field V,

@@+ (V) = al@+a) (V) =ala (V) +

(
= [(aq) + (a5)] (V) (3.55)
then, being this true for every ‘7,
a(q+07)=(aq) + (ad). (3.56)

e Existence of the zero element. The zero one-form 0 is the one-form such that, for every
v,
0(V)=0. (3.57)

The other axioms can be proved in a similar way.
Therefore, one-forms form a vector space, which is called the dual vector space to Tp, and
it is indicated as Tf); this is also called the cotangent space in P.

Tf)is the space of the maps (the 1-forms) that associate to any given vector a number,
i.e. that map Tpon R!. The reason why T*pis called dual to Tpis that vectors also can

be regarded as linear, real valued functions of one-forms: a vector Vtakes a 1-form ¢ and
associates a number to it, which we call V(§), and

i(V)=V(9), (3.58)

in the sense that the two “operations” give as a result the same number. This point will be
further clarified in the following. Once we choose a basis for vectors, say {€;y,i =1,..., N},
we can introduce a dual basis for one-forms defined as follows:

the dual basis {J)(i),i =1,...,N}, takes any vector Vin Tpand produces its components

d(V) =V (3.59)
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It should be remembered that an index in parenthesis does not refer to a component, but
selects the -th one-form (or vector) of the basis. Thus the i-th basis one-form applied to
Vgives as a result a number, which is the component V* of the vector V. As expected,
this operation is linear in the argument

—

DV 4+ W) =V + W, (3.60)

since V4+Wis a vector whose i-th component is  V*+ W' In particular, if the argument of
a one-form is  €(;), i.e. one of the basis vectors of the tangent space at the point P, since
only the j-th component of €(;) is different from zero and equal to 1, we have

@ (e) = o (3.61)
We now want to answer the questions:

1. Who tells us that {@®} form a basis for one-forms?

2. Can we define the components of a 1-form as we define the components of a vector?

1. Consider any one-form ¢ acting on an arbitrary vector V. By expressing Vas a linear
combination of the basis vectors €(;), and using the linearity of one-forms we can write

iV = §(Viey) = Vige,) = (3.62)
= aDWV)aey),

where the last equality follows from eq.(3.59). This equation holds for any vector
Vtherefore we can write

G=a" q(ey); (3.63)
since (€(;)) are real numbers, this equation shows that any one-form ¢ can be written
as a linear combination of the {&)}; consequently {@)} form a basis for one-forms.

2. We now define the components of G on the basis {0®} as

~f =

4 = q(€)) (3.64)

and consequently we can write

28 (3.65)

&

q=qj

Consider an open region U of the manifold M, and choose a coordinate system {z'} . We

have seen that this defines a natural coordinate basis for vectors € = {%}. Furthermore,
it also defines a natural coordinate basis for one-forms (dual to the natural basis for vectors),
often indicated as {dz?} , whose components are

@) = 7@ _ @ 0 ) _ 5
oV, =dr ', =dx 52 —5j.
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And now the most important thing. From eq. (3.65) it follows that for any vector 1%
a(V) = @V(V). (3.66)
Since @@ (V) =V, we find
i) = g7, (3.67)

This operation is called contraction and tells us how to compute the number which results
from the application of ¢ on V(or viceversa), once we know the components of ¢ and V.

From eq. (3.67) we can now better understand why vectors and one-forms are dual of
each other. In fact, if ¢; and V7 are respectively the components of the one-form ¢
and of the vector V

GV)=qVi=qV'+ .. +q V", (3.68)

The right-hand side of this equation can be considered as a linear combination of the compo-
nents of V with coefficients g;, or alternatively, as a linear combination of the components of
g with coefficients V7, and this follows from the linearity of the previous expression. There-
fore, we can define vectors as those linear functions that, when applied to one-forms, produce
a number.

. . / / 5 .
Let us now make a coordinate transformation z*¥ = 2*(2%) and let us consider the

following questions.
1. How do the components of one-forms transform?

2. Will the new coordinate basis for one-forms be a linear combination of the old ones,
and if so, and which combination?

1. By definition
0 = 4(€(y))- (3.69)
If we change coordinates, we will have a new set of basis vectors {€(;y}, and we have
seen that they are related to the old ones by

where A*, = gjk, The new components of ¢ will be
g = G(€n) =GN jew) = A pd(Ewy) = A¥ja, (3.71)
hence
q; = Akj/qk. (372)

If we compare this result with eq. (3.7) we immediately recognize that this is the way
covariant vectors transform, thus covariant vectors are one-forms.
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2. We now want to check whether the new basis one-forms can be expressed as a linear
combination of the old ones. We shall proceed along the same lines of section 3.4.
From eq. (3.65) we see that

. . . . ~ /! .
(sum removed according to Einstein’s convenction), where {@®*)} are the new basis
one-forms. But

Qe = Nwai, (3.74)
therefore 4 '
g% = Npqo®). (3.75)
This equation can be rewritten as
A o™ — 5@]g; = 0, (3.76)
hence ’ '
O® = A% o*). (3.77)

The matrix A% is inverse of A*;. Thus
ANy =6, or A A =4l (3.78)
Multiplying both sides of eq. (3.77) by A’'; we find
N 0O = NNy o) = 67 o), (3.79)

hence

U

oW — Aji o

, (3.80)

Summarizing, the transformation laws for the basis one-forms are

2@ — Ad,, )
w k! W
{ o) = AF; o) (3.81)

EXAMPLE
Let us consider the same coordinate transformation analyzed in section 3.4. We start

with Minkowskian coordinates (2%, 2!, z%). The coordinate basis for vectors is {%} and
the dual basis for one-forms is {dz®}

dz® — (1,0,0) (3.82)
dz™ = (0,1,0) (3.83)
dz® — (0,0,1) (3.84)
If we now change to polar coordinates (2% = 2° 2" = r, 2% = 6), according to eq. (3.80) we

find 3
0 =AY dz'®. (3.85)



CHAPTER 3. VECTORS AND ONE-FORMS 39

Since AY, = 0z only A”) =140, thus

x>
0 = dz©®, (3.86)
Similarly
’ ro 81’1l ~ axl/ ~ 31’1, ~
~(17) Al a) a) 1 2
(.U( ) =A adx( ) = @d:c( ) = @dlﬂ( ) + wdx( ) (387)
Since N ) N ,
Ox x Ox x )
Bl = v = 08 0, and T = sin (3.88)
it follows that 3 R
o) = cos fdz' + sin fdz>. (3.89)
Moreover y Y
oy 0x” - ox* -~
o®) = e dzV + e dz?, (3.90)
hence ) .
@) = —Zsin0dz + = cos Odz®. (3.91)
r r
Summarizing,
o) = 50)
o) = cos o™ 4 sin @ (3.92)
o@) = —% sin O + %COS 62
AN EXAMPLE OF ONE-FORM.
Consider a scalar field ®(z!,...2"). The gradient of a scalar field is
- 0P 0P
S — (=— ..., =—=)- 3.93
<8x1’ ’ (%N) (3.93)

It is easy to see, for example, that the components transform according to eq. (3.72), in fact

< 0o < 0 od  Ox*
since AF; = gxi;, it follows that
D = A*, Dy, (3.95)

same as eq. (3.72). Thus the gradient of a scalar field is a one-form.

3.6 Vector fields and one-form fields

The vectors and one-forms are defined on a point P of the manifold, and belong to the vector
spaces Tpand T;), respectively, which also refer to a specific point P of the manifold; to

make this explicit, we could also denote a vector in P as Vp, a one-form in P as Wp. We
shall now define vector fields and one-form fields.
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Given an open set S of a differentiable manifold M, we define the vector spaces

Tg= U Tp
PeS
Ts= U Tp,
PeS

i.e., the union of the tangent spaces on the points P €S, and the union of the cotangent
spaces on the points P €8S.
A vector field V' is a mapping

VS%TS
P—)Vp

which associates, to every point P €S, a vector Vp defined on the tangent space in P, Tp.
A one-form field W is a mapping

W:s — Tg
P — W,

which associates, to every point P €S, a one-form Wp defined on the cotangent space in P,
Tp. If a coordinate system (a chart) {z"} is defined on S, we can indicate the vector field

and the one-form field as V(z), W (z).
In the following, we will mainly consider vector fields and one-form fields; however, for
brevity of notation, we will often refer to them simply as vectors and one-forms.
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Tensors

4.1 Geometrical definition of a Tensor

The definition of a tensor is a generalization of the definition of one-forms.

Consider a point P of an n-dimensional manifold M. A tensor of type g, at P is

defined to be a linear, real valued function, which takes as arguments N one-forms and N’

vectors and associates a number to them.

For example if F is a ; tensor this means that

F(@,6,V,W)
is a number and the linearity implies that
F(a@ +0§,6,V, W) = aF(©,6,V,W) + bF(§,5,V, W)
and B L L L
F(©,g,aVi + Vo, W) = aF(©,g,Vi,W) + bF(©, g, Vo, W)

and similarly for the other arguments.

This definition of tensors is rather abstract, but we shall see how to make it concrete with
specific examples.

The order in which the arguments are placed is important, as it is true for any function of
real variables. For example if

flz,y) =42° +5y  ,then  f(1,5) # f(5,1). (4.1)
In the same way o o
F(@,§,V,W) £ F(5,3,V,W). (4.2)
EXAMPLES

A ? tensor is a function that takes a vector as argument, and produces a number.

This is precisely what one-forms do (on the other hand this is the definition of one-forms).
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Thus, a ( (1]

) tensor is a one-form.
qgV)= anva =q.,V°. (4.3)
A ( (1) ) tensor is a function that takes a one-form as an argument, and produces a number.

Thus a ( (1) ) tensor is a vector

—

V(q) = gV (4.4)
Let us now consider a ( g > tensor. It is a function that takes 2 vectors and associates a

number to them.
Let us first define the tensor components: generalizing the definition (3.64) for the com-

ponents of a one-form, they are the numbers that are obtained when the ( g ) tensor is

applied to the basis vectors:
Fap = F(a), €p)); (4.5)

since there are n basis vectors, F,g will be an n x n matrix.
If we now take as arguments of I two arbitrary vectors A and B we find

F(A,B) = F(A“€.),B%4s) =
= A°B°F(Ea),€5) =
= F,3A°B". (4.6)

It should be stressed that in going from the first to the second line of eq. (4.6) we have used
the property that tensors are linear functions of the arguments.

It is now clear what is the number that F' associates to the two vectors: the number is
F,pA“B".

We shall now construct a basis for < (2) ) tensors as we did for one-forms.

We want to write
F = Fopw®@® (4.7)

where w@®@®)  are the basis < (2) ) tensors.

If the arguments of F are two arbitrary vectors A and B, eq. (4.7) gives

(A B) = Fy® (4, B (13)
On the other hand, since A% = &@(A) and B? = ®)(B), eq. (4.6) gives
F(A, B) = Fups® (A)a"(B) (49)

and, by equating egs. (4.8) and (4.9) we find
CL,(a)(ﬁ)(g’ g) = ol)( )@w)(g)‘
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The previous equation holds for any two vectors A and B , consequently we write
w@B) = 5@ g HB), (4.10)

where the symbol ® indicates the “outer product” of the two basis one-forms, and means
precisely that if w(®®) is applied to the vectors A and B, the result is a number, which
coincides with the number produced by the application of @(® to ff, times that produced by
the application of @) to B (the order is important!).

Thus the basis for g tensors can be constructed by taking the outer product of the
basis one-forms. Finally, we can write

F=Fp0®eo®. (4.11)

It is now clear that we can construct any sort of tensors using the procedure that we

have developed in the previous pages. Thus for example a (2) ) tensor T is a function that

associates to two one-forms & and & a number, T'(&, ).
The components of this tensor are found by applying 7' to the basis one-forms

T = T (W, o), (4.12)

and the number produced when T is applied to any two one-forms &, & will be
T(&,5) = T(a,o"W, 0,0") = a,0,T(@", ") = a,0,T", (4.13)
where again use has been made of the linearity of tensors with respect to their arguments.

By following the same procedure used to find the basis for a < g > tensor, it is easy to show

that the basis appropriate for a ( g ) tensor will be

€(a)(8) = €a @ €p; (4.14)

and consequently
T =T¢, ® ép. (4.15)

Exercise: prove that the 1 tensor V ® & has components V*g, and find the basis

for ( 1 ) tensors.

Now we ask the following question: how do the components of a tensor transform if we
make a coordinate transformation?

We start with a g tensor

=

F = Fpo® ool (4.16)
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If we change coordinates, we shall have a new set of basis one forms {&®)} which are
related to the old ones by the equations

G G GO COR UG (4.17)
In the new basis the tensor ( g ) will be
F=F,p0® oo, (4.18)

By equating (4.16) and (4.18)
Fa,ﬁ,@(a/) QB = Faﬂ@(a) QB
Replacing @@ and @ by using the first of eqs. 4.17
Fupe® @ @) = Fgh® 0t @ AP,0®) = Fph® AP0®) @ o),
or by relabelling the dummy indices
Fui™) @ 5 = Fogh® AP ,0W) @ o),

and finally

Euy = FugAy A, (4.19)

or, by writing explicitely the elements of the matrix A<,

Oz OxP
F/V/ - Fa N A 420
K ﬁaxu ax,, ( )

where {z*'} are the new coordinates.
In a similar way, by using eqgs. 3.33 and 3.35 we would find that

T = TSN A g, (4.21)
and

T = TsA" JAP,, (4.22)

IMPORTANT

The following point should be stressed: the notion of tensor we have introduced is indepen-
dent of which coordinates, i.e. which basis, we use.

In fact the number that an ]]\\;, tensor associates to N one-forms and N’ vectors does

not depend on the particular basis we choose.
This is the reason why, for example, we can equate eqs. (4.16) and (4.18).

The operations that we are allowed to make with tensors are the following.
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o Multiplication by a real number

: N
Given a tensor T of type ( N > and a real number a, we define the tensor, of the
same type,
W =aTl.
Let the components of T, in a given frame, be {74 }. The components of W are
W%. =al"%...

e Addition of tensors

: N
Given two tensors T, G of the same type ( N ), we define the tensor, of the same

type,
W=T+G.

Let the components of T, G, in a given frame, be {74 }, {G*;_}. The components
of W in that frame are
Wo. =T%.+G%..

e Quter product
. Ny No :
Given two tensors T, G of types N L) respectively. We define the tensor,
1 2

Ofty (§ Nl N2

Let the components of T',G, in a given frame, be {T%; }, {G"; }. The components
of W in that frame are

For instance, if both T, G are of type ( g ),
Wagys = TapGas -

o Contraction

an

: N . . .
Given a tensor T' of type < N ), with components {T%**5'5 5 '} in a given frame.

N —1 . :
We define a new tensor W of type , , the components of which are obtained
N —1
by contraction of one contravariant (i.e. upper) and one covariant (i.e. lower) index of
T, ie.
Q1 Ol o Q1 O Q41
w wBi—1 Bit1 T T wBij—1 0 Bjy1..

. . . 2 .
For instance, if T is of type ( 3 ) and we choose to contract the first contravariant

index with the second covariant index

Wﬁa& = Taﬁooaé = TOﬂUO& + Tlﬁal& + T2ﬁ026 + ...
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1
and W is a tensor.

2
These are called tensor operations and an equation involving tensor components and ten-
sor operations is a tensor equation.

Finally, we remark that since a tensor 7" has been defined as an application from vectors
and one-forms, it is defined on the product of a certain number of copies of the tangent and
the cotangent spaces on a point P, Tp, Tf). Then, we can define tensor fields, i.e., a tensor
for each point P of an open subset of the manifold; in a given coordinate system {z*}, we
can write a tensor field as T'(z). For brevity of notation, in the following we will often refer
to a tensor field simply as a tensor.

4.2 Symmetries

A ( g ) tensor F' is Symmetric if

F(A,B)= F(B,A) VA,B. (4.23)
As a consequence of eq. (4.6) we see that if the tensor is symmetric
F,3A“BP = F,3B*A”, (4.24)
and, by relabelling the indices on the RHS
FL3A“B? = Fj,BP A, (4.25)

1.e.

Faﬂ - Fﬁa (426)

ie. if a < g > tensor is symmetric the matrix representing its components is symmetric.

Given any < 0 ) tensor [’ we can always construct from it a symmetric tensor I,

F©) (A, B) = Z[F(A, B) + F(B, A)]. (4.27)

In fact ‘v’ff, B

Moreover

I 1 1
FOUA B) = F¥ABF = 5 [Fag A B’ + Fos B A% = [Fug A" B + Fpo B A°]

1 «
= 5[Fas + Fpa] A*B”,
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and consequently the components of the symmetric tensor are

s 1
Fo3 = 5Fas + Faal. (4.28)
The components of a symmetric tensor are often indicated as
1
Flag) = 5[Fap + Fpal. (4.29)

A < g ) tensor F' is antisymmetric if

-,

F(A,B)=—F(B,A) VAB, ie  Fo=—Fs. (4.30)
Again from any ( (2) ) tensor we can construct an antisymmetric tensor F(® defined as

—,

ﬂ%&@:;mim—mémy

Proceeding as before, we find that its components are

a 1
inﬂ) = §[Faﬁ - Fﬂa]v
also indicated as 1
Flag = 5|Fas — Fal. (4.31)

It is clear that any tensor ( g ) can be written as the sum of its symmetric and antisym-

metric part

4.3 The metric Tensor

In chapter 1 we have seen that the metric tensor has a central role in the relativistic theory
of gravity. In this section we shall discuss its geometrical meaning.

—

Definition: the metric tensor g is a < g ) tensor that, having two arbitrary vectors A

—

and B as arguments, associates to them a real number that is the inner product (or scalar
product) A-B

g(A,B)=A-B. (4.32)
The scalar product is usually defined to be a linear function of two vectors that satisfies the
following properties

U.v=v.U
(al) -V =a(U-V)
U+V) W=U-W+V-W (4.33)
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From the first eq. (4.33) it follows that g is a symmetric tensor. In fact

The second and third eqgs. (4.33) imply that g is a linear functions of the arguments, a
condition which is automatically satisfied since g is a tensor.
As usual the components of the metric tensor are obtained by replacing A and B with
the basis vectors
9o = 9(€(a), €(3)) = €(a) - €(5) - (4.35)
Thus the metric tensor allows to compute the scalar product of two vectors in any space
and whatever coordinates we use:

—

A-B=g(A,B) = g(A"a), B’ep) = A*B (e, ¢(5) = (4.36)
AQB’Bgaﬁ.

EXAMPLES

1)

The metric of four dimensional Minkowski spacetime, in Minkowskian coordinates z® =
(ct,x,y,z) is

-1 0 0 0
0O +1 0 O _
95=1 0 0 +1 0 [T
0O 0 0 +1
le.
ds? = gagdr®da’® = —c*dt* + do* + dy® + d2*. (4.37)

This implies that the basis vectors in the coordinate basis

g(o) = g(ct) — (1, 0,0, 0)
5(1) - g(ﬂf) - (07 L, 07 0)
o = €y — (0,0,1,0)
5(3) = g(z) — (0, O, O, 1)

are, in this case, mutually orthogonal:

e_’(a)-_’(/g)zgagzo if a;éﬁ
In addition, since
gi1 = go2 = g33 = 1, and goo = —1,

the basis vectors are unit vectors, € is a timelike vector, and € (i = 1,2,3) are

spacelike vectors:
é’(k)'_»(k)zl if ]{3:1,...,3,
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From now on we shall indicate as 7,5 the components of the metric tensor of the Minkowski
spacetime when expressed in cartesian coordinates.

2)
Let us now consider the metric of Minkowski spacetime in three dimensions, i.e. we suppress
the coordinate z:

-1 0 0
gap=1| 0 +1 0 | =n.p (4.38)
0 0 +1
with o, 8 = 0,...,2. The vectors of the coordinate basis have components

5(0) — (1, 0, 0)
5(1) — (O, 1, 0)
5(2) — (O, 0, 1) .

We now change to polar coordinates
r=x, x' =rcosd, x? = rsinf. (4.39)

The vectors of the coordinate basis in the new coordinate system have been computed in
Sec. 3.4, and are

Eoy = o) (4.40)
€ay = €y = cosbe() + sinbe(y (4.41)
€2) = € = —rsin 06(1) + 1 cos 0€ ).

We can determine the metric tensor in the new frame by computing the scalar product of
the vectors of this frame:

goo = o) 5(0’) €o) * €0) = ~1
gow = 0 =12
g = €ury - €y = (cos &) + sin () - (cos 0€(;) + sin 0€(z)) = cos®  + sin® 6 = 1
Gy = €)- (2/)—7“2s1n 9+r cos® ) = r?
gry = —rcosfsinf +rcosfsinf =0
lLe.
-1 0 0
guwp = 0 +1 0 (4.42)
0 0 »?
le.
ds* = gapdz®da’ = gygpdz® da® = —dt* + dr® 4 r2d6? . (4.43)

We note that although the metric tensor is the same, its Components in the two coordinate
frames, (4.38) and (4.42), are different, since goo = €2 - €(2) = = 12 # 1. Thus, €(21) is not
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an unit vector. In general the basis vectors are not required to have unitary norm, even in
a coordinate frame.

Usually, to determine the components of the metric tensor in a new frame, one does
not use the procedure above, based on the computation of the scalar products. One rather
employs the transformation law

Guvr = N gag
which, in this case, has the form
Guv = NN g .
Since 7,4 is diagonal, we only need to consider the components with a = §.

0x0 \ 2
Joo = AQO’ABO’naﬁ = <6$0'> Moo =1+ (_1) =—1

N 0z 0x° dz' Ox! dz? Ox? ,
Goryt = A O’Aﬁi’naﬂ = WWUOO + Wﬁ’ﬂn a a0 a 7 T2 = 0 7,/ = ]_7 2

CEO xl
because gzi, = ng’ = 8x0, =0.
g = Aal’Aﬂl’naﬂ = (A01’>27700 + (A11')27]11 + (A21')27722 =

82°\ o'\’ or%\’
- (m) '<‘1>+<axv> '”(axv)

g1 = cos? f +sin?f =1

(ou 2 N By 2
~\or or
Proceeding in this way we find the metric in the frame (2%, 2", 2%) = (ct,r,0), i.e. (4.42).

4.3.1 The metric tensor allows to compute the distance between
two points

Let us consider, for example, a three-dimensional space.

The distance between two points infinitesimally close, P(z° 2! %) and P'(2°+ dx° 2! +
dot, 2% + dz?) | is
ds = dxoé'(o) + dmlé'(l) + dx2€(2) = dz€(q) (4.44)

—

where €, are the basis vectors. ds® is the norm of the vector d_js, i.e. the square of the
distance between P and P”:

ds?> = ds-ds = (dx 080y + dz' €y + da’éa)) - (o) + dx' ) + da’é(a))
= ( ) ( €(0) * (0)) + dztda® (_»(1 5(0)) + d:L‘2d£EO(€(2) . 5(0)) +
+ da’dz’ (€) - €y) + (dz')? (5(1 4(1)) +da’dzt (€z) - E)) +
- !
€ ) €2)

+  da®da®(€))
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By definition of the metric tensor
(€y - €4y) = 9(€wys €G)) = Gij
therefore

ds® = g(ds, ds) = (dz°)2goo + 2dx’dz’ gor + 2da’da?ges + 2da'dz’ g + (dz')2g11 + (d?)?gon

(4.45)
where we have used the fact that g.s = gsa-
This calculation is simplified if we use the following notation
o 2 2
ds* = g(ds,ds) = g(>_ dz“€a), . drPé(5)) = g(daz®e(ny, dx’és) =
a=0 B8=0
= d2*d2’g(Ea), () = Gapdrda” (4.46)

with a,5=0,...,2.
This way of writing is completely equivalent to eq. (4.45). For example, if the space is
Minkowski spacetime ¢ = 1as = diag(—1,1,1), and eq. (4.46) gives

ds® = —(dz°)* + (do*)? + (dz?)?, (4.47)

as expected.
If we now change to a coordinate system (2%, 2, 2%), the distance PP’ willbe ds” = ds?,
ie.

g(ds',ds") = ds'-ds' = ds”” = ds* =
= g(dxa/é(a/), d$6/€(61)> = dxa/dxﬁ/g(g(a/), 5(/3/)),
where {€()} are the new basis vectors. Therefore
ds? = gogdz® do” (4.48)

where now g, g are the components of the metric tensor in the new basis. For example, if
we change from carthesian to polar coordinates (2%, z,2%) = (ct,r,6),

ds® = (dz" )2 goo + (dz'') g + (da® )2 gyar = —(da®)? + dr? + r*d6>. (4.49)

Thus if we know the components of the metric tensor in any reference frame, we can compute
the distance between two points infinitesimally close, ds?.

The “infinitesimal” interpretation of ds? we have discussed above is useful to understand
the role of the metric in measuring distances. In order to compute finite distances, we need
to proceed as follows. Let us consider a curve, i.e. a path C and a map

la,bjC R — C
A — PN (4.50)

which, in a given coordinate system {z*}, corresponds to the real functions

A= {2"(\)}. (4.51)
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We can define the lenght of the path C as
dz# dxv

As—/d/\ /d/\ G-

This definition corresponds, in infinitesimal form, to ds = y/|ds?| = \/|gdztdx”|.

In other words, if we have a curve, characterized, in a given coordinate system, by the
functions {z#(\)}, and then by the tangent vector

(4.52)

dzt
Ut = —
X’
the measure element on the curve ds/dA (which, integrated in dA, gives the lenght of the
path) is
ds dz# dxv
— = — =/ rgv|. 4.
A\ Py an | T Ve U (4.53)

This can be expressed in a coordinate-independent way:

Zi = /|90, 7). (4.54)

Note that if we change coordinate system, {z#} — {z®}, the quantity (4.54) does not
change. Furthermore, if we change the parametrization of the curve,

Ao N =N,
the new measure element is
ds _ dottdz” | dolt dA dav dA | ds dA (4.55)
v NP av av | T NI AN dv dx dv| T dhdy '

and

As:/abd)\si :/a (d)\’d/\/> / d/\’dX. (4.56)

Therefore, As does not depend on the parametrization, and is a charateristic of the path,
given the metric, not of the curve.

4.3.2 The metric tensor maps vectors into one-forms

As we have seen, the metric tensor is a linear function of two vectors: this means that it
takes two vectors and associates a number to them. The number is their scalar product.
But now suppose that we write ¢( ,‘7), namely we leave the first slot empty. What is this?
We know that if we fill the first slot with a generic vector A we will get a number, thus
g( , 17) must be a linear function of a generic vector that we can put in the empty slot, and
that associates a number to this vector.

But this is the definition of one-forms! Thus g( , V) is a one-form.
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In addition, it is a particular one-form because it depends on Vi if we change ‘7, the
one-form will be different. Let us indicate this one-form as

g( V)=V. (4.57)

hence
Vo = gasV?’. (4.58)

Thus the tensor ¢ associates to any vector V a one-form V, dual of ‘7, whose components
can be computed if we know g.g and V<.

In addition, if we multiply eq. (4.58) by ¢g*7, where g*7 is the matrix inverse to ga-
goz'yg’w = 5§a (459)

we find
9" Vo = 9"7gasVP = VI = V7,

1.c.

V7 =g¢g*V,, (4.60)
Consequently the metric tensor also maps one-forms into vectors . In a similar way the

. 2 . 1
metric tensor can map a 0 tensor 1 a 1 tensor

! ( O >
or 1n a 9 tensor

or viceversa

Aaﬁ = gﬁ’YA(w?

Aa,B == gaugﬁuAlW )

A%P = go‘“gﬁ”AW.

These maps are called index raising and lowering.
Summarizing, the metric tensor
1) allows to compute the inner product of two vectors g(ff, E) =A-B , and consequently
the norm of a vector g(A, A) = A- A = A2.
2)As a consequence it allows to compute the distance between two points ds* = g(dts, dts) =
Japdrdz®.
3) It maps one-forms into vectors and viceversa.
4) It allows to raise and lower indices.



Chapter 5

Affine Connections and Parallel
Transport

In chapter 1 we showed that there are two quantities that describe the effects of a gravita-
tional field on moving bodies by virtue of the Equivalence Principle: the metric tensor and
the affine connections. In chapter 4 we discussed the geometrical properties of the metric
tensor. In this chapter we shall define the affine connections as the quantities that allow
to compute the derivative of a vector in an arbitrary space, and we shall show that they
coincide with the I' ’s introduced in chapter 1.

5.1 The covariant derivative of vectors

Let us consider a vector (field) V= V#é(,y . The derivative of Vs

87‘/’ (‘9\/ - + Va 06@

0rB — 9aP o) oxb (5-1)

The first term on the right-hand side is a linear combination of the basis vectors, therefore it
is a vector and we know how to compute it. The second term involves the derivative of the
basis vectors, for which we need to compute the quantities € (p’) — €()(P), i-e. to subtract
vectors which are applied in different points of the manifold M. Note that the vectors é€(,)(p)
and €(q)(p’) belong to the tangent space to M, respectively, in p and p’, and that Tp # Tp.
Thus, to define the derivative of a vector field on a manifold, we need to specify a rule to
compare vectors belonging to different tangent spaces; such a rule is called a connection.

Let us start considering Minkowski’s spacetime, where it is possible to define a global
coordinate system (ct, x,y, z) which covers the entire spacetime; at any given point p of the
manifold there exists the coordinate basis €j/(o)(p) which belongs to the tangent space Tp.
In this case a simple rule to compare vectors on different tangent spaces is to impose that
each basis vector in a point p of the manifold is equal to the corresponding basis vector in
any other point p/, i.e.

—

Er(a)(P) = Ena) (P') - (5.2)
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This rule is the affine connection in Minkowski’s spacetime. Note that, with this choice the
basis vectors of the Minkowskian frame are, by definition, constant:

Den(a)
oxP

=0. (5.3)

Let us now consider a general spacetime. The equivalence principle tells us that at any
point of the manifold we can choose a locally inertial frame, in which the laws of physics
are (locally) those of Special Relativity. Thus, the natural choice for the affine connection
in a general spacetime is the following: we impose that in a locally inertial frame the basis
vectors are constant. We shall now show that, using this rule, we will be able to compute
the derivative of a vector 5.1 at a given point p of the manifold.

Let us make a coordinate transformation to the local inertial frame in p, introducing the
new basis vectors €jr) , related to the old basis vectors €, by the equation

Ela) = A 0lhr(ar)- (5.4)

From (5.3) we know that the vectors €(,) are constanta. Consequently

0y [0 ).
—(Lpe ). |
da? <8x6 a) e (5:5)

The R.H.S. of (5.5) is a linear combination of the basis vectors {€(a)}, therefore it is a
vector. B

Since 8;;(;) is a vector, we must be able to express it as a linear combination of the
basis vectors {€(,y} we are working with, i.e.:

ag(a)
oxP

= Las€0); (5.6)

where the constants I',; have three indices because « indicates which basis vector €y we
are differentiating, and [ indicates the coordinate with respect to which the differentiation
is performed. The I, are called affine connection or Christoffel symbols. Note that
in the case of Minkowski space, the basis vectors in the Minkowskian frame are constant,
thus I, 5 =

Thus, coming back to eq. (5.1), the derivative of V becomes

v ove

307 = B8t TV Tl

or relabelling the dummy indices
ov - fove 1.
W = W + V F,Bo' G(a). (57)
For any fixed £, 8—; is a vector field because it is a linear combination of the basis vectors

{€a)} with coefficients [%V +VIg,] _
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If we introduce the following notation

ove o ove
Fr and V%5 = 5

Ve 5= + Vi3, (5.8)

eq. (5.7) becomes
ov

o9xB V%5 €a)- (5.9)

5.1.1 V“j3 are the components of a tensor

Let us define the following quantity:

—

VV = [V fa)] @31 (5.10)

As shown in section 5.1, for any fixed value of [ the quantity {V‘“;g é(a)} is a vector; thus,

VV defined in eq. (5.10) is the outer product between these vectors and the basis one-forms,

ie. itis a } tensor. This tensor field is called Covariant derivative of a vector,

and its components are

(VV)%% = VgV = Vo (5.11)
NOTE THAT
In a locally inertial frame the basis vectors are constant, and consequently, according to eq.
(5.6) the affine connections vanish and from eq. (5.8) it follows that
ov

V ;BIV 75:>wzv B €(a)- (5.12)

Thus, in a locally inertial frame covariant and ordinary derivative coincide.

5.2 The covariant derivative of one-forms and tensors

In order to find the covariant derivative of a one-form consider a scalar field ® . At any
space point it is a number, therefore it does not depend on the coordinate basis: this implies
that ordinary and covariant derivative coincide
0P ~
Now remember the definition of one-forms: they are linear, real valued functions of vectors
such that
q(V) = q.V*, (5.14)

where ¢, and V® are the components of the one-form and vector fields, and ¢,V is a
scalar function. Let us assume that the scalar field in eq. (5.13) is the the function ¢,V';
consequently its covariant derivative will be

0 _ 0o, OV

o= = A
Vi ozt Ozt tla ozt



CHAPTER 5. AFFINE CONNECTIONS AND PARALLEL TRANSPORT o7

Substituting 2" from eq. (5.8) we find

Oz
8q0¢ « o o]
Vil = 55V @[V — VTS,
and relabeling the indices
ago& (6% (o3 aTo
Vid = @V + 4oV — @ VoL, =
94a o 170 o
= [@ - qUF,ua]V + 4oV - (5.15)

Since V,® are the components of a (1) tensor, this equation is true only if all terms

on the right-hand side are the components of tensors of the same rank. Let us consider the

second term: it is the result of the contraction of a ( (1) > and a ( 1 ) tensor, therefore it
is a < (1) ) tensor. The first term is a ( (1) ) tensor only if the terms in square brackets are

the components of a g tensor, which we call covariant derivative of the one-form
q

(vcj)au = qua =qo;p = Gap — chrza- (516)
Thus, eq. (5.15) can be written as

V@ =V, (¢V) = Go:p V" + ¢V, (5.17)

which shows that the covariant derivative satisfies the standard property of the derivative of
a product.

The same procedure can be used to define the covariant derivative of ( g, ) tensors.

(do it as an exercise)

(VT)y = Ty — T TS — Tyal'S, (5.18)
(VAM), = AP 5 4 AT, 4 AT, (5.19)
(VB",); = B, 5+ B°, I, — BITS, (5.20)

what is the rule?

5.3 The covariant derivative of the metric tensor
The covariant derivative of g,, is zero

vy = 0.

The reason is the following. We know from the principle of equivalence that at each point
of spacetime we can choose a coordinate system such that g, reduces to 1,,. The
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coordinate basis associated to these coordinates has constant basis vectors, therefore the
affine connections also vanish (see eq. 5.6). In this frame

anaﬁ v v
Japip = Nafiu = Oun Loptvs = Ugunay =0

GaBy 1S @ ( g > tensor, and if all components of a tensor are zero in a coordinate system,

they are zero in any coordinate system therefore

Jasu =0 (5.21)

always.

5.4 Symmetries of the affine connections

Consider an arbitrary scalar field .
Its first covariant derivative is a one-form and coincides with the ordinary derivative. Its

second covariant derivative VV® is a g tensor of components @ z.,. In minkowskian

coordinates, i.e. in a locally inertial frame, covariant derivative reduces to ordinary deriva-
tive:

o 0
Py =05,=—-—=-—=29, 5.22
B; Ba= 5 055 (5.22)
and since partial derivatives commute
(I)”&a = (137%6 = (I),,B;a = (D,Oé;/g. (523)

Thus, the tensor VV® is symmetric. But if a tensor is symmetric in one basis, it is
symmetric in any basis, therefore

q)ﬁ,a - ‘I’,urga = q)vaﬁ - (I),lipgﬁ
in any coordinate system. It follows that for any &
® I, =@,

and consequently
I, =Ths (5.24)

in any coordinate system.

5.5 The relation between the affine connections and
the metric tensor

From eq. (5.21) it follows that

Yapin = apu — Lapgvs — Ugugar = 0,
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therefore
JaB,u = F;ugl/ﬂ + Fgugalj‘ (525)

Let us now consider the following equations
o = Lapgvn + Lpar,

—98p,a = _Fg’agz/u - ang,é’zn
It follows that

Japp t o — e = Loy —Ta)gus +
+ (U5 +Ths)g9ar + (Tas — Th0) uns

where we have used g¢o3 = gga-
Since I'g, are symmetric in 8 and 7, it follows that

GaB,p + Gop,8 — 9Bu,a = QFZ’MQOW-

If we multiply by ¢%7 and remember that since ¢*7 is the inverse of g,
gavgau = 537
we finally find
1
v
Fﬁu 9
This expression is extremely useful, since it allows to compute the affine connec-
tion in terms of the components of the metric.
Are the I'§, components of a tensor?
They are not, and it is easy to see why. In a locally inertial frame the I'G ~ vanish, but in

any other frame they don’t. If it would be a tensor they should vanish in any frame.
In the first chapter we defined the Christoffel symbols as

o _ore
OEX QxrOxr

ga’y (.gaﬁ,,u + Gop,p — gﬂu,a) (526)

o _
I =

(5.27)
This definition was a consequence of the equivalence principle. We did the following: We
considered a free particle in a locally inertial frame {£“}:

d2§a
5 =0. (5.28)

Then we transformed this equation to an arbitrary coordinate system {z*} and we showed

that it becomes » o
a w v
* | pa l o dz ] _9, (5.29)

dr? wdr dr

with TG, defined in eq. (5.27).
In this chapter we have defined the s as those functions that satisfy the equation

ag(#) a >
693’/ = I’We(a). (530)
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What is the relation between eq. (5.27) and eq. (5.30)7

60

In a localy inertial frame {{*} be €y, the constant basis vectors. If we make a coordinate

transformation to a new coordinate system {z®'}, the new basis {€(,)} will be

/3 &
83:‘“‘/ M(Oé) .

—

Cuy = Aweha) =

In this frame, eq. (5.30)which defines the affine connections can be rewritten as

0
ozrV'

or, being the €5y constant

A% e = TN afrry)

ONP
8TJ,L€M(5) =I? W /A reM

This equation can be re-written as

Ny .
( 8:15” — FM V/A > BM(g) =0.

We now multiply eq. (5.34) by A 4 and find

A7 g T A AP = 0.

oxV

Since A BAfBa/ =69, it follows that

, ONP, 0x7 9%P
Foly/ — AU [-} n — n 7
# ox” 0P OV Oxt

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

which coincides with eq. (5.27). Thus, as expected, the two definitions are equivalent. How

do the ng transform?

The easiest way to see it is from the definition (5.27). In an arbitrary coordinate system

{z*'} they are

F)\: ’ ax)\, 8250[ -
wv 0« OV OxH
B oz 0xP 0 [0 Ox° B
— Qae 96« 9z \ Oz Oz’ )

o™ 0P [0z 0% Oz N 0E>  9%2°
OxP 06~ | Oz’ Ox™0x° Ox+'  Ox® OxV Ozt
oz 0z7 Ox” - o 0%z

OxP Ozv' Ozt "7 Dx° Oxv Oz

(5.36)

The first term is what we should get if I'3, were a tensor. But we know it is not, and in

fact there is an additional term.
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5.6 Non coordinate basis

In Sec. 3.4 we have seen that if we pass from Minkowskian coordinates {z®} = (ct, z,y) to
polar coordinates {z*} = (ct,r,0) the coordinate basis

5(0) — (1, O, 0)
5(2) — (O, 0, 1)
transforms to {€.)}
€(0) = €)
5(1/) = €(y) = COs «95(1) + sin 95(2) (5.38)
€2y = €(g) = —1sinde(yy + rcos 0y

according to the law
Elar) = Mar€(y.

. . . . . 123 . . .
The new basis is a coordinate basis and the matrix A*, = gfa, is the matrix associated

to the coordinate transformation. However we may choose a different basis for vectors. For
example the vectors {€} in the previous example are not normalized. In fact

1

0
0 | # nusr
T'Q

o = O

€ €)= garpr = | 0
0

We may decide that we want a basis composed by unit vectors, and choose

_»f‘ = é;
& =& (5.39)
A A

In this case we would find
€@ 8 = Map
But now the question is: do there exist coordinates {z%} such that

ort

e@) = Mafw) = 5 38w

so that the basis {€4)} is a coordinate basis? Alternatively, we can formulate the same
question for the basis one-forms: if {&(®)} is the coordinate basis for one-forms and {w(®}
is the normalized basis, is {@(®} a new coordinate basis associated to some coordinates
{28} 7 ie.

0z 5

H(@) — A& ~(B) — T
'Y =AY = 587

?
For instance, in the previous example,

@" = cos Odx + sin Ody

ol = &
& = & =ra’ = —sinfdx + cos dy (5.40)
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The point is that if this is true, A% must coincide with the partial derivative g

7, and
consequently the following condition must be satisfied for any A%.:
J . a4 ot 0%z J .4

Tps =22 T8 T pa (5.41)
ox” 0x70xP  0xPOxy  OxP
This is an “integrability condition” that all the components of A%, must satisfy in order
the coordinates {x%} do exist.
For example, let us check whether the basis (5.40) is a coordinate basis. From the expression
of & we find that

5 da . Ox?
A% = 9 sinff A% ay cos b,
eq. (5.41) gives
J s d s 0 0
— A% = —A? —(—sind 0
oy T g = 8y( sinf) = o —(cos ),

But

x =rcosf y =rsinf r=\/x?+y>?,
so that it should be
Ol _y |91y
oy | vaEi | T on V)
which is certainly not true.

We conclude that the basis {&(®} is not a coordinate basis, since we cannot associate to
it a coordinate transformation.

What are the consequences of choosing a noncoordinate basis?
As we have seen at the end of section 3.5, the gradient of a scalar field ¢ is a one-form:

dd — {g@}_{ o) - (5.42)

For example let us start in a 2-dimensional plane with coordinates (z,y) = (x!,2?). Then
change to polar coordinates (r,6) = (', 2?). The gradient will transform as one-forms do:

AP, = AP, ddg

where d®, =&, =242 and dd, =@, =%
The components of the gradient in the new coordlnate basis are

d®, = A*,d®, + AY,dD, = a—xdcb @dcp

ar g (5.43)
Ay = A%pd®, + NVydd, = == dd, + 2 dd,.
’ Y00 00
Being
r = rcosb,

= rsinf
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= = = 0P
d®, = cos0dP, +sin0dd, = — =,
i i NP (5.44)
d®y = —rsin0d®, + r cos 0dP, = 20 = Dy
Thus the components of the gradient in the new coordinate basis (€(,), €()) will still be
= oo
d(I)J/ — @ .
But this is certainly non true if we use the non coordinate basis {€4)}: there are no

coordinates associated to this basis, thus we cannot define ciq)} = % !

Let us see what happens to the affine connections if we use a non-coordinate basis. We have
defined I'g, as

9¢p) oo
31;06 = ﬁae(y) . (545)

Va€(g) =

This is a definition valid in any basis, therefore in terms of a noncoordinate basis {€)} eq.
(5.45) becomes

Va€g = €0) - (5.46)
But now, since the {x%} do not exist, is not longer true that
(I)ﬁ;ci - (I)@;B ’

If we go back to eq.(5.23) we see that we used this condition to show the simmetry of the
affine conection in the two lower indices. Thus if the basis is a non coordinate basis

& &
Ta # 5
and moreover eq (5.26) which gives the connections in terms of ¢,s is no longer true as
well.

In the following of this course we shall use mainly coordinate basis, and we shall explicitely
specify when we will use a non coordinate basis.

EXERCISE

In this chapter we have introduced the connections as those quantities that allow to find the
covariant derivative of a vector in an arbitrary frame. Given the metric components, the
simplest way to compute the connection is to use eq. (5.26). As an exercise, let us compute
the connection I' 5 in a different way, using directly the definition

8g(a)
oxh
Let us consider for example a 2-dimensional flat space in polar coordinates, i.e. (z!,2%) =

(r,0) and remember that the basis vectors are related to the coordinate basis associated to
cartesian coordinates by the equations (3.50)

= T8, (5.47)

l

®

1 = COS 95(1) + sin 95(2)

!

Y

21y = —rsinfe(y + rcosbe).
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—

Let us indicate, for simplicity (€{1), €(2)) With (€(a), €(y)), and (€), €(2y) With (&), €g)). From
these expressions we find
oey,y 0

o @(cos ez + sinfe,)) = 0,

and consequently

% &y = 1,80 + T = 0 =T}, =T7, =0,

rr

Moreover

oe(, 0 . o

;(9) = %(00866(1)+81n96(y)):
1
r

= —sinfe(,) + cos ey, =

—

€0);

therefore

—

B o B ) 1
Eo) = Dholuy = Trglr) + Togloy = Ty =0, Tl = -

S| =

Proceeding along these lines one can show that
r 0 1 r 0
Iy =0, Tg = —, Tgp=—1, I'yp =0.
r

It should be noted that altough we have used the cartesian basis to express €, and €
and compute their derivatives, at the end the I'’s depend only on the coordinates r and
6. Note also that the same result can be obtained by using eq. (5.26) and the metric

1 0
Jap = 0 7,,2 :

5.7 Summary of the preceeding Sections

In chapter 1 we have seen that the equation of motion of a particle which moves under the
exclusive action of a gravitational field is

dr dr

dr?

— 0. (5.48)

In the frame associated to the coordinates {z#} the line element is
ds® = g, datdz”. (5.49)

Then we have seen that the Equivalence Principle allows to find a locally inertial frame {£“}
where eq. (5.48) becomes
d2 fa 0

dr2

(5.50)

and the line element reduces to
ds* = n,,dz"dz”. (5.51)
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However we do not know if this transformation holds everywhere, i.e. if the spacetime is
really flat, or if it holds only locally, which would mean that there is a non constant and non
uniform gravitational field. It follows that the study of the motion of a single particle and
the knowledge of the I'},’s do not allow to decide whether there is a non constant and non
uniform gravitational field.

Then we have introduced vectors and tensors on a manifold, we have defined the metric
tensor as a geometric object and we have shown that its role is not only that of defining the
distance between points, but also that of mapping vectors into one-forms, and of computing
the scalar product between vectors. We have shown that if we introduce at each point of the
manifold a basis for vectors {€)} (and a dual basis for one forms {@®} ) any vector (or
one-form) can be assigned “components” with respect to the basis

—

A= A%g,. (5.52)

Then we have introduced an operator of covariant derivative, which generates a tensor
according to the following rule

nga = Va’g —+ FQHQV“. (553)

(and similar rules for tensors). The covariant derivative coincides with ordinary derivative
in two particular cases:

1) the spacetime is flat and we are using a basis where the vectors €(,) are constant.
Consequently from the definition (5.6) it follows that I'“,3 = 0.

2) the spacetime is curved, but we are in a locally inertial frame. Indeed, in this frame
eq. (5.48) reduces to eq. (5.50), which means again that I'“,3 = 0.

The fact that we can always find a frame where g,, reduces to n,, and the I'*;3 =0
(and consequently the first derivatives of g,, vanish) implies that in order to know if we
are in the presence of a gravitational field, (i.e. if the spacetime is curved), we need to
know the second derivatives of the metric tensor g, 3. This result should not be
surprising: in chapter 1 we introduced the 2-dimensional Gaussian geometry and we said
that one can always choose a frame where the metric looks flat, but there exists a quantity,
the Gaussian curvature, which tells us that the space is curved. The gaussian curvature
depends on the first derivatives (non linearly) and on the second derivatives (linearly) of the
metric; thus, we shall now look for a generalization of the Gaussian curvature. We already
mentioned that in four dimensions we need more than one invariant to describe the intrinsic
properties of a curved surface: we need six functions, and it is clear that a vector would not
be enough. Thus, we need a tensor, but which tensor? The only thing we know is that it
should contain the second derivatives of g,,. In order to introduce the curvature tensor we
first need to introduce the notion of parallel transport of a vector along a curve.

5.8 Parallel Transport

In chapter 1 we discussed and compared the intrinsic geometry of cones, cylinders and
spheres, and we noticed that while it is flat for cones and cylinders, it is curved for spheres.
That means, for example, that two lines which start parallel do not remain parallel when
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prolonged:

consider two segments in A and
B, perpendicular to the equator,
i.e. parallel.

The same lines when prolonged:
they do not remain parallel.

It is also interesting to see what happens when we parallely transport a vector along a path.
Parallel Transport means that for each infinitesimal displacement, the displaced
vector must be parallel to the original one, and must have the same lenght. Let
us consider first the case when the path belongs to a flat space.

a) FLAT SPACE

/ \ When we return to A the dis-

placed vector coincides with the
original vector in A.

7 I B

~_ -

b) ON A SPHERE
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(remember that the vector must always be tangent to the sphere)

When the vector goes back to A
it is rotated of 90 degrees This is
a consequence of the curvature of
the sphere.

On a curved manifold it is impossible to define a globally parallel vector
field. The parallel transport of a vector depends on the path along which it is
transported.

Let us now compute how does a vector change when it is parallely transported. Consider
a curve of parameter A and a vector field V  defined at every point of the curve. Be
U— ‘Zc—;} the vector tangent to the curve

At every point of the curve we can choose a locally inertial frame {{*}. In this frame, if

we move V along the curve of an infinitesimal dA, parallel to itself and keeping its lenght
unchanged, its components do not change

dve
= 0. 5.54

But p R
Ve _ovids UPVe 5= 0. (5.55)

d\ 0P d)
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Since we are in a locally inertial frame, ordinary and covariant derivative coincide and there-
fore we can write

UV .5 = 0. (5.56)
If this equation is true in a locally inertial frame, since it is a tensor equation it must be true
in any other frame. Therefore eq. (5.56) is the frame-invariant definition of the parallel
transport of V' along the curve identified by the tangent vector U.

Eq. (5.56) is written in terms of the components of V and U, if we want to write it in a
frame-independent form we shall write

VsV =0, (5.57)

which means that the covariant derivative along the direction of the vector U is zero. Written
explicitely for a generic reference frame with coordinates {z®} eq. (5.57) gives

(VoV) = UV (5.58)
daP [OVe ave

_ e . vl — e y virb — .
7d)\ [(%ﬂ +I1%,V ‘| Y + 173 VU 0

Thus, contrary to what happens in flat space the components of a vector parallely transported
along a curve in curved space do change, and the change is given by

dve
= T, V'UP.
d\ g

5.9 The geodesic equation

In Chapter 1 we introduced the geodesics, as the curves which describe the motion of free
particles; “free” here means that no other force than gravity is acting on them. We showed
that they are the solution of the geodesic equation (1.37)

o P | =0 (5:59)

d*x® [dm“ da” ]
A different derivation of this equation, simpler than that given in Chapter 1, makes use of
the notion of covariant derivative. Let us consider a “free” particle, with worldline z#(7)
and four-velocity (i.e. tangent vector to the worldline) U* = dz*/dr. By the equivalence
principle, at any point of the worldline we can define a locally inertial frame {z®'}, in which
the laws of special relativity hold; then, in this frame the particle four-acceleration is zero,
ie.

dU*  dx® oUW

_ —UYyUr =
P Sl vro”,, =0. (5.60)

In a locally inertial frame ordinary and covariant derivative coincide, thus

Ut =0. (5.61)
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This is a tensorial equation, and the covariance principle establishes that it holds in any
coordinate frame; therefore, in a generic frame we can write

vev*.,=0. (5.62)
Equations (5.62) and (5.59) coincide; indeed
vt =UU* , +UT" zU” (5.63)
and by substituting U* = dx*/dr this equation becomes

d?xH . dz® dxP
+Thy———— =0,
dr? B dr dr

(5.64)

which is eq. (5.59).

The parameter along a geodesic need not to be the proper time. Be s the new parameter
chosen to parametrize the geodesic. Since

d d ds

equation (5.64) becomes

d?x® dat dz¥ d%s , (ds\’| dz®

—— 41 | —— | == |/ | — —_; 5.66

ds? i l ds ds] {dﬂ/ (dT) ds’ (5.66)
From this equation we see that the new curve is a geodesic, i.e. has the form of equation
(5.64), only if the new parameter is related to the proper time 7 by a linear transformations

s=a\+b, a,b = const; (5.67)

in which case the right hand side of equation (5.66) vanishes. 7 and s are called affine
parameters.

Equation (5.62) was derived assuming that the geodesic was the worldline of a massive
particle, i.e a timelike curve. However, this equation has a more general validity, since a
geodesic can be either timelike, spacelike or null. If a geodesic is timelike, i.e. U-U < 0,
it can represent the wordline of a massive particle; in this case, by performing the linear
transformation (5.67) it is possible to change the affine parameter in such a way that U-U =
—1, so that the new parameter is the particle proper time.

If, instead, a geodesic is a null curve, i.e. U-U = 0, it can represent the wordline of a
massless particle; in this case the affine parameter is a generic parameter, since proper time
is not defined for massless particles.

If the geodesic is spacelike, i.e. U - U > 0, it does not represent the worldline of a particle
of any kind.

According to the equation of parallel transport (5.56), the geodesic equation written in
the form (5.62) is the equation of the parallel transport of the tangent vector U along the
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geodesic. This means that if we take the tangent vector at a point p, and parallely transport
it to a point p’ along the geodesic line, the transported vector is tangent to the curve at p’.
Thus, a curve C with tangent vector U is a geodesic if

VU =0. (5.68)

For this eason we say that: geodesics are those curves which parallel-transport their
own tangent vectors.



Chapter 6

The Curvature Tensor

We are now in a position to introduce the curvature tensor. We will do it in two different
ways.

6.1 a) A Formal Approach

Let us start writing the transformation rule for affine connections

oz Oz Oz’ or* 9*x
M, =-— T o + —— : 6.1
a oz 9zt dxv - a Ox®" Qxtdzv (6.1)
As we already noticed (Chapter V sec. 5) if the last term on the right-hand side would be
zero I, would transform as a tensor. Let us isolate the ‘bad term’, by multiplying eq.

(6.1) by 227

oxA *

82x7/ aZL'T/ a$p/ al,a/
= M, — — | A 6.2
Oxroxv Oz ! ozr Oxv - (6:2)

We now differentiate this equation with respect to z*

P *x™ ox™ (0 _,

Ox~dzrdzr  dzroxr M * da <3x” W) 63)

0% 027, Ox” &P, 02 0x” [0 FT’

Oxrdxr dzv - 77 Oxr Oxmdxzv 77 Oxr Oxv \Oar 7
We now use eq. (6.2):
anv—/

— A4
OxrOzHOxY (64)

dze” " Grr Gt O | O~

ox”’ 0xP Oz’ p ]
Byt

oz™ Ox? Ox dz™ | 0
+F>\/u/ [ T r ,ﬂ/'y/‘| + [FAM;L‘|

axo'/
1"7’/ - b
ozv - 7 [83:“

r<.,6 — ——
o Oxr Oxt
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Qo dxe ™ Oxr dav
0z 027" [0 v
ozt dzv \ 9z 7))
Let us rewrite the last term as
oxP 0z dx™ [ O
| A I 6.5
ozt Ox¥ OJx* <8x77’ a ') (6:5)
(The reason is that the indices of I" have a prime, thus the derivatives must be computed
with respect to the {z*}). We now rewrite eq. (6.5) in the following way
83 ™

0L OrHdT” (6.6)

dz™ (0 oz™
i (et ¢ (o)

[0z 027" Oz [ O Ox 0x” oz, [
" 9xk Oz Oxr \oxm ') T Qxv Oxm oxr P P

oz __, [61‘”’ N ox? ox' __, ]
plol Byt

OxP 9% oY __, o
Oxk Oxr Ogv - P P
[ Oz’ ox”! ox”! oz’ oz? oz 1

T/ e T/ o A T/
“lowr gt g et e g g el o

We now relabel the indices in the following way
61}7/ 85(:7’

ox® A

ol I v/ ol n/ ol
0z 0z Oz __, o 0x°" 0z Ox* __, v
dxv Ozr Ogr P P - Oz Ox= Qg V7 M
p! B y! p! n! ol
Ox?" 0x™' 0xV' __, o Ox?" 0x" Ox°' __, v
ozt dx= drv - P P T g gk gy PN M

LI, — | R (6.7)

ol / / ol
ox’' __,  Oz” oxf _,  Ox
/o/ 7 1p!
Oxv= P Qxe T Qav o T Ozt

oz, 0z, oz . Oz
r % — I por 2
Ox Ox

A
'

F)\
afL"“ plal a{L‘O‘ KV

!/ !/ / !
ox? ox™ _, TN oz 0x”' _ rr
Oxr Oxr M P T Gan ggh s e P!

With these changes the terms can be collected in the following way
3,71 ™
0x’?8:f“ — = g; [( ain F*,w> + FA,WF”W] (6.8)
oxP 0z Ox™ 0
Qi Oxv Ox~ Kax’?’
oz ox”’
ox? " Qv

/ / N / N
I p/o’/) -1 A/J/F nipl — I ,o//\/F n/o'/]

oz Oz ]

+ T,

T/ A
F plo! [F ax# + 124 axn
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We now subtract from this expression the same expression with x and v interchanged

831,7'/ 63 T/

- = 6.9
OxFoxrOxv  JxvOxtOoxr (6.9)
oz™ 0 .\ A
)
oxP 0z Ox™
_8x# Oxv Ox* K ox" P’U’> FT/NU/F/\IUW B FT,,O/NFNWU/]
ox” ox”’ ox”’ ox”’
- FT, o F)\/-e F)\mz F)\ v o |
ox? p//l “8x”+ 8:c#+ H O
ox™ J N
Oz K@JI”F W) t ,,nF”W]
oxP 0z dx™ 0
* ozt Jx* OxV Kaxm PT/P’U’) - PT/NU/FNW/ - FT/p//\/PNn/o/]
8x"’ ox” ox” Ox”
FT, o FAIJ P)\un P)\ K a .,
o ””[ e P L
collecting all terms we find
ox™ | 0 0
oz [WF/\W B @F/\““ + Tl = F’\W,F”,m] (6.10)
OxP 0z 0z | O 0
" Ox Oz 0" [ax”’ T ot = gt o + T T o = FWA’”'FN"'”'] -
If we now define the following *
A 9 A 9 A A A
R HUVEK = — al*K/F pv @F WK +F ,{771—‘ v F V"]F we | (611)
we can write eq. (6.10) as the transformation law for the tensor
0x? Ozt Ox¥ Ox"
R wpry = (6.12)

ox* Ox Oxb dxt M

The tensor (6.11) is The Curvature Tensor, also called The Riemann Tensor, and it
can be shown that it is the only tensor that can be constructed by using the metric, its first
and second derivatives, and which is linear in the second derivatives.

This way of defining the Riemann tensor is the “old-fashioned way”: it is based on the
transformation properties of the affine connections. The idea underlying this derivation is
that the information about the curvature of the space must be contained in the second
derivative of the metric, and therefore in the first derivative of the I'*,,. But since we
want to find a tensor out of them, we must eliminate in eq. (6.1) the part which does not
transform as a tensor, and we do this in eq. (6.9).

IThe - sign does not agree with the definition given in Weinberg, but it does agree with the definition
given in many other textbooks. As we shall see in the next section it is irrelevant. What is important is to
write the Einstein equations with the right signs!
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6.2 b) The curvature tensor and the curvature of the
spacetime

We shall now rederive the curvature tensor in a different way that explicitely shows why
it espresses the curvature of a spacetime. This derivation, due to Levi Civita, will use the
notion of parallel transport of a vector along a closed loop.

Consider a closed loop whose four sides are the coordinates lines z' = a, 2! = a + da,
22 =0, 22=0b+0b

Take a generic vector V and parallely transport 1% along AB, i.e. consider V%V = 0.
From eq. (5.57) it follows that
e Ve = 0. (6.13)
Since €y has only ef;) #0 then
ove
VP =0. 6.14
Ox! 17 ( )
This equation can be integrated along the line AB:
B
Vig=— [ , TVl 6.15
AB A=) P x (6.15)
In a similar way, if we go from B to C along the line z! = a + da
ove C
=TV o WVge=- [ T 5 VP da?. 6.16
2 p2 Be Blalatsa) 2 T (6.16)
From C to D
ove b
= T V7P — VS, = — 5 Vidat, 6.17
ox! A b C(x2=b+5b) Al . ( )
and from D back to A
e S LA S _/D(ml:a)r 5 VPda?. (6.18)
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The change in V due to this parallel transport will be a vector 5V whose components can
be found by adding eqs. (6.15)-(6.18):

A
SV = _/ T VP da? (6.19)
D(z'=a)
C D
- T4, VBda? — / T4, VA3da!
B(zl=a+6a) C(x2=b+4b)
B
- I VPdat.
A(z2=b)

If the spacetime is flat V' do not change when the vector is paralleley transported, i.e.
0V =0. But in curved spacetime )V* will in general be different from zero.

If we consider an infinitesimal loop, i.e. da and &b tend to zero, we can take an
expansion of eq. (6.19) to first order in da and 6b:

(@)

<
Q
2

B
~ 5 VAda! — 6.20
/A(ﬁ:b) aVPda (6.20)

Since
A= (a,b), C=(a+da,b+db), B=(a+da,b), and D = (a,b+ db), (6.21)

the previous equation becomes

a+da
SV~ — / %4 VAdz! (6.22)
b+6b bsb 9
_ «a B2 _ Y @ B 2
| Vi [/b o (TV )dx]da
a+da atdéa ()
o B 1 7 « B 1
[ v +[/ s TV )d:c}éb
b+0b
+ [T,
b
i.e.
. breb 9,
SV —5a/b o (V) da? (6.23)

+6b /aa+6a 68x2 (ramvﬂ) dz! ~ 5adb [_6(21 (FQBQV'B) + 681:2 (Fa/ﬂvﬂﬂ '
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Eq. (6.23) can be further developed by using eq. (6.14)

v . v+ 3
gor = LV, 5z = eV (6.24)
it becomes
oIz ovrE Ol oVE
SV = Sadb yre, — BT, 2
v “4 [ 0x? Ve L og2 ozt v 2 9l (6.25)
or« or«
- 6a§b[ 81‘51 _ awfz S R +F“H2F”511 %G
Note that:

e da and 6b are the non vanishing components of the displacement vectors 527(1) and 5_:;3(2)
along the direction of the basis vectors €(;) and €y, i.e.

dxqy = 0afy,  Or) = dady (6.26)
whose components in the basis {€(,)} are

by = (0,6a,0,0) = da o , (6.27)
duly = (0,0,0b,0) = db b .

Thus, we can write eq. (6.25) as follows

ore,, o,

OV = dufyy 0afyy | = o = TN+ Tl | V7 (6.28)
e The term in square
R =T%,, — T, =TT, + 19,5, . (6.29)

Note that it is antisymmetric in v and p; indeed, it must be because, if we interchange
(5}(1) and (530(2), 0V changes sign, because we would go around the loop in the opposite
direction. This shows that the sign of (6.29) can be chosen arbitrarily, and this is the
reason why the definitions of the Riemann tensor given in textbooks may differ for a
sign.

We have already shown that the object given in eq. (6.29) is a tensor, by looking at the way
it transforms under a coordinate transformation (eq. 6.12). However, we want to see if it
also agrees with the definition of tensors given in chapter 4. Let us contract eq. (6.28) with
V.
fo v araﬁy a]_—‘O‘B « K a K

OV Vo = 0x(y) 6l T axy“ — T T, + T, %6, | VAV, (6.30)
The result of this contraction is, of course, a number. On the right-hand side there are the
components of 3 vectors i.e.: 5x'(’1), (51"{2) and V?; moreover there are the components of the
one-form V,,. The four geometrical objects (three vectors and one one-form) are contracted
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with the quantity within brackets, and the result is a number. In addition, we note that
(6.30) is linear in V7, Vy,, 62y d(yy. For instance, if we consider a displacement dx{,) +d{y;
along €(;) it is immediate to see that

SV Vo = 8x{14)0aly) [ VIVo + 821y 62(y [ ] VIV, (6.31)
and similarly for the other quantities. If we consider a generic ; tensor, T%g,s , since

by definition it is a linear function of one one-form and three vectors, when supplied with
these arguments (for example the one-form V, and the three vectors V', dx(1) and dx(y) it
will produce the following number

T(V,V, 022, 001)) = T3, VoV 60y, 02} . (6.32)

Eq. (6.32) has the same structure of eq. (6.30). Therefore we are entitled to define the
components of the Riemann tensor as in eq. (6.29).

It should now be clear why the Riemann tensor deserves its name of Curvature Tensor:
it tells us how does a vector change when it is parallely transported along a loop, due to the
curvature of the spacetime. If the spacetime is flat

Ve =0 along any closed loop — R%s.,5 =0, (6.33)

in any reference frame. Indeed, if a tensor vanishes in a given frame, then it vanishes in
any other frame.

The components of the Riemann tensor assume a very nice form when computed in a
locally inertial frame:

o 1 oo
R g = 59 9ovn = Youpv + Gspov = Govonl (6.34)
or lowering the index «
1
Ropu = gaAR)\B/w = 2 [Gow 81 — Gop,pv + Gppav — Gpvop] - (6.35)

It should be stressed that

1) The Riemann tensor is linear in the second derivatives of g,,, and non linear in the
first derivatives.

2) In a locally inertial frame the I'*,, vanish and therefore the non-linear part of the
Riemann tensor vanishes as well.

6.3 Symmetries

From eq. (6.35) it is easy to verify that
Ra,B,uz/ = _Rﬁa,uu = _Raﬁuy = R,uuaﬁv (636)
Raﬂ;w + Ral,/ju + Rawjg = 0. (637)

Since Ragu, is a tensor, these symmetry properties are valid in any reference frame. The
symmetries of the Riemann tensor reduce the number of independent components to 20.
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6.4 The Riemann tensor gives the commutator of co-
variant derivatives

Let us consider the second covariant derivatives of a vector field V
VoVVH =V,(VF5) = (VF5)a+ TV 5 — T8,V 0. (6.38)
In a locally inertial frame I'*,, =0, and eq. (6.38) becomes
Vo VgVl = (VFig) o =VF g0 +T",5,V". (6.39)
By interchanging o and [
ViV V= (VE ) g=VH g+ TH0sV". (6.40)
The commutator of the covariant derivatives then is
(Va, V| V=V, VaVH = VgV VH = (T4 —TF0p) V" (6.41)
Since in a locally inertial frame
Rty =T 050 =TV p (6.42)
(equivalent to eq. 6.34), eq. (6.41) becomes
Va, Vg VF = R,V (6.43)

This is a tensor equation and since it is valid in a given reference frame, it will be valid
in any frame. Eq. (6.43) implies that in curved spacetime covariant derivatives do not
commute and therefore the order in which they appear is important.

6.5 The Bianchi identities

Let us differentiate eq. (6.35) with respect to z* (and rememeber that it is valid in a locally

inertial frame)

1
Raﬂul/,)\ = 5 [gow,ﬁu/\ — Gap,Bv + 9Bu,ov\ — gﬁu,au/\] . (644)

By using the fact that g,z is symmetric and eq. (6.44) one can show that
Ra,@uu,)\ + Raﬁ)\u,u + Roaﬂl/)\,,u = 0. (645)

Since it is valid in a locally inertial frame and it is a tensor equation, it will be valid in any
frame:
Raﬁ,ul/;/\ + Ra,B/\/,L;I/ + Raﬁw\;,u = 07 (646>

where we have replaced the ordinary derivative with the covariant derivative. These are the
Bianchi identities that, as we shall see, play an important role in the development
of the theory.



Chapter 7

The Geodesic deviation

The Principle of equivalence establishes that we can always choose a locally inertial frame
where the affine connections vanish and the metric becomes that of a flat spacetime. Con-
versely, if the spacetime is flat we can always define a coordinate system which “simulates”,
locally, the existence of any arbitrary gravitational field. In this frame we could measure
the “simulated” gravitational force by studying the motion of a single particle, but these
measurements would never allow us to know whether that force is simulated or real: this
can be understood only by comparing the motion of close particles, i.e. by comparing the
behaviour of close geodesics.

7.1 The equation of geodesic deviation

Consider two particles moving along the trajectories x*(7) and a*(7) 4 dx*(7), where Jz#
is the vector of separation between the two close geodesics, and 7 is an affine parameter.
This is equivalent to say: consider a two-parameter family of geodesics x* (7, p), where the
parameter p labels different geodesics

Be

ox®

1o =

= (7.1)
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the tangent vector to the geodesic line, and be

oxr®

ox® = . 2

o= (72)
Note that o 962
T

a—p =5 (7.3)

We now compute the covariant derivative of the vector ¢ along the curve 7 = const whose
tangent vector is dz#, i.e. Vg t. The components of this vector are

a Ozt | Ot™ o | Ot o .
(vé_éf) :%lW+Fuyt]—aI9+Fuyt5:€“ (74)

Similarly, the covariant derivative of the vector oz along the curve p = const, i.e. along
the geodesic, has components
ooz

(Vi o2)" = tro2°,, = o Tt (7.5)

From eq. (7.3) and from the symmetry of I'“,, in the lower indices it follows that
Vi or =V i (7.6)

The quantities (Vg 5§)a or (V i zf)a involve only the affine connections, and therefore
they do not give significant information on the gravitational field. We then compute the
second covariant derivative of the vector 6z along the curve p = const, i.e Vi (V; 5}) .
We define the following operator:

éj_ézvo‘ = (V; (5})& = thoz®,, . (7.7)
With this definition, )
Ddf‘f = (v; (V7 2))". (7.8)

This quantity, called geodesic deviation, is a vector describing the relative acceleration of
two nearby geodesics.
In order to compute the geodesic deviation, let us consider the commutator

[Vﬁ V&} t= Vi (V& a - Vg (Vt“f) : (7.9)
whose components are

Ve (Ve 1) =t (0ar ), — ot (0 10,
=t STt R 2 %, — St Y, 1, — 0Tt £V

(" 0a” s — 0x 17,,) 1% + (8% — %) 17 02"

(7.10)

Wik

From eq. (7.6) we find that
th ox”,, = ot t¥,,
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and eq. (7.11) becomes
(Vi (Vi 1)) = (% — £ ) 102", (7.11)
We now remind that, according to eq. (6.43), the commutator of covariant derivatives is
(s = ) = Ryt (7.12)
therefore eq. (7.11) becomes
Vi (Vs £)]" = R gt toa”. (7.13)

Moreover, since t* is the geodesic tangent vector, when it is parallel-transported along the
geodesic it gives (see Section 5.9)
Vit =0; (7.14)

as a consequence V- (V;f) = 0 and the commutator (7.9) can be rewritten as
(998 7 = (9e(Fe )" = Aot w15
By direct substitution of this expression in eq. (7.8) we finally find

D?§z”

T = B 7t 5. (7.16)

This is the equation of geodesic deviation, which shows that the relative acceleration of
nearby particles moving along geodesics depends on the curvature tensor. Since the Riemann
tensor is zero if and only if the gravitational field is either zero or constant and uniform, the
equation of the geodesic deviation really contains the information on the gravitational field
in a given spacetime.



Chapter 8

The stress-energy tensor

Now we know that there exists a tensor which allows to understand if the spacetime is curved
or flat, i.e. if we are in the presence of a non-constant, non-uniform gravitational field. But
in order to derive Einstein’s equations, we still need to answer the following question: how
do we describe matter and fields in general relativity? This question is relevant
because we want to find what to put on the right-hand-side of the equations as a source of
the gravitational field.

We shall first define the stress-energy tensor in flat spacetime, and then generalize this
notion to a generic spacetime.

In Special Relativity, we define the energy-momentum four-vector of a particle of mass

m and velocity v = % in the following way

p® = mcu®, a=0,3, (8.1)
where u® = % is the four-velocity (u®u, = —1); 7 , which has the dimensions of a length,
is related to the particle proper time by the equation: [proper time = %’r} . In what

follows, we shall indicate in boldface tri-vectors, for instance v, whereas four-vectors will be
indicated with an arrow, i.e. A. Also remember that {£*} are Minkowskian coordinates of
flat spacetime, or of a locally inertial frame.

Note that £ = ¢t and, defining

g’
_ 4 2
V= (8.2)
we have:
u = 5
o dg_dgdr o
dr dtdr e
B 2 v? v\

U U Nap = —7 (1_02>:_1 = 7:<1_Cg> : (8'3>

We have then



CHAPTER 8. THE STRESS-ENERGY TENSOR 83

The time-component of the energy-momentum vector does represent the energy of the par-
ticle

E
p’=—, and E =mc"y. (8.5)
c
The space-components are the components of the three-dimensional momentum
p = myv. (8.6)

What does it change if we are dealing with a continuous or discrete distribution of matter and
energy? In that case we should be able to measure some other quantities, as the mass and
the energy which are contained in a unitary volume, or the flux of energy and momentum
that flows across the different faces of this volume. This information is contained in the
stress-energy tensor we are now going to define.

Let us consider the simple case of a system of n non-interacting particles located at some
points &, (t), each with an energy-momentum vector p2.
We define the density of energy as

™ = Z Cp%(t)(sg(é. o £n(t)) = Z EH(SB(E o fn(t))a (87)

n

the density of momentum 7% where T% is defined as

T =3 ep,(1)°(€ — &a(1)), i=1,3 (8.8)
and the current of momentum as
T EprL(t)Ci%pézj’(f—ﬁn(t)), k=1,3 i=1,3. (8.9)

n

§3(€—¢,) is the Dirac delta-function defined by the statement that for any smooth function

/(&)

| @€ 1@ €€ = 1€, (8.10)

and if £, = (20, y0, 20)
0*(§ — &) = d(x — 20)3(y — y0)d (2 — 20), (8.11)

or, in polar coordinates
€~ &) = 5 550(r — T0)3(60 — 65)3( — ). (812

Thus, according to the definition (8.10) the three-dimensional d-function has the dimensions
of the inverse of a cubic lenght [72. For this reason, for example, T is, dimensionally, an
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energy ([cp°]) divided by a volume ([6%]) and therefore it is the energy density of the system!

The definitions (8.7),(8.8) and (8. ) can be unified into a single formula

=2

6 £n( ))7 a?ﬁ:()?g’

or, since

_ B, dgi(t)
2 dt

(03
n

eq. (8.13) can also be written as

o _ 2\~ PaPh s
7=y 0 €= &(1),
which clearly shows that 7% is symmetric
T°F = TP,

Finally, an alternative way of writing eq. (8.13) is

SN "54 (€= &r))dra

where
04 (E — &a) = (€% — €& — €A — E2)3(6® — &);
indeed, using the property (8.10) of the d-function it is easy to see that

B L S
0 = X [ oy S S )
o T,
= x5 e - )] o€ - i) G ae
= c dgn 3 T
- % | i 5(E — €. n>>Lw

_ Czndégé?’f £.(€%)) Zn "535 £.(6%))

which coincides with (8.15)

IProperties of the d-function

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)
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Summarizing, the meaning of the different components is the following

T = energy-density. In the non-relativistic case v << ¢, pl ~ myuc and T ~
S, M c?63(€ — &, (t)) reduces to the density of matter pc® where
p=> mu0’(§—E&(t)) (8.20)

(remember the dimensions of the d-function) .

%TOi = density of momentum. Since the dimensions of the momentum p are those of an
energy divided by a velocity, [p°] = [E/c], it follows that ¢TI has the dimensions of [Z], i.e.
it is the energy which flows across the unit surface orthogonal to the axis &' per unit time
(i=1,3) (see eq. (8.8)).

Similar dimensional considerations allow us the interpret 7% as the flux of the i-th
component of the three-momentum p across the unit surface orthogonal to the axis ¢&*
(i,k=1,3) (see eq. (8.9)).

Now we must check several things:

1)is T a tensor?

2) does it satisfy any conservation law? (remember that the energy-momentum four
vector does satisfy a conservation law).

3) if it does, how to write this law in a curved spacetime, i.e. in the presence of a
gravitational field?

1) is T*’ a tensor?

Let us consider a generic coordinate transformation

{2} — {2¥} — € =A", 1", (8.21)
The four-momentum and the four-velocity transform as

P =A% p7, ut = —— =A%, 0 (8.22)

In order to see how T transforms we need a brief digression to show how to transform

§4(x).

In a four dimensional spacetime the volume element which is invariant under a generic
coordinate transformation is /—g d*z, i.e.

V—g d‘zr =\/—g d*7. (8.23)

Indeed,
d'x = |J| d*o, (8.24)

where J = det ( gf;) is the Jacobian associated to the coordinate transformation. Since
oxt O0x”

ga/ﬁ/ = Aaxa, axlg, g/uu (825)
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taking the determinant of both member we get
1
¢ =J% and therefore /—g= m\/—g’. (8.26)

Thus, if {{*} is a Minkowskian frame, and {z®} is a generic frame,

d*¢ = /=g d*x. (8.27)
Let us now_’consider a delta-function in Minkowski’s spacetime; by definition, for every
function f(§),
| € FE0'E-E) = 1€, (8.28)
and, in a generic frame,
/ d'z f(R)0NT — T,) = f(T). (8.29)

Let us now perform a coordinate transformation £* — z%, with z* = z%(¢"), and define
f(&) = f(Z(§)); multiplying and dividing Eq. (8.29) by /=g, it gives

oNZ — 7,) M G s o

—g d'z f(@)——"2 = [ f(&)———"2 d'¢ = f(&, 8.30
| v de === [ 16— = fé (8.30)
which is valid for every function f. Comparing eqgs. (8.28) and (8.30) it follows
0T — T,)

ME-&) = = (8.31)

Using eqs. (8.17), (8.22) and (8.31) it is now easy to find the transformation rule for
T8

dz® 647 — T,
T8 — CZ/A AP Y p Tn (”;C/__gx ) i, (8.32)

Therefore if we define

T8 — cz/ e d 0 T 7 dry | (8.33)
Tn
under a generic coordinate transformation it will transform like
T°% = A, AP, T 7. (8.34)

and therefore it is a tensor. In flat spacetime, and in a locally inertial frame v/—¢ = 1 and we
recover the definition (8.17). In conclusion, eq. (8.33) is the stress-energy tensor appropriate
to describe a cloud of non interacting particles both in flat and in curved spacetime. Of
course we may have different kind of matter and/or energy: a fluid, an electromagnetic field,
etc. In that case it is possible to show that the corresponding stress-energy tensor can be
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derived by writing the action of the considered field, and by varying this action with respect
to g However, the physical meaning of the different components of T5 will be the same.

We shall now use the tensor we have derived to answer the second important question
we raised. The answer will be valid for the stress-energy tensor of any sort of matter-energy.

2) Does T%° satisfy a conservation law?
Let us assume that we are in flat spacetime. Let us differentiate the (ai)-components of
the stress-energy tensor given in eq. (8.13):

ore A0 0
85’ - En: dt agl 63(6 - én(t))7 (835)
where a=0,3 and = 1,32. Since
851 56— €,(1) = 061 8 (6 —&,(1)), (8.36)
eq. (8.35) becomes
ore arpn 46001 O
ogi _;pn(t) i g 5*(€ = €,(1)) (8.37)

= —an 7535 £a(t)).

Let us now differentiate the T°-component with respect to £° = ct:

aTaO

€0 :den()535 £a(t) +an *536 £.(1)) (8.38)

n

Since

dpy(t) _ dpp(r)dr _dr

dt~  dr dt  dt’"

where f is the relativistic force, the first term in eq. (8.38) can be considered as a density
of force G defined as

(8.39)

66,0 =Y a5 e - €,0) = 06 - 600 (8.40)

It is a density because the d-function is [I73]. If the particles are free, f® =0 and adding
eq. (8.37) and eq. (8.38) we find

0 0 : ores
7Ta0 7.Tal —
¢ + o6 0 — 9e?

=0, (8.41)

or
T 5 =0, (8.42)

2 ar~t _ aor~! oT? Joll M
Remind: 65 = S + o8z 9E% -
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which is the conservation law we were looking for.

Why is 7% 5 = 0 a conservation law? To answer this question, let us derive a con-
servation law of classical electrodynamics. Consider, as an example, a collection of charged
particles of density p = dq/dV, enclosed in a volume V.

)
= /V pdV (8.43)

will be the variation of charge inside the volume V. Be S the surface enclosing the volume,
and n the normal vector, which is assumed to be positive if pointing outward.

pv -ndS (8.44)

will be the charge which flows across dS per unit time. It is positive if the charge goes out,
negative if it flows in. Thus

/ pv - ndS (8.45)
S

is the total charge per unit time which flows across the surface S enclosing the volume V.
The continuity equation then says that

0
il S . . A4
825/\/'0 dv /Spv n dS (8.46)

The minus sign is because the right-hand side is positive if the charge contained in V
increases. If we now introduce the three-dimensional current

J=pv, (8.47)
eq. (8.46) becomes
0
= pav=—[3-nds 8.48
ot /v P st (8.48)

Since .
J-ndS =nyn'J* dS = J*n,dS,

by putting dSi = nidS, and using Gauss’ theorem

/ J*dS, = / div J dV, (8.49)
s 1%
eq. (8.48) becomes

0

—/pdV:—/dideV. (8.50)

ot Jv v
Since the volume V' is arbitrary, we can write

dp
divJ = —— 8.51

or
aJ'  aJ2 9 9p
bt =,
oer T a2 T ags T ot

(8.52)
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which is the continuity equation in a differential form. Let us now transform eq. (8.51)
in a four-dimensional form. We define a four-current

de”
J P dt (pca )7 ( 3)
and eq. (8.51) becomes
aJa—O a=0,3 (8.54)
oge 7 e '

We are now going to show that any current J(z) which satisfies the conservation law
(8.54) is associated to a total charge @ defined as

= /V JOdV., (8.55)

which is conserved. The integral in eq. (8.55) is evaluated at some fixed time, thus
we say that the integration is performed on a hypersurface ¢° = const over the
whole three-dimensional space. The total charge () is a conserved quantity for the
following reason. By virtue of eq. (8.54)

1dQ 10

- v == [ diw3av=—[ s, 8.56
c dt allspace c ot allspace v sur face b ( )

The last equality follows from Gauss’ theorem, and the subscript ‘surface’ means that we
are considering the flux of J across the surface which encloses the whole space. If J goes
to zero at infinity, the last term in eq. (8.56) vanishes, and therefore the total charge @ is
a conserved quantity.

Let us now go back to equation (8.42), and set, as an example, « = 0:

aTOD 8T01 8T02 8T03
=— + + . (8.57)
€0 ¢t 0€? S
By integrating over a volume V which, as before, extends to all space, we get
0 oTo*
[ gy = - av = - [ T%as;. 8.58
DE0 /v v Ok s g (8.58)

Since T° is the energy which flows across the unit surface orthogonal to &, if we assume
that this energy flow is zero at infinity we finally find

0

9¢0 /VTOOdV =0 — /VTOOdV = constant. (8.59)

which expresses the conservation of energy. A similar procedure can be used to find the
conservation of momentum by putting o =i =1,2,3. In this case we find

o oo aT™ l.
(%O/VTOdvz— e dV:—/ST’“dSk. (8.60)
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Assuming that the momentum currents vanish at infinity, we find

9
D0

In conclusion, we can define a vector

/ TV =0 — / TdV = constant. (8.61)
v v

pe :/ T4V,  a=0,3, (8.62)
14

which can be identified as the conserved energy-momentum vector of the system. It should
be reminded that this derivation has been carried out in the framework of Special Relativity.
3) How do we write this conservation law in curved spacetime?
In order to answer this question we need to state The Principle of General Covariance
which will be the foundation of the theory of General Relativity:

8.1 The Principle of General Covariance

A physical law is true if:

1) it is true in the absence of gravity, i.e. it reduces to the laws of special relativity when
Gy = M and 1'%, wvanish. It is clear that this first proposition includes the Equivalence
Principle.

2) In order to preserve their form under an arbitrary coordinate transformation, all equa-
tions must be generally covariant. This means that all equations must be expressed in a tensor
form.

The physical content of the Principle of General Covariance is that if a tensor equation
is true in absence of gravity, then it is true in the presence of an arbitrary gravitational
field. It should also be stressed that the Principle of General Covariance can be applied only
on scales that are small compared with the typical distances associated to the gravitational
field, (for example to the curvature) , because only on these scales one can construct locally
inertial frames.

And now we can give an answer to the question 3). First we note that eq. (8.42) is valid
in special relativity, i.e. in the absence of gravity, therefore, according to the Principle of
Equivalence, it will hold in a locally inertial frame of a curved spacetime. In this frame,
the covariant and ordinary derivative coincide, therefore we can write eq. (8.42) in the
alternative form

T .5 = 0. (8.63)
Then we observe that in the light of the Principle of General Covariance, since the conser-
vation law (8.42) is a tensor equation, it will hold in any arbitrary frame. Thus in order to
transform a generic tensor equation valid in Special Relativity to a generally covariant form
it will suffice to replace the comma with a semi-colon. The general conservation law satisfied
by the stress-energy tensor therefore is eq. (8.63).

Is this a conservation law?

To answer this question we need to compute the covariant divergence of a tensor. From
the expression of the affine connections in terms of the metric we find that

— lg'u,p agp)\ + agp/l _ ag)\ﬂ

I
o 2 (83:” oz oxP ) '

(8.64)
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The first and the third term give

0gpx g 9gpn g
upZIPA up o ghrZIPA _ gpn ZIRA 8.65
ot 9 oxP g O g oxP ’ ( )

due to the symmetry of g,g, therefore

1 , 0g
TH, — ZghrZPH )
e (5.66)
For any arbitrary matrix M
T | M) -2 M ()| = -2 nf|DetM (2)]. (8.67)
ox? ox?

But this is what we have on the right-hand side of eq. (8.66), therefore, if we call Det(g) = g,
eq. (8.66) becomes (since g < 0)

aiAln[_g] — Lﬂ\/__g (8.68)

1
FMAM - 5

Thus for example, if V# is a vector

.1 9
Vi =V o+ Ve = /—g 0z (vV=g"*), (8.69)
and for TH
w1 0
2 /_g al’“

In particular, if F* is antisymmetric, the last term in eq. (8.70) is zero and

o 10
Now we go back to eq. (8.63). By using eq. (8.70) it becomes
0

Dk

(V/=gT"™) +T" 5, TH. (8.70)

(vV=gF™). (8.71)

(V=gT") = —/=gl"\,TH, (8.72)

and this is not a conservation law. Thus we cannot define a conserved four-momentum as
we did in Special Relativity. We may be tempted to define

po :/ V=TV,  a=0,3, (8.73)
1%

but this would not be a vector. The physical reason for this failure is that now we are
in General Relativity, and we must take into account not only the energy and momentum
associated to matter, but also the energy which is carried by the gravitational field itself,
and the momentum which may be carried by gravitational waves. However we shall see that
if the spacetime admits some symmetry (for example if it is spherically or plane-symmetric,
or it is invariant under time-translations etc.) conserved quantities can be defined.



Chapter 9

The Einstein equations

We now have all the elements needed to derive the equations of the gravitational field.
We expect they will be more complicated than the linear equations of the electromagnetic
field. For example electromagnetic waves are produced as a consequence of the motion of
charged particles, but the energy and the momentum they carry are not a source for the
electromagnetic field, and they do not appear on the right-hand side of the equations. In
gravity the situation is different. The equation

E =mdc, (9.1)

establishes that mass and energy can transform one into another: they are different man-
ifestation of the same physical quantity. It follows that if the mass is the source of the
gravitational field, so must be the energy, and consequently both mass and energy should
appear on the right-hand side of the field equations. This implies that the equations we are
looking for will be non linear. For example a system of arbitrarily moving masses will radi-
ate gravitational waves, which carry energy, which is in turn source of the gravitational field
and must appear on the right-hand-side of the equations. However, since newtonian gravity
works remarkably well when we are dealing with non relativistic particles, or in general when
the gravitational field is weak, in formulating the new theory we shall require that in the
weak field limit the new equations reduce to the Poisson equation

V20 = 47Gp, (9.2)

where p is the matter density, ® is the newtonian potential and V? is the Laplace
operator in cartesian coordinates

0*  0*  9?
Ve AN
- 02?2 i 0y? N 022 (9:3)

Let us start by asking how the equations should look in the weak field limit.
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9.1 The geodesic equations in the weak field limit

Consider a non-relativistic particle which moves in a weak and stationary gravitational
field. Be 7/c the proper time. Since v << ¢ , it follows that

dx’ e R dx’ e cdt  dx° (9.4)
C _— = .
dt dr dr dr
In an arbitrary coordinate system the geodesic equations are
d%aH dz® dz” d*at cdt\’
Mm————=0 - —+4+TI%(—] =0. 9.5
dr? Tl dr dr dr? + oo <d7'> (9:5)
From the expressions of the affine connections in terms of g,, we easily find that
I 1 no
Lo = 29 (29000 — Goo.0) - (9.6)
In addition, if the field is stationary go,0 =0 , and
1 59900
Iy = —=g""—. 9.7
00 29 Oz (9.7)

Since we have assumed that the gravitational field is weak, we can choose a coordinate
system such that
Guv = Myw + h,ul/u |h,uy’ << 17 (98)

where h,, is a small perturbation of the flat metric. In other words, we are assuming that
the field is so weak that the metric is nearly flat. Since we are interested only in first order
terms, we shall raise and lower indices with the flat metric n*”. For example

B, = g’\phpu ~ nApth + O(hfw).

If we substitute eq. (9.8) into eq. (9.7), and retain only the terms up to first order in h,,

we find . 9k
00 9 n 0z’

(9.9)

and the geodesic equation becomes

d?z* 1 | Ohgo [cdt 2
— _ppa 0 [ 2 1
arz ~ 2" oz \dr ) (9.10)

or, splitting the time- and the space-components

ex 1 cdt\? et 10hgy [ cdt\’
Vhoo ( ) ’ an dr? 2 Oct <d7’> 0, (9-11)

where

v (‘9, 9 a) (9.12)
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is the gradient in cartesian coordinates. The second equation vanishes because we have
assumed that the field is stationary (8’520 = 0). We can rescale the time coordinate in such

a way that <% =1 and the first of egs. (9.11) becomes

d*x 1

We should remember that the corresponding newtonian equation is

d*x

where @ is the gravitational potential given by the Poisson equation (9.2). By comparing
egs. (9.14) and (9.13), and since 7 = ct we see that it must be

P
hoo = —2— + const. (9.15)
c

For example if the field is stationary and spherically symmetric, the newtonian potential is

GM
d=——, (9.16)
r
and if we require that hgy vanishes at infinity, the constant must be zero and eq. (9.15)

gives
®

P
hoo = _2672’ and doo = —(1 + 2C72) (917)

Thus we have shown that in the weak field limit the geodesic equations reduce
to the newtonian law of gravitation. This suggests the form that the field equations
should have. In fact if the field is weak, matter will behave non-relativistically, i.e. 7% =
Too ~ pc* and therefore the generalization of Laplace’s equation (9.2) could be

87
V2900 = — i Tto. (9.18)

But this equation is not even Lorentz-invariant! It doesn’t work. However it suggests that if
in place of a stationary field, we would have an arbitrary distribution of energy and matter,
we should construct a tensor starting from g, and its derivatives such that the field

equations are

G = 297,

14
A T

(9.19)

where G, is an operator acting on g, which we shall now define. It should be stressed
that, by the Principle of General Covariance, if equation (9.19) holds in a given reference
frame, it will hold in any other frame.
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9.2 Einstein’s field equations

Let us first see which derivatives and of which order do we expect in G,. A comparison
with the Laplace equation shows that G, must have the dimensions of a second derivative.
In fact, suppose that it contains terms of this type

P G PG 0Guw G
o3 ’ dx%  Ox, ’ ox,’

(9.20)

then, in order to be dimensionally homogeneous each term should be multiplied by a constant
having the dimensions of a suitable power of a lenght

2*g,, 0%, Og 0g, 1
Yl pe 2R ] A 9.21
ox? ’ ox% Ox, ox, 1 (9:21)

In this case, a gravitational field acting on small or on very large scale would be described by
equations where some of the terms would be negligible with respect to some others. This is
unacceptable, because we want a set of equations that are valid at any scale, and consequently
the only terms we can accept in G, are those containing the second derivatives of g, in
a linear form and products of first derivatives. Let us summarize the assumptions that we
need to make on G,

1) it must be a tensor

2) it must be linear in the second derivatives, and it must contain products of first
derivatives of ¢, .

3) Since T}, is symmetric, G, also must be symmetric.

4) Since T}, satisfies the “conservation law” T",, =0, G,, must satisfy the same
conservation law.

G, = 0. (9.22)
5) In the weak field limit it must reduce to (compare with eq. (9.18)

Goo ~ —Vgoo. (9.23)

In this last assumption the Principle of Equivalence and the weak field limit explicitely
appear.

In the preceeding section we have shown that there exists a tensor which is linear in the
second derivatives of g,, and non linear in the first derivatives. It is the Riemann tensor,
given in eq. (6.34), and it contains the information on the gravitational field. However we
cannot use it directely in the field equations we are looking for, since it has four indices (it

is a ( :1)) ) tensor) while we need a < (2) ) (or ( g ) ) tensor. In addition, the covariant

divergence of the stress-energy tensor vanishes, and so must be also for the tensor we shall
put on the left-hand side of eq. (9.19).

. . : : 0
By contracting the Riemann tensor with the metric we can construct a < 9 > tensor,

i.e. the Ricci tensor:
Ruu = gﬁamea/ = Ra,uauy (924)
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which is a symmetric tensor because of the symmetry property of the Riemann tensor

Rn,uau = Rauli,uu (925)

and a scalar, called the scalar curvature
R = R",. (9.26)
The contraction in eq. (9.26) has the following meaning
R*, = R% + R'; + R% + R%;. (9.27)

It can be shown, by using the symmetries of the Riemann tensor, that R,, and R are the
only second rank tensor and scalar that can be constructed by contraction of R, with
the metric. Bothin R,, and R the second derivatives of g,, appear linearly. Therefore
the tensor we are looking for should have the following form

G/u/ = CIR;W + C2g/ujRa (928)

where €} and C, are constants to be determined. The tensor G, satisfies the points
1,2 and 3. Condition 4 requires that

G, = C1R™ ., + Cog"" R, = 0. (9.29)

(remember that the covariant derivative of g, vanishes). Now a very remarkable thing
happens: eq. (9.29) is satisfied because of the Bianchi identities

R)\,uunm + R)\;mu;n + R}\,LLK/I”];I/ = 0. (930)
In fact by contracting these equations we find

9/\” (mem + R/\unl/;ff + R/\HHW;V) = 9/\” (Rkumm - R/\uvn;ﬂ) + QAVR/\unn;v (9-31)
= (R/mm — Ry + RVW‘W%V) = 0.

Contracting again
g;m (R;m;n - R/m;fe + Rylmn;l/) = R;n - Rnn;n - Ryn;v =0. (9-32)

The last expression can be rewritten in the following form
1
(R“” _ 29#"1-2) —0. (9.33)
Therefore, the Bianchi identities say that if

c, 1
2= _- 34
) (9:34)

eq. (9.33) will be satisfied. We still need C}.
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In the weak field limit !

‘E]| << ‘T00‘7 7’7] = 1737 (937)
and therefore
|GU| << ‘G00|, Z,j = 1,3 (938)
From eqs. (9.28) and (9.34) it follows
1
|Ch <Rij — 29in> | << |Gool, (9.39)
hence 1
Since g;; ~ 1;;
1
Ry ~ §R, k=1,3 (9.41)
consequently
3
R = gMVR/J«V ~ np’VR/“, = _ROO + Z Rkk = _ROO + iR, (942)
k
and
Since |
G = C <R,w 2gWR> , (9.44)
we find
GOO ~ 012R00. (945)

If we now compute Ry in the weak field limit (assuming the field is stationary), we find
that the non linear part is second order. Retaining only the first order terms and imposing
stationarity we get

1 ;. 0%goo 1
~Y J— 1/] e —_ 2 y e
Ry 27’] Do —2 V= 900, 1, k=1,3 (946)
namely
GOO ~ _Cl C 2900, (947)

!The fact that in the weak field limit |Tjz| << Toy can be easily understood if we consider, as an
example, a system on non-interacting particles. If p is the mass density

p= Zmné?’(r —Ip), (9.35)
where r, denotes the positions of the particles, the stress-energy tensor (8.15) can be also written as
dz* dz¥
™" = pc? . 9.36
pe dr dr ( )

It is clear that, if % << % i=1,3 the dominant term will be 790 .
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A comparison of this equation with eq. (9.23) shows that if we require that the relativistic
field equations reduce to the newtonian equations in the weak field limit it must be

Oy = 1. (9.48)

In conclusion, the Einstein’s field equations are 2

&G
G,uzz - 7Tlu,y7 (949)
where )
G = (RW _ 29#,,3) , (9.50)
and it is called The Einstein tensor. An alternative form is
G 1
RUV = 7 <T,UV — ngVT> . (951)

In vacuum 7}, =0 and the Einstein equations reduce to
R, = 0. (9.52)

Therefore, in vacuum the Ricci tensor vanishes, but the Riemann tensor does not, unless the
gravitational field vanishes or is constant and uniform. We may still add to egs. (9.49) the
following term

1 811G
(RMV — iguyR + Aguy) = ?TMV' (953)

where A is a constant. This term satisfies the conditions 1,2,3 and 4, but not the condition
5. This means that it must be very small in such a way that in the weak field limit the
equations reduce to the newtonian equations.

9.3 Gauge invariance of the Einstein equations

Since there are 10 independent components of G, Einstein’s equations provide 10 equations
for the 10 independent components of ¢,,. However these equations are not independent,
because, as we have seen, the Bianchi identities imply the “conservation law” G*”,, =
0, which provides 4 relations that the Einstein tensor must satisfy. Thus the number of
independent equations reduces to six.

Do we have six equations and 10 unknown functions? Why do we have these four degrees
of freedom? The reason is the following. Be g,, a solution of the equations. If we make
a coordinate transformation z*' = z/'(z®) the ‘transformed’ tensor g, = g, is again

2 Although we call these equations the Einstein equations, they were derived independently (and in a more
elegant form) by D. Hilbert in the same year. However Einstein showed the implications of these equations
in the theory of the solar system, and in particular that the precession of the perihelion of Mercury has a
relativistic origin. This led to the theory’s acceptance and since then the equations have been called the
Einstein equations.
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a solution, as established by the Principle of General Covariance. This also means that
9w and g;w do represent the same physical solution (the same geometry) seen in different
reference frames.

The coordinate transformation involves 4 arbitrary functions z*'(z®), therefore the four
degrees of freedom derive from the freedom of choosing the coordinate system, and disappear
when we choose it. For example, we may choose a frame where four of the ten g, are zero.

Thus Einstein’s equations do not determine the solution g,, in a unique way, but only up
to an arbitrary coordinate transformation. A similar situation arises in the case of Maxwell’s
equations in Special Relativity. In that case the equations for the vector potential®> A* are

02 AP Am
o4, — - - _"g. 9.54
Jr*0xr c (9:54)
(where O = —% + V2 =800 ) These are four equations for the four components

of the vector potential. However they do not determine A* uniquely, because of the
conservation law
0 02 AP
JV =0, ie. — (OA* —pt*— | = 0. 9.55

H oxt ( T 9radus (9.55)
Equation (9.55) plays the same role as the Bianchi identities do in our context. It provides
one condition which must be satisfied by the components of A", therefore the number of
independent Maxwell equations is three. The extra degree of freedom corresponds to a gauge

invariance, which means the following.
If A, is a solution,

0P
A=A, + —, 9.56
= Aut g (9.56)
will also be a solution. In fact, by direct substitution we find
0 02 A8 0 0 4
OA, — —0Od — po =——1J, 9.57
“ oo 0x*0zP R 0x*0xP Ox° c v (9:57)
and since the second and the last term on the left hand-side cancel, it becomes
92 A8 47
OA — =——J, 9.58
¢ Jx0zP c v (9.58)
q.e.d.
Since @ is arbitrary, we can chose it in such a way that
0
— AP =0 9.59
5P (9.59)

3Eq. (9.54) is the four-dimensional version of the wave equation for the vector potential

4
OA = grad(divA) = ——J.
C



CHAPTER 9. THE EINSTEIN EQUATIONS 100

and eq. (9.58) becomes

oA = A (9.60)
C

This is the Lorenz gauge.

Summaryzing: in the electromagnetic case the extra degree of freedom on A, is due to
the fact that the vector potential is defined up to a function @ defined in eq. (9.56). In
our case the four extra degrees of freedom are due to the fact that g, is defined up to
a coordinate transformation. This gauge freedom is particularly useful when one is looking
for exact solutions of Einstein’s equations.
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9.4 Example: The armonic gauge.
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The armonic gauge is defined by the condition
A A
" =g"Ty,, =0. (9.61)

As we shall see in a next lecture, this gauge is of particular interest when we study the
propagation of gravitational waves, because it simplifies the equations in a way similar to
that of Maxwell’s equations when written in the Lorenz gauge. It is always possible to
choose this gauge indeed, given a generic coordinate transformation, the affine connections

[0

4, transform as (see eq. (5.36))

v 0z oxm dx  OxY D27 0 69
BV Qe Ozt OV T Qo Qa OV (9.62)
When contracted with ¢**’ this equation gives
1’\/\/ _ al)\/ - N i 81‘” 82$U
Oxr Oz dxHdxv'”
The last term can be written in the following form
0N 0 [0x7\ [ O [9xY dx° _ 0a° 02N
R rar T el oxt | Oxo dxv' oxv' OxH Ox°
_ g 5, N 0z° OxP O*xV
oz~ V' 9V Qan Qxrdxe |
from which we find . 2,
N T p__ PO z
= dzP Oxrdx°’ (9:63)

Therefore, if T is non zero, we can always find a frame where I'” = 0 and reduce to the
armonic gauge. The condition I'* = 0 can be rewritten in a more elegant form remembering
the expression of the affine connections in terms of the metric tensor

1 dg dg dg
F/\ — M A& K KV 124 = 0. 64
29 g {833” + ozt ozt 0 (9.64)

Since

w09 _ 09
ox? Oz

1 ., 0g 1 0
Zgtv MY /—
29" Bgx V/—g 0z" &

(9.65)
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it follows that

1 89)\/@ ag)\n g)\/@ 6

A_ T opv ) o o o

r =39 G | g | ~ 9 | — 5V 0. (9.66)
g

The term in brackets is symmetric in x4 and v, therefore

1 ag)\n g)\n 8
M= ——132¢"g, — V=g = :
and, since g"? g, = 07,
o AR AK o
M=% J V=g =0, (9.68)

oxr v/ —g 0xF

R
Nt

from which we find

<\/—_gg’\”) = 0. (9.69)

This means that p
e («/—gg’\“) =0. (9.70)

The reason why this gauge is called ‘armonic’ is the following. A function ¢ is armonic if

=0 implies

ao =0, (9.71)
where the operator O is the covariant d’Alambertian operator defined as
00 = gMV,V,. D, (9.72)

and V, is the covariant derivative. Since

0.
GV, D = g™ ( A r;;@;a) = (9.73)
oxr
v | 0*® B , 0P _ 0*® _Faaq)'
oxrcox? AR Do oxrox oxe

If T =0 the armonic gauge condition becomes

0*®

D@ — )\57
g oxrcox?

=0. (9.74)
If T =0 then the coordinates itself are armonic functions, in fact putting ® = 2*
in eq. (9.74) one finds
02 xH o)
Ort = g™ ——— = g™ "0 =0 9.75
z g 81%8%)\ g axﬁ A ) ( )
q.e.d. If the spacetime is flat, armonic coordinates coincide with minkowskian coordinates.




Chapter 10

Symmetries

H. Weyl: “Symmetry, as wide or as narrow as you may define its meaning, is one idea by
which man through the ages has tried to comprehend and create order, beauty, and perfection.”

The solution of a physical problem can be considerably simplified if it allows some sym-
metries. Let us consider for example the equations of Newtonian gravity. It is easy to find a
solution which is spherically symmetric, but it may be difficult to find the analytic solution
for an arbitrary mass distribution.

In euclidean space a symmetry is related to an invariance with respect to some opera-
tion. For example plane symmetry implies invariance of the physical variables with respect
to translations on a plane, spherically symmetric solutions are invariant with respect to
translation on a sphere, and the equations of Newtonian gravity are symmetric with respect
to time translations

t—t+ T

Thus, a symmetry corresponds to invariance under translations along certain lines or over
certain surfaces. This definition can be applied and extended to Riemannian geometry. A
solution of Einstein’s equations has a symmetry if there exists an n-dimensional manifold,
with 1 < n < 4, such that the solution is invariant under translations which bring a point
of this manifold into another point of the same manifold. For example, for spherically
symmetric solutions the manifold is the 2-sphere, and n=2. This is a simple example, but
there exhist more complicated four-dimensional symmetries. These definitions can be made
more precise by introducing the notion of Killing vectors.

10.1 The Killing vectors

— —

Consider a vector field £(z#) defined at every point x“ of a spacetime region. ¢ identifies
a symmetry if an infinitesimal translation along ¢ leaves the line-element unchanged, i.e.

§(ds?) = 6(gapdr®dz®) = 0. (10.1)

This implies that
8 Gapdz®da’ + gop {5(dx“)d:cb + d:z:“d(d:cb)} = 0. (10.2)



CHAPTER 10. SYMMETRIES 104

E is the tangent vector to some curve zx%(\) ,ie. &%= %\1 , therefore an infinitesimal

translation in the direction of 5 is an infinitesimal translation along the curve from a point
P(\) to the point P'(A 4 d\). Putting

d a
50" = 2+ dX) — 2 (3) = —-dA = §7d),

the coordinates of P(\) and P’(\ 4 d\) are, respectively,

P = (z%) and P’ = (2% 4 0z%).

P = (2!, 2%)

Ox P = (2' 4 62!, 2% + §27)

1 >

X X
When we move from P to P’ the metric components change as follows

agoz/o’
O\

0Gap dx*
= P —d
9P+ G gy T

= ga,@(P) + gaﬁ,ugud)\a

gap(P') = gap(P) + —7dA+ ... (10.3)

hence
5905 = GayuEVdA. (10.4)

Moreover, since the operators ¢ and d commute, we find

S(da®) = d(02%) = d(E2dN) = de*dA (10.5)
8 «
- &iudx”d)\ — €9 dztd).

Thus, using eqgs. (10.5) and (10.4), eq. (10.2) becomes
Gap & ANz’ + gog [€5,dx#dNda” + &8 dadAdz®)| = 0, (10.6)
and, after relabelling the indices,

(958" + 955E%, + Gas€’s] d2”dz’dX = 0. (10.7)

In conclusion, a solution of Einstein’s equations is invariant under translations along 5, if
and only if
Jap ! + 95pE0 + Gasls = 0. (10.8)
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In order to find the Killing vectors of a given a metric g,s we need to solve eq. (10.8),

which is a system of differential equations for the components of E . If eq. (10.8) does
not admit a solution, the spacetime has no symmetries. It may look like eq. (10.8) is not
covariant, since it contains partial derivatives, but it is easy to show that it is equivalent to
the following covariant equation (see appendix A)

Eap + Epa = 0. (10.9)

This is the Killing equation.

10.1.1 Lie-derivative

The variation of a tensor under an infinitesimal translation along the direction of a vector
field ¢ is the Lie-derivative ( ¢ must not necessarily be a Killing vector), and it is

indicated as LE‘ For a ( g ) tensor

LeTup = Tapu€" + TogEl, + Taslls - (10.10)
For the metric tensor
Lggap = Gapu" + 95580 + 96l = Eas + Epia i (10.11)

if g" is a Killing vector the Lie-derivative of g,s vanishes.

10.1.2 Killing vectors and the choice of coordinate systems

The existence of Killing vectors remarkably simplifies the problem of choosing a coordinate
system appropriate to solve Einstein’s equations. For instance, if we are looking for a solution
which admits a timelike Killing vector 5’, it is convenient to choose, at each point of the
manifold, the timelike basis vector €/ aligned with 5, with this choice, the time coordinate

lines coincide with the worldlines to which 5 is tangent, i.e. with the congruence of
worldlines of ¢, and the components of ¢ are

£ =(¢°,0,0,0) . (10.12)

If we parametrize the coordinate curves associated to 5 in such a way that £° is constant
or equal unity, then

£ =(1,0,0,0), (10.13)
and from eq. (10.8) it follows that
agaﬂ
=0. 10.14
550 0 (10.14)

This means that if the metric admits a timelike Killing vector, with an appropriate
choice of the coordinate system it can be made independent of time.

A similar procedure can be used if the metric admits a spacelike Killing vector. In this
case, by choosing one of the spacelike basis vectors, say the vector €(;), parallel to E, and
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by a suitable reparametrization of the corresponding conguence of coordinate lines, one can
write
€ =1(0,1,0,0) , (10.15)
and with this choice the metric is independent of z', i.e. dg,s/0x' = 0.
If the Killing vector is null, starting from the coordinate basis vectors €(), €1y, €(2), €3),
it is convenient to construct a set of new basis vectors

Elary = N Eg) (10.16)

such that the vector € is a null vector. Then, the vector €y can be chosen to be parallel

to E at each point of the manifold, and by a suitable reparametrization of the corresponding
coordinate lines

£ = (1,0,0,0) , (10.17)
and the metric is independent of 2%, i.e. 0gas/02" = 0.
The map
ft . M - M

under which the metric is unchanged is called an isometry, and the Killing vector field is the
generator of the isometry.
The congruence of worldlines of the vector ¢ can be found by integrating the equations

o o
=€), (10.18)

10.2 Examples

1) Killing vectors of flat spacetime
The Killing vectors of Minkowski’s spacetime can be obtained very easily using cartesian
coordinates. Since all Christoffel symbols vanish, the Killing equation becomes

fa’g + 55,a =0. (10.19)

By combining the following equations

ooy +Epay =0, §pra t 61,80 =0, EvoptEarp=0, (10.20)

and by using eq. (10.19) we find
€apy =0, (10.21)

whose general solution is
§a = Cat+ €a'y$7 ) (10.22)

where ¢, €,5 are constants. By substituting this expression into eq. (10.19) we find
€ar s + €427, = €ay03 + €3,0) = €ap + €ga = 0
Therefore eq. (10.22) is the solution of eq. (10.19) only if

€ap = —€pa - (10.23)
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The general Killing vector field of the form (10.22) can be written as the linear combination of
ten Killing vector fields £() = {¢) @) €001 corresponding to ten independent choices

of the constants c,, €p:
g(A)

0%
For instance, we can choose
o
=
=

o

o«

2

)

CSO)

ary

1 _
(1,0,0,0) €afp = 0
(2) _
(0,1,0,0) €ap = 0
3) _
(0,0,1,0) €ap = 0
4) _
(0,0,0,1) €0p = 0
0 1
55 | -1 0
0 €af = 0 0
0 0
0 0
6) 0O O
0 €0 = 10
0 0
0 0
7 0 0
0 €0 = 0 0
-1 0
0 O
s | 0 O
0 €0 = 0 -1
0 O
0 O
9 | 0 O
0 €0 = 0 0
0 —1
0 0
) | 00
0 €ap = 0 0
0 0

=W ey A=1,. ..

.10 (10.24)
0 0
0 0
0 0
0 0
10
0 0
0 0
0 0
01
0 0
0 0
0 0
0 0
10
0 0
0 0
0 0
01
0 0
0 0
0 0
0 0
01 (10.25)
-1 0

Therefore, flat spacetime admits ten linearly independent Killing vectors.

The symmetries generated by the Killing vectors with A = 1,...,4 are spacetime transla-
tions; the symmetries generated by the Killing vectors with A = 5,6, 7 are Lorentz’s boosts;
the symmetries generated by the Killing vectors with A = 8,9, 10 are space rotations.

2) Killing vectors of a spherical surface

Let us consider a sphere of unit radius

ds® = df* + sin*0dy® = (do')? + sin*x* (dz?)? .

(10.26)
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Eq. (10.8) ) )
ga,@,ugu + gﬁﬁg,a + gaéf,ﬁ =0

gives

2) a=1,8=2 g5n& + 91,65 =0— &, +sin’0¢5 =0
3) a=0=2 gpL'+ 2g52§f2 =0 — cos 951 + sin 95?2 =0.

The general solution is
¢ = Asin(¢ + a), & = Acos(p + a)cotf + b. (10.28)

Therefore a spherical surface admits three linearly independent Killing vectors, associated
to the choice of the integration constants (A, a,b).

10.3 Conserved quantities in geodesic motion

Killing vectors are important because they are associated to conserved quantities, which may
be hidden by an unsuitable coordinate choice.
Let us consider a massive particle moving along a geodesic of a spacetime which admits
a Killing vector £&. The geodesic equations written in terms of the particle four-velocity
U= ‘Zc—a read
T
au®
dr

By contracting eq. (10.29) with gwe find

+ T2, UPU" = 0. (10.29)

due d(§U) déa
o o5, UPUY | = 222 —U*22 4T, UPUYE, . 10.30
¢ dr tls ] dr dr s ¢ ( )
Sinee dg de 0€s 62" o€
a%a _ 78088 g 0SB 0T 1 9S8 10.31
v dr v dr u dzv dr vy ozv’ (10:31)
eq. (10.30) becomes
d(gaUa) 855
—2” L _pPUr | 22 —TY6.| =0, 10.32
dr [8:6” v ( )
i.e. d(E. T
(i‘;) _UPUYEs, =0 . (10.33)
=

Since &g, is antisymmetric in 3 and v, while UPU" is symmetric, the term UPU"Eg,, vanishes,
and eq. (10.33) finally becomes
d(&U*)

— = 0 — LU = const | (10.34)
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i.e. the quantity (£,U?) is a constant of the particle motion. Thus, for every Killing vector
there exists an associated conserved quantity.
Eq. (10.34) can be written as follows:

Jau'U® = const . (10.35)

Let us now assume that E is a timelike Killing vector. In section 10.1.2 we have shown that
the coordinate system can be chosen in such a way that & = {1,0,0,0}, in which case eq.
(10.35) becomes

Ga0'UY = const — JaoU® = const . (10.36)

If the metric is asymptotically flat, as it is for instance when the gravitational field is gener-
ated by a distribution of matter confined in a finite region of space, at infinity g.s reduces
to the Minkowski metric 7,4, and eq. (10.36) becomes

nooU° = const — U° = const . (10.37)

Since in flat spacetime the energy-momentum vector of a massive particle is p* = mcU® =
{E /c,mv'y}, the previous equation becomes

E
— = const (10.38)
c

i.e. at infinity the conservation law associated to a timelike Killing vector reduces to the
energy conservation for the particle motion. For this reason we say that, when the metric
admits a timelike Killing vector, eq. (10.34) expresses the energy conservation for the particle
motion along the geodesic.

If the Killing vector is spacelike, by choosing the coordinate system such that, say, &# =
{0,1,0,0}, eq. (10.34) reduces to

11U = const — g U™ = const .

At infinity this equation becomes

1
7711U1 = const — % = const ,

showing that the component of the energy-momentum vector along the z! direction is con-
stant; thus, when the metric admit a spacelike Killing vector eq. (10.34) expresses momentum
conservation along the geodesic motion.

If the particle is massless, the geodesic equation cannot be parametrized with the proper
time. In this case the particle worldline has to be parametrized using an affine parameter
A such that the geodesic equation takes the form (10.29), and the particle four-velocity is
U* = %. The derivation of the constants of motion associated to a spacetime symmetry,
i.e. to a Killing vector, is similar as for massive particles, reminding that by a suitable choice
of the parameter along the geodesic p* = {E, p'}.

It should be mentioned that in Riemannian spaces there may exist conservation laws
which cannot be traced back to the presence of a symmetry, and therefore to the existence
of a Killing vector field.
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10.4 Killing vectors and conservation laws
In Chapter 7 we have shown that the stress-energy tensor satisfies the “conservation law”
™., =0, (10.39)

and we have shown that in general this is not a genuine conservation law. If the spacetime
admits a Killing vector, then

(£ TH)., = & T + £, 1", = 0. (10.40)
Indeed, the second term vanishes because of eq. (10.39) and the first vanishes because ¢&,.,
is antisymmetric in g an v, whereas T*” is symmetric.

Since there is a contraction on the index p, the quantity (£, 7*") is a vector, and according
to eq. (8.69)

1 0
|V —
’ v—g ox¥

therefore eq. (10.40) is equivalent to

(vV=9v") . (10.41)

1 0
o

which expresses the conservation of the following quantity and accordingly, a conserved
quantity can be defined as

V=g (&1)] =0, (10.42)

T = V=9 (61"°) da'da?da® , (10.43)
(z%=const)
as shown in Chapter 7.

In classical mechanics energy is conserved when the hamiltonian is independent of time;
thus, conservation of energy is associated to a symmetry with respect to time translations.
In section 10.1.2 we have shown that if a metric admits a timelike Killing vector, with a
suitable choice of coordinates it can me made time independent (where now “time” indicates
more generally the 2%-coordinate). Thus, in this case it is natural to interpret the quantity
defined in eq. (10.43) as a conserved energy.

In a similar way, when the metric addmits a spacelike Killing vector, the associated
conserved quantities are indicated as “momentum” or “angular momentum”, although this
is more a matter of definition.

It should be stressed that the energy of a gravitational system can be defined in a non
ambiguous way only if there exists a timelike Killing vector field.

10.5 Hypersurface orthogonal vector fields

Given a vector field V it identifies a congruence of worldlines, i.e. the set of curves to
which the vector is tangent at any point of the considered region. If there exists a family
of surfaces  f(z#) = const such that, at each point, the worldlines of the congruence
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are perpendicular to that surface, V s said to be hypersurface orthogonal. This is
equivalent to require that V is orthogonal to all vectors ¢ tangent to the hypersurface, i.e.

V=0 —= tVPz=0. (10.44)

We shall now show that, as consequence, Vs parallel to the gradient of f. As described
in Chapter 3, section 5, the gradient of a function f(x*) is a one-form

of of of

df = (8950’ oxl’ " Oxn

) ={fa} (10.45)

When we say that V is parallel to d f we mean that the one-form dual to 17, fe. Vo
{905VP = V,} satisfies the equation

V=AM a (10.46)

where A is a function of the coordinates {z*}. This equation is equivalent to eq. (10.44).
Indeed, given any curve z%(s) lying on the hypersurface, and being t* = dz®/ds its tangent
vector, since f(z*) = const the directional derivative of f(z*) along the curve vanishes, i.e.

d, of dx*
dé’ B (‘31{;453 - f,ata = )\_lvata =0, (1047)

ie. eq. (10.44).
If (10.46) is satisfied, it follows that

Vaip = Vaia = ()‘f,a);ﬁ - ()‘f,ﬁ>;a (10.48)
= A (f,oc;ﬁ - fﬁ;a) + fu)‘;ﬁ - f,ﬁ/\;a =
= A (f,a,ﬁ - f,ﬂ,oz - Fuﬁaf,,u + Fﬂaﬁf,u) + f,a)\,ﬂ - fﬂ)‘,a

g Ao
= Vai, — V= )
PP
ie. \ )
Viig — Vi = Va2l — V52 (10.49)
’ ’ A A
If we now define the following quantity, which is said rotation
1
w? = ieéaﬁﬂv[a;mvu : (10.50)

using the definition of the antisymmetric unit pseudotensor €**%* given in Appendix B, it
follows that
w’ =0. (10.51)

Then, if the vector field V is hypersurface horthogonal, (10.51) is satisfied. Actually,
(10.51) is a necessary and sufficient condition for V' to be hypersurface horthogonal; this
result is the Frobenius theorem.
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10.5.1 Hypersurface-orthogonal vector fields and the choice of co-
ordinate systems
The existence of a hypersurface-orthogonal vector field allows to choose a coordinate frame

such that the metric has a much simpler form. Let us consider, for the sake of simplicity, a
three-dimensional spacetime (20, 2!, z?).

S,
Vv VEZ)V

Sy

Be ) and S two surfaces of the family f(z#) = cost, to which the vector field V' is orthog-
onal. As an example, we shall assume that V is timelike, but a similar procedure can be
used if V' is spacelike. If V' is timelike, it is convenient to choose the basis vector €y parallel

to 17, and the remaining basis vectors as the tangent vectors to some curves lying on the
surface, so that

9oo = 9(€(0), €(0)) = €(0) * €(0) # O (10.52)
9oi = 9(€0), €iy) = 0, i=1,2.

Thus, with this choice, the metric becomes
ds? = goo(dz®)? + gi(da®)(dz"), ik=1,2. (10.53)

The generalization of this example to the four-dimensional spacetime, in which case the
surface S is a hypersurface, is straightforward.

In general, given a timelike vector field V, we can always choose a coordinate frame such
that € is parallel to ‘7, so that in this frame

Ve(zt) = (VP(2"),0,0,0). (10.54)

Such coordinate system is said comoving. If, in addition, V is hypersurface-horthogonal,
then go; = 0 and, as a consequence, the one-form associated to V' also has the form

Va(a") = (Vo(2#),0,0,0), (10.55)

since V; = g;,V# = gioVO + g VE = 0.
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10.6 Appendix A
We want to show that eq. (10.8) is equivalent to eq. (10.9).
aip = (Jaus")5 (10.56)
Joulls = Gap (f’f; + F“sﬁfé) ;
hence
Cap + o = Gop (5 +TV558°) (10.57)
+ g (€ + T"as’)
= GouSly + 9utle + (9oul"s5 + 9ol as) €.

The term in parenthesis can be written as

1 o o
§ [ga,ug# (g&r,ﬁ + 9oB,6 — 95,8,0) + gﬁ,ugu (gao,6 + Gob,a0 — ga§,o)]

1

= 5 [62 (950,/3 + 9oB,s — 96,8,0) + 5; (gaa,§ + 9ob,00 — ga&,a)] (1058)
1

- 5 [gﬁa,ﬂ + Jap,s — 958,a + GaB,6 + 9s6,a — gaé,ﬁ]

= GJaB,8,

and eq. (10.57) becomes

a8 + Epa = Gaullh + 9ul + Gap sl (10.59)
which coincides with eq. (10.8).

10.7 Appendix B: The Levi-Civita completely antisym-
metric pseudotensor

We define the Levi-Civita symbol (also said Levi-Civita tensor density), eq.p s, as an object
whose components change sign under interchange of any pair of indices, and whose non-zero
components are +1. Since it is completely antisymmetric, all the components with two
equal indices are zero, and the only non-vanishing components are those for which all four
indices are different. We set

eore3 = 1. (10.60)

Under general coordinate transformations, e,s,s does not transform as a tensor; indeed,
under the transformation % — %,

0z 0x8 0z Oxd 7

axa/ axﬁl aaj,y/ axél eOéB’Yé - 6&/5/7/6/

(10.61)

where J is defined (see Chapter 7) as

J = det ((91:0‘ ) (10.62)

axa/
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and we have used the definiton of determinant.
We now define the Levi-Civita pseudo-tensor as

€aBys =\—g €aBvs - (1063)

Since, from (8.26), for a coordinate transformation z* —

V=7

J| = , 10.64

]| Ner ( )
then 9 508 Dt D8
. % Ox” O0x" Ox

€aBys —7 €aufryisr = Slgn(J) 92 92 O D €aBys - (1065)

Thus, €,3,5 is not a tensor but a pseudo-tensor, because it transforms as a tensor times the
sign of the Jacobian of the transformation. It transforms as a tensor only under a subset of
the general coordinate transformations, i.e. that with sign(J) = +1.

Warning: do not confuse the Levi-Civita symbol, e,s,5, with the Levi-Civita pseudo-
tensor, €,4y6 -



Chapter 11

The Schwarzschild solution

The Schwarzschild solution was first derived by Karl Schwarzschild in 1916, although a
complete understanding of the Schwarzschild spacetime was achieved much recently. The
paper was communicated to the Berlin Academy by Einstein on 13 January 1916, just about
two months after he had published the seminal papers on the theory of General Relativity.
In those years Schwarzschild was very ill. He had contracted a fatal desease in 1915 while
serving the German army at the eastern front. He died on 11 May 1916, and during his illness
he wrote two papers in General Relativity, one describing the solution for the gravitational
field exterior to a spherically symmetric non rotating body, which we are going to derive,
and the second describing the interior solution for a star of constant density which we shall
discuss later.

We now want to find an exact solution of Einstein’s equations in vacuum, which is
spherically symmetric and static. This will be the relativistic generalization of the newtonian

solution for a pointlike mass
GM
V=- , (11.1)

r

and it will describe the gravitational field in the exterior of a non rotating body. Let us first
discuss the symmetries of the problem.

11.1 The symmetries of the problem

a) Symmetry with respect to time.

Time-symmetric spacetimes can be stationary or static. A spacetime is said to be sta-
tionary if it admits a timelike Killing vector 5 It follows from the Killing equations
that the metric of a stationary spacetime does not depend on time

agaﬂ -
oy = 0. (11.2)

A spacetime is static if it admits a hypersurface-orthogonal, timelike Killing vector.
In this case, as shown in Chapter 12, we can choose the coordinates in such a way that
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—

¢ — (1,0,0,0), and the line-element takes the simple form
dSQ = 900($i)(d$0)2 + gkn(xz)dxkdxn7 i? ka n= 17 37 (113)
where  goo = g(£,€) = £ €.

From this equation we see that the metric is not only independent of time, but also invariant
under time reversal ¢ — —t. (If terms like dx°dz’ were present this would not be true).
b) Spatial symmetry.

We now take care of the spatial part of the metric. The basic idea is that we want to
“fill” the space with concentric spherical surfaces. We start with the 2-sphere of radius «
in flat space

ds%g) = goo(dx?)? + gs3(dx®)? = a*(dH? + sin’ Odp?). (11.4)
The surface of this sphere is
A:/\/Ededgo:/OﬂazsinedQ/o%dgo:éhraQ, (11.5)
and the lenght of the circumference
0 = g, dl = adp, C =2ma. (11.6)
Tohesle results continue to hold if @ is an arbitrary function of the remaining coordinates
o dsé) = a*(2°, 2')(d? + sin” Odp?). (11.7)

But since we have already established that the metric does not depend on time, we put
a = a(z'). We are now free to make a coordinate transformation and put

r=a(x'). (11.8)

Thus we define the radial coordinate as being half the ratio between the surface and the
circumference of the 2-sphere. However, it should be noted that in principle the coordinate
r has nothing to do with the distance between the center of the sphere and the surface , as
we shall later show.

Then we go to the next sphere at r+ dr. We may label the points of the second sphere
with different (0, ¢’) as indicated in the figure

If the poles of the two sferes are not aligned, the vector 77 which maps the point
P = (0y,¢0) on the internal sphere ( 6y, o constants), to the point P’ = (6], ;) on
the external sphere (with 6 =6, and ¢, = @), is directed as indicated in the figure.
Conversely, if the poles are aligned 7 is orthogonal to the two spheres, and therefore it is

—

orthogonal to % =€) and % = €(y), which are the basis vectors on the sphere. Thus
in this case 17 is hypersurface-orthogonal.

Since we want angular coordinates (6, ) defined in a unique way on the whole set of
spheres filling the space, we require that 1 is indeed orthogonal to the spheres. In this

case 1] is the vector tangent to the coordinate line (6 = const,p = const), therefore
- J

= 5. = €(). The orthogonality condition then gives

—

€r) - €6) = gro = 0, €r) * €p) = Grp = 0. (11.9)
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Under these assumptions, the metric of the three-space becomes
ds(yy = grrdr® + r?(d6? + sin® 0dp?), (11.10)
and that of the four-dimensional spacetime finally is
ds® = goo(dz®)? + gprdr® + r*(df? + sin’® 0dp?). (11.11)

At this point the two metric components ggg and g,.- should, in principle, depend on (r, 8, ¢).
However, this is not the case. Indeed, if we consider a set of new polar coordinates (¢, ¢)
to label the points on the two sferes that fill the space, neither the vector €y, nor the vector
¢, will change and therefore they cannot depend on the angular coordinates we choose. As
a consequence goo and g, do not depend on (6, ¢) either, and we can write

goo = goo(T), and Grr = Gor(T).
It is convenient to rewrite the metric in the following form
ds® = —e* (da")? + e dr® + r*(df* + sin’ Odp?), (11.12)

where v = v(r) and A = A(r). Let us now compute the distance between two points
P1=(297,60.,0,), and P2=(2°,74,6,,0,)

T2
l:/ Adr (11.13)

This distance does not coincide with  (ro — 7).



CHAPTER 11. THE SCHWARZSCHILD SOLUTION 118

We now write the components of the Einstein tensor in terms of the metric (11.13). They
are

_ 1 2v d —2A

a) Go = oAl {7’(1 —e )} (11.14)
_ 1 2\ —2A 2

b) GTT = _/]"726 [(1 — € ):| ‘I’ ;I/,’I‘

vV, Ay
c) Gog = rle ly,rr + V2r + = VA - 1
' T T
d) G<P<P = sin2 (9G99

The remaining components identically vanish. Since we are looking for a vacuum solution,
the equations to solve are

G =0, (11.15)
and eq. (11.14a) gives
r(l—e ) =K, (11.16)
where K is an integration constant. Hence
22 1
e’ =—¢. (11.17)
From eq. (11.14b) we find
LK (11.18)
vV, == , :
T 2r(r—K)
and therefore
1 K K
v = ilog (1——)+wp, — e = (1 - ) e, (11.19)
r r

where 1 is a constant. We can rescale the time coordinate

t — et
in such a way that e? becomes ©
e =1-— — (11.20)
The final form of the solution is
ds? = — (1 - I:) Fdf? + Lo 12 (46 + sin? 0di?) (11.21)

T

This is the Schwarzschild solution. When r — oo the metric reduces to that of a flat
spacetime, therefore we say that the metric is asymptotically flat.

Now we want to understand what is the meaning of the integration constant K. In
Chapter 8 section 1, we showed that in the weak-field limit, the geodesic equations reduce
to the newtonian equations of motion, and consequently

20 2GM
goo ~ — (1 + 2) = — (1 _ ) ; where (11.22)
C

c2r
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¢ = —GTM is the newtonian potential generated by a spherical distribution of matter. From

eq. (11.20) we see that when r — 00 ggo tends to unity as
—goo =€ =1——. (11.23)

By comparing eq. (11.22) and (11.23) we find
2GM

c2

K = . (11.24)

Therefore the constant K is the physical mass multiplied by i—? It is easy to check that

the solution (11.21) satisfies eq. (11.14c).

11.2 The Birkhoff theorem

The solution (11.21) has been found by imposing that the spacetime is static and spherically
symmetric, therefore it represents the gravitational field external to a non-rotating, sperically
symmetric body whose structure is time-independent. However, it is more general than
that. In fact Birkhoff’s theorem establishes that it is the only spherically symmetric and
asymptotically flat solution of the vacuum Einstein field equations. Let us assume that the
functions (v, A) in the metric (11.12) depend both on the radial coordinate and on time.
To prove Birkhoff’s theorem we only need the components Ry and Rgy of the Ricci
tensor:

2 O\
a) ROT = ;@ = Vv, (1125)
b) Regp=1-e2 l1 2= M] = 0.
or

From eq. (11.25a) it follows that A must depend only upon the radial coordinate r. Then

from eq. (11.25b) it follows that also % must be independent of 2° and consequently

v=uv(r)+ f(a"). (11.26)

This means that the coefficient of (dz°)? in the line element is  €2/(e2/*) . But the term
e2/(@") can be ‘reabsorbed’ by a coordinate transformation

dt’ = /@), (11.27)
so that the new metric coeflicients are
v=uv(r), A= A(r), (11.28)

and the metric is time independent. This means that even if we impose that the central
object evolves in time, as it would be for example in the case of a star radially pulsating,
or in a spherical collapse, we would find, in the exterior, the same Schwarzschild metric,
and since the spacetime remains static even in these cases, gravitational waves could not be
emitted. The conclusion is that spherically symmetric systems can never emit gravitational
waves. A similar situation occurs in electrodynamics: a spherically symmetric distribution
of charges and currents does not radiate.



CHAPTER 11. THE SCHWARZSCHILD SOLUTION 120

11.3 Geometrized units

From eq. (11.23) and (11.24) is easy to see that K = 2% must have the dimension of a
lenght. Remembering that

3

G=667x10" L £=2998 x 10 cm/s,
g

)
82

the ratio C% is
G
— =0.7425 x 107 ®cm - g 7. (11.29)
c
It is often convenient to put
G=c=1, (11.30)

which means that we measure the mass, as the lenghts, in cm. We shall often adopt this
convention, and we will indicate the geometrical mass (i.e. the mass in cm) as  m.
In these unities the Schwarzschild solution becomes

2 1
ds® = — (1 — ;n) dt® + : Qﬂdﬂ + 72 (d92 + sin? 0dg02> : (11.31)

11.4 The singularities of Schwarzschild solution

Let us examine the metric (11.31) in some more detail. We immediately see that there is a
problem when r —2m: gy — 0, and g, — co. Moreover, when 7 — 0, gopo — 00,
and ¢, — 0. In both cases we say that there is a singularity, but of a different nature. In
order to check wheter a singularity is a genuine curvature singularity, we should compute the
scalars which we can construct from the Riemann tensor and see if they diverge. To check
whether the Riemann tensor is well-behaved is not enough, in fact for the Schwarzschild
metric the components of R%g,s5 are

2 —1
R, = —2% (1 _ ;”) (11.32)
1 m
t t
R 0to S 2 QR ptp 7'75
R o, = 25 sin? 0
1 m
Rpg= 5, R prp=——
ol = sinZg " oY ro

and they diverge both at r = 0, and at r = 2m. However, if we compute the scalar
invariants, like R™9R,;.q, we find that they diverge only at r = 0. We conclude that
r =0 is a true curvature singularity, while r = 2m is only a coordinate singularity, due
to an unappropriate choice of the coordinates.

We shall now analyse the properties of the surface r = 2m.
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11.5 Spacelike, Timelike and Null Surfaces

In a curved background hypersurfaces are classified in the following way. Consider a generic
hypersurface X
S(2t) =0, (11.33)

Be 17 the normal vector dual to the gradient one-form

Mo = Y4 (11.34)
If ¢~ is a tangent vector to the surface, then t*n, = 0. Indeed, t* = ‘Z”—; with z%(\) curve
on X; therefore,
dz® 0%  dX
o, = = 22 ). 11.35
T TN dre T X (11.35)

At any point of the hypersurface we can introduce a locally inertial frame, and rotate it in
such a way that the components of 7 are

n® = (n’,n',0,0) and nen® = (n*)? — (n%)>2. (11.36)

Consider a vector t* tangent to 3 at the same point. t® must be orthogonal to 7

0,0 1,1 t° _n!
net* =-—nt +nt =0 — ik (11.37)
From eq. (11.37) it follows that
t* = A(n',n° a,b) with a,be A costant and arbitrary. (11.38)
Consequently the norm of ¢ is
tot® = A2[—(nh)? + (n")? + (a® + b*)] = A*[—non® + (a® + b?)]. (11.39)
There are three possibilities:
1) nen® <0, — n® isa timelike vector — Y. is spacelike
2)  nen® >0, — n% isaspacelike vector — Y. is timelike
3) nen*=0, — n% isanull vector — Y is null

We shall now see how the normal and the tangent vectors are directed in order to understand
the disposition of the light-cones with respect to the hypersurface.

1) If ngn® <0 ,then t,t* >0 and t is spacelike. Consequently no tangent vector
to X in P lies inside, or on the light-cone through P. Since a massive particle which starts
at P must move inside the light-cone (or on the light-cone if it is massless), this means that
a spacelike hypersurface can be crossed only in one direction.
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2) If nen® >0 , then t,t* can be positive, negative or null depending on the value
of a? +b?> . Therefore there will be some tangent vectors which lie inside the light-cone .
Consequently a timelike hypersurface can be crossed inward and outward.

3) If ngn® =0 ,then t,t* is positive (t* is spacelike), or null if a =b=0 . In this
case there will be only one tangent vector (and all its multiples) at P which lies on X and
on the light-cone
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For example, in Minkowski spacetime ¢ = const is a spacelike surface, and any physical
object can pass it in only one direction without violating causality. x = const is a timelike
surface, and physical objects can pass it in either direction, x — ct = 0 is a null surface.

Let us now try to understand what kind of surface r =2m is.
Consider a generic hypersurface r = const in the Schwarzschild geometry

X =1r —cost = 0.
The norm of the normal vector is
nan® = gaﬁnanﬁ = g“fBZ?aEﬁ =

2
9" %% + g 4 g"N + 7N, = ¢S = (1 - ;n) :

From eq. (11.41) it follows that

r > 2m — nan® >0, > is timelike
r = 2m — nen® =0, > is null
r < 2m — nen® < 0, Y. is spacelike

Consider for example S; and S; as shown in the following figure

(11.40)

(11.41)
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singularity

horizon

Any signal which starts at some point of S; can be sent both toward the origin and
outward, since S is timelike. Conversely, a signal which starts at a point of S in the
interior of r = 2m must necessarily go inward, and be captured by the sigularity at » = 0,
since Sy is spacelike. The surface r = 2m is a null surface, which is basically the transition
from a spacelike to a timelike hypersurface. On the surface r = 2m the timelike Killing
vector é&t) becomes null and it is spacelike for r < 2m.

The Schwarzschild solution is said to represent the gravitational field of a black hole,
and the hypersurface » = 2m is called the event horizon. The reason for these names is
that if we are outside r = 2m we can send a signal both inward and outward, but as soon as
we cross the horizon any signal will inevitably bend toward the singularity: there is no way
to know what happens inside the horizon.

As we mentioned before, r = 0 is a genuine curvature singularity. Thus General Relativity
predicts the existence of singularities hidden by a horizon.
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11.6 How to remove a coordinate singularity

In general, it is not a simple problem to understand whether a singularity is a genuine
curvature singularity or it is only a coordinate singularity. The first thing to do is to compute
the Riemann tensor and the scalars which can be computed from it, like R%®“R,.q and
check whether they diverge somewhere. If this is not the case, the singularity is due to
a bad choice of the coordinate system, and a suitable choice of a new set of coordinates
should remove it. If this can be done, we say that we are extending our original spacetime
(M, gop) to a larger spacetime (M, o) which includes the original one. Before analyzing
the Schwarzschild case, let us consider two examples.
Consider the two-dimensional spacetime

1
ds? = —t—4dt2 + da?, 0<t<oo, —00 < & < 00. (11.42)
(¢ = G = 1.) The metric is singular at ¢ = 0. The coordinate transformation
/ 1 / 1
UV'=—- — dt =—=dt, (11.43)
t t2
gives
ds® = —(dt')* + da?, (11.44)
Thus the metric (11.42) represents a flat spacetime. The metric (11.44) is defined for any
t o, ie. —00 < t' < oo, therefore it describes regions of the spacetime which where

“unaccessible” to the coordinates (11.42). In fact in that case 0 < t < oo, which corresponds
only to the section 0 < ' < oo, of our new spacetime. This is the reason why we say that
the new coordinates provide an extension of the spacetime. The coordinate singularity ¢ =0
is mapped onto the line ¢ — oco. The new spacetime is said to be geodesically complete
because any geodesic which starts at any given point of the spacetime, can be extended for
arbitrarily large values of the affine parameter. Conversely, the original spacetime (11.42) was
geodesically incomplete for the following reason. We have established that the spacetime
is flat, and it extends from —oo to +oo in both coordinates (#,2’). In eq. (11.42)
we were trying to cover our infinite spacetime with coordinates which vary in a semi-infinite
range (0 <t < o0). This is the reason why the singularity ¢ =0 appears. With those
coordinates we were able to cover only the region (0 <t < o0) of the complete spacetime,
but not the region (—oo < ¢’ < 0). Consequently, geodesics which start in the region
t' < 0, cross the axis and continue in the region ¢’ > 0, cannot be completely represented
in the spacetime described by (¢,z) : they will terminate for a finite value of the proper
time.

Another example is the Rindler spacetime, which has interesting similarities with the
Schwarzschild geometry. The line-element is

ds* = —2*dt* + da?, —00 < t < 00, 0<z<o0. (11.45)

The metric is singular at x = 0. The determinant ¢ vanishes at = =0, therefore g¢g*”
is also singular. Let us consider goedesics in this spacetime. Since the metric is independent
of time, it admits a timelike Killing vector £ — (1,0). According to eq. (10.35)

E

EalU® = gaplly U’ = const = —E,  —  U'= = (11.46)
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where U? = % and A is an affine parameter (not necessarily the proper time). Therefore,

dt E

T 114
d\ 22 ( 7)

Since the norm of the vector tangent to the worldline of a massive particle is —1, then

dat\> (dz\’
HyTV — _ 2 2 - — _
i = (2 () s
thus ) )
dx o [ dt E?
— | = — ] —1=——1. 114
(dA) ! <d)\> 22 (11.49)
Hence
dx E? T gdx
a::‘: ﬁ_l, — )\:/ WZ—VEZ—JQ"—COTLSt. (1150)

Thus a particle starting at some point = reaches x =0 in a finite interval of the affine
parameter: Rindler spacetime is geodesically incomplete. However, since the Riemann
tensor and the curvature scalars do not diverge at x = 0, there must exist a coordinate
transformation which brings the metric into a non-singular form. Unfortunately a systematic
approach to the problem of finding the “right” coordinates to extend the metric does not
exist. We shall describe a procedure which is based on the behaviour of null geodesics. In two
dimension the situation is easier, since null geodesics belong, at least locally to two classes:
ingoing and outgoing. Two geodesics belonging to the same class cannot cross, because the
two tangent vectors should coincide at that point, and consequently the two geodesic should
coincide everywhere (remember that geodesics parallel-transport their own tangent vector).
If

- ozt

R {%) (11.51)

is the vector tangent to the null geodesic whose affine parameter is A, we must have that
guwK"K" = 0. (11.52)

In the case we are considering it becomes

at\> (dr\’
= PRV — 22 [ = -
0=g,K"K x (dA) + (dA) , (11.53)
da\> 1
— ] = —. 11.54
(dx) 2 ( )

t = +logx + const, (11.55)

from which we find

Therefore along the null geodesic
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where the + identifies the outgoing geodesics and the - the ingoing geodesics. Accordingly,
we define the null ingoing and outgoing coordinates as

u=t-—logx and v=t+logx (11.56)
and the metric in the new coordinates becomes
ds* = —e"“dudv. (11.57)

The coordinates w and v vary in the range ( —oo0,400), and they cover the original
region x > 0, (they do not extend the spacetime yet!), thus we haven’t solved the problem
of eliminating the singularity. An extension of the spacetime can be accomplished if we
reparametrize the null geodesics with new coordinates

U="U(u) (11.58)
V =V(v).
The form of the metric is so simple that we may define U and V immediately. But to

have a feeling on what one should do in general we proceed in a more systematic way. From
egs. (11.46) and (11.51) it follows that for a massless particle

2
EnaK® = gagfz)Kﬂ = const = —F, — A\ = %dt. (11.59)

Since dt = %d(u +v), if we put u = const and move along a null direction parallel to
the wv—axis, i.e. along an outgoing null geodesic, eq. (11.59) becomes

J]Q

d)\:ﬁdv, or, since 210gx:v—u—>x:e%,
A—l/ gy — 4 (S0 e (11.60)
=55/ ¢ v = 55 ) € :

where C' is a constant. If we shift A — 2=¢ then the affine parameter along outgoing

2
null geodesics becomes

Aout = €°. (11.61)
Proceeding in a similar way we find that the affine parameter along ingoing null geodesics is
Ain, = —e . (11.62)
If we now choose
U=—e" (11.63)
V=e",
the metric becomes
ds* = —dUudV, or if we put T:(U—;V), X = (V;U)

ds® = —dT?+dX?, (11.64)
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which is again a flat spacetime.

Summaryzing: 1) we find the equations for the ingoing and outgoing null geodesics, 2)
we choose the affine parameters along these geodesics as coordinates, then we introduce X
and T.

U and V range between —oo and +oo. The original spacetime (z,t) coincides
with the quadrant [U < 0,V > 0], but since everything is regular at [U = 0,V = 0], the
metric is extended to the regions U > 0, and V < 0, which were not included before. The
relation bewtween the old and the new coordinates is

= (X>-T?:3 (11.65)
T 1 X+T

= (=) ==1

t = tanh (X) QOg(X—T)

A picture of the spacetime is given in the following figure

U (T=—X) AT V (T=+X)

t=const

_—X=const

The singularity = = 0 corresponds to the lines X = 47", where the metric in the new
coordinates is perfectly well behaved. From the second of eqs. (11.65)

X=-T corresponds to ¢ — —o0 (11.66)
X=T corresponds to t — +oo.

The curves x = const are now mapped onto the hyperbolae X? —T? = const, while the
curves t = const are mapped onto T = constX. The original Rindler space corresponds
to the dashed region in the figure. Therefore we have finally extended the spacetime across
the barrier = = 0.
If we now go back to Rindler’s metric and consider the following coordinate transforma-
tion
y = -z, (11.67)
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the metric becomes ]
ds* = —4ydt* + ~dy?, (11.68)
Yy

and rescaling the time coordinate t — 2t
2 2, 1.9
ds® = —ydt” + —dy*. (11.69)
)
This is similar to the form of the two-dimensional (¢,7) part of the Schwarzschild metric.

11.7 The Kruskal extension

First we compute the null geodesics of the two-dimensional Schwarzschild metric

2
ds? — (1 _ m) 4+ —— g dr? (11.70)
r _ 2m
by imposing
2m dt\? om\ "L (dr\?
0=g,K'K'=—(1-"=)(— | [ — — ] . 11.71
In ( r><d>\> +( r) <d)\> (11.71)
Hence ) )
dr 2m dt T
) = (1= 22 R 11.72
(dt) < r ) - dr r—2m’ ( )
whose solution is
t = +r, + const (11.73)
where d 9
r. =1+ 2mlog (2; — 1), and d:* = (1 - ;n) : (11.74)

The coordinate 7, is called the “tortoise” coordinate, since if r — 400 then 7, ~ r,
but if r — 2m then r — —oo, thusas r —2m r, pushes the horizon to —oo. We
now define the null ingoing and outgoing coordinates

u=t—r, —00 < u < +00, (11.75)

v=t+r, %T*:% —00 < UV < 400

and the two-dimensional metric becomes

2 dr?
ds* = — (1 _ m) dr — (T _ (11.76)
1 2m
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hence !

v—u

2 2 r
d82 — _ (1 _ m) dudv = —7m6_%€ m dudv. (1180)
T T

Since 7 = 2m corresponds to w — oo and v — —oo, the metric (11.80) is regular
everywhere. A comparison with the Rindler case shows that a convenient choice for U and
V is

U=—e am, — —o00o<U<0 (11.81)
V = eim, — 0<V <400
The metric becomes 4
32 “om
ds? = -2 " quav., (11.82)
T

The surface 7 = 2m now corresponds to U =0 or V =0 where the metric (11.82)
is non-singular. Therefore it can be extended across these two hypersurfaces to cover the
whole two-dimensional spacetime. By introducing the coordinates 7T and X

V+U V-U
T = X = 11.
5 5 (11.83)
the four-dimensional metric finally becomes
o 32mPeam 2 2 2 (102 1 win2 2
ds? = " [—dT? + dX*] + r* (d0* + sin® 0ds”) . (11.84)
r

This extension was independently found by Kruskal and Szekeres in 1960. The relation
between the old and the new coordinates is 2

1From the definition of 7, we find

Ty —7T r—2m T - r—2m
:1 — 2m e 2m — . 11.77
2m °8 < 2m ) e 2m ( )
2m r—2m?2m 2m T
1 _ — 2 e Tmenm, 11.78
( r ) 2m r r € € ( )
Since 1, = (v —wu)/2, it follows
2m 2m r (v—w)
1 — — 2 T Tme Am 11.79
(1- =) = 2w (11.79)

2The derivation of eqs. (11.85) and (11.86):

2 2
_ v—u 2 r
(XQ_TQ):(V U) _(V+U) :—UV:+6_47" :2’{‘(1_777/)627”7
m

2 2

and

lo X+T = log — K =1lo ez;u_v—&—u_i
S\x—r)”® \v)= "~ ~om
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(X2 —T?) = <27;n - 1) eTn (11.85)
/ X+T T

— =1 = 2tanh™" <> 11.

om  °® (X - T) it o\x (11.86)

The extended two-dimensional spacetime is shown in the following figure

If r = const > 2m, from eq. (11.85) it follows that X2 — 72 > 0 and constant,
and consequently X = £v/T?+ k, where k = [(1 — 2Tm> eﬁ} it These curves are
indicated as continuous lines in the quadrants I and IV of the preceeding figure.

If r=const<2m, X?—T?<0 and constant, and X = +,/T2 — |k|. These
curves are the dashed lines in the quadrants II and III. The curvature singularity r = 0
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corresponds to the curves X2 -T2 = —1 and X = ++/T2 — 1 also represented in regions
IT and III. Radial null geodesics correspond to U = const (ingoing) or to V = const
(outgoing). This diagram has the remarkable property that null geodesics are 45°-straight
lines. The curves t = const are straight lines passing through the origin.

The original spacetime ( r > 0), i.e.the Schwarzschild spacetime in the exterior of the
horizon, corresponds to the quadrant [—oco < U < 0,0 < V < oo], labeled as region I.
What is the meaning of the other regions? Consider a physical observer which starts at some
point 7 in the exterior of the horizon, i.e. in region I, as indicated in the next figure

He can move only in the interior of the light-cones, which, at every point are 45%-straight
lines. As one can see from the figure, as long as the observer is outside the horizon, he can
still invert its direction of motion and escape free at infinity. But as soon as he crosses the
surface U = 0 and enters in region II, this is no longer possible, and he gets captured by
the singularity = = 0, (compare with the discussion on the nature of the hypersurfaces
r = const in section 10.5. The singularity = = 0 is a spacelike singularity). Thus region
IT represents the spacetime in the interior of the horizon. Regions III and IV have the same
characteristics as regions I and II, but they are time-reversed with respect to them: a particle
in region III must necessarily have been emitted by the singularity sitting in that region.
Then it will cross the surface r=2m ( U =0 or V =0 ) and will escape free at
infinity either in region I, or in its mirrow image region IV. It should be noted that region
[ and IV are causally unrelated, since a signal emitted by an observer in region I will never
reach region IV and viceversa. It is interesting to ask whether regions IV and III do exist
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or not. Suppose that a black hole has formed, and we really have a singularity concealed by
a horizon. We live in the exterior of the horizon (we can move inward and outward). We
can send signals to region II, but no signal emitted by us will reach regions III and IV for
the reasons explained above. On the other hand, no signal coming from region IV can reach
us. A signal emitted in region IIT (the white hole region) might, in principle, reach region
I. However it is reasonable to assume that the black hole has formed at some time as the
result of some physical process (the collapse of a massive star, as we shall soon see), and
since any signal emitted in region I1I would take an infinite time ¢ to reach region I, region
ITI cannot communicate with us. If we want to take a pragmatical point of view, we can
conclude that since we cannot communicate with regions III and IV (and viceversa), they
do not exist for us. To speculate on the existence of ‘other universes’, although intriguing,
is outside the scope of this course.

The Kruskal extension is very useful to investigate the causal structure of the spacetime
in the vicinity of the horizon. However it is unappropriate to describe the spacetime at
infinity, due to the exponential behaviour of ¢gpr and g¢gxx.



Chapter 12

Experimental Tests of General
Relativity

12.1 Gravitational redsfhift of spectral lines

Time intervals are measured using clocks, which are instruments whose functioning is based
on the repetition of a periodic phenomenon, such as atomic oscillations or the oscillations of
a quartz crystal. We choose as time unit the interval of proper time between two successive
repetitions of the periodic phenomenon. The definition of proper time in general relativity
is

1 1
dT — v/ —ds2 = 7\/_glw(xu)dg;ud;pv‘ (12.1)
c c

In this expression g, must be evaluated at the (spacetime) position of the body to which it
refers; in the case under consideration it has to be evaluated at the clock position. Thus, if
the clock is at rest with respect to the reference frame, dz* = 0,7 = 1,3 and the proper time
interval between two ticks is

dT = i\/—ggo(x“)dxo = \/—goo(xH)dt, (12.2)

were dt is the interval of coordinate time between two ticks. Note that we are assuming that
dT is very small, so that we can use the infinithesimal expression of the proper time without
integrating over the clock worldline.

By dividing the proper time interval by dt we find

dT 1 dxt dxv
= \/—gm(:p“) (12.3)

dt ¢ dtodt
Cfl—? is called time dilation factor; it gives the ratio between the interval of proper time
between two events and the corresponding interval of coordinate time, and depends both
on the metric and on the clock velocity. If the clock is at rest with respect to the reference

frame it becomes T
a vV —goo(z+). (12.4)
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We shall now show that, in a gravitational field, the frequency of a signal detected at a point
different from the emission point is different from the emission frequency. Let us assume
that the gravitational field is stationary, which implies that there exists a timelike Killing
vector and that, by a suitable coordinates choice, the metric can be made independent of
time. In this case, the coordinate z° will be referred to as the universal time. This choice is
not univocal, because we can always shift the origin of time, and rescale 2° by an arbitrary
constant. Be S a light source and O an observer, located at two different points.

Star

Observer
.

O

The source S emits a wave crest which reaches O after an interval of coordinate time Ax°.
Since for a light signal ds* = 0, we can compute Az by solving this equation with respect
to da®, and by integrating over the light path as follows:

ds® = goo(dz®)? + 2go;da’da’ + gipda’da® = 0, ,k=1,...,3

—goidx’ £ \/(goidx?)? — googiwda'dxr
light path light path goo

The physical solution is that corresponding to the — sign. ! Since the metric is independent
of time, if S and O are at rest the interval of coordinate time the light takes to go from S to
O is the same for all signals; therefore if two wave crests are emitted with a time separation
AzY by S, they will reach O with a time separation Az = Az? .

The period of the emitted wave, AT,,,, is the interval of proper time of the source S,
which elapses between the emission of two successive wave crests, i.e.

ATem = _900($gm)Atem>
and the emission frequency is
1 1
Vern = = .
Alem [ =goo(atm) Ater

"Why do we have two solutions for Ax? corresponding to the + sign? Firstly note that since ggo is
negative and g;;, are positive v/(go;dz?)2 — googirdridz* > go;dz’; consequently the solution with the + sign
is negative and that with the — is positive, i.e. (Az?), < 0 and (Az°)_ > 0. Clearly the physical solution
is (Az")_ > 0, whereas (Axz°), < 0 would correspond to a signal that being emitted by O would reach S at
20 = 0.
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Similarly, the period measured by the observer is the interval of its own proper time, which
elapses between the detection of two wave crests, i.e.

A7—10135 =V _gOO(xgbs)Atobsa

1 1

Vobs = = .
ATops v —900(Thps) At obs

Using the fact that At,,, = At we finally find

and the observed frequency is

Vobs _ )\em _ goo(ﬂﬁgm) (12 5)
Vem )\obs gOO(xgbs)

Thus, in general the frequency of a signal emitted in a gravitational field at a given point,
is different from that detected at a different point, since the metric in the two points is
different.

12.1.1 Some useful numbers

We now want to establish when a gravitational field can be considered as weak. Let us
consider the Sun first. Its mass and radius are

Mg = 1.989 - 10% ¢, Re = 6.9599 - 10° km; (12.6)
moreover, being G = 6.67 x 1078 ‘;’Z; and ¢ = 2.998 x 10'% ¢m/s,
My 1.989-10% x 6.673- 1078 GM,
GMo _ 1.989- 107 x 6.673 ~ 1.4768 km, and 9 ~0.21-107° (12.7)
2 (2.998 - 1010)2 Roc?

GM . o
The quantity is said surface gravity, and it is a measure of how strong are the effects

2
of general relativity. The surface gravity of the Sun is much smaller than unity, therefore we
can say that its gravitational field is weak.

The Earth has mass Mg = 5.98-10%7 g and equatorial radius Ry = 6.378-10% Km. Since
My /Mg ~3-10°, and  Ry/Rg =~ 107,

GMy GMe

R@02 REBCQ

i.e. the surface gravity of the Sun is about 3000 times larger than that of the Earth.
Conversly, if we consider a neutron star with typical mass and radius

~3-10° (12.8)

Mys ~ 1.4 My,  Rys ~ 10 km, (12.9)
the surface gravity is
GMpys
~ 0.21 12.10

which is close to unity and much larger than that of the Sun. Thus, the effects of general
relativity will be much more important for a neutron star than for the Sun.
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12.1.2 Redshift of spectral lines in the weak field limit

Let us now consider eq. (12.5) in the weak field limit. In section 9.1 we have seen that if we
assume that the gravitational field is stationary and weak, the geodesic equations show that
the 00-component of the metric tensor is related to the Newtonian potential ®, solution of
the equation V2® = 47Gp, by the equation

20
g002—<1+2>.
C

Consequently, if the gravitational field is weak and stationary eq. (12.5) becomes

and finally

_~

Av 1
y = (Per, — Pops) - (12.11)
Let us suppose that the source of light is on the Sun, whose gravitational field is weak, and
that the observer is on the Earth. We shall neglect the gravitational field of the Earth since
it is much smaller than that of the Sun. In this case, & = —GM®7 where r is the distance

from the Sun center, 7¢,, = Rs and 7ops = r'sun—pgartn. Thus eq. (12.11) becomes

Av GM@< 1 1 )

v C2 R@ T'Sun—FEarth

Since the average distance between the Sun and the Earth is 7sun—paren = 149.6 - 10° km,
which is about 210 times the Sun radius, we can assume rgu,_gath > R, so that
Av GMg
1% B R@CQ

~ —0.21-107". (12.12)

Note the following:

e Av < 0, i.e. the observed spectral lines are shifted toward lower frequencies, i.e. the
light reddened.

e The redshift of spectral lines produced by the Sun is of the order of its surface gravity.
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12.1.3 Redshift of spectral lines in a strong gravitational field

Let us now consider the case when the source emitting light and the observer are located
in the gravitational field of a neutron star or of a black hole. The metric appropriate to
describe the exterior of a neutron star, from r = Ryg up to radial infinity, and a black hole
is the Schwarzschild metric

ds2:—(1—2m)dt2+

r

2 2 (02 | w2 2
: s dr® 4 v (d@ + sin? 0dy )
r
where m = GM/c? is the mass, either of the star or of the black hole, in geometric units. If
we assume that the observer is located very far from the source emitting light, i.e. rops > rem,

eq. (12.5) gives

! 2m
Vobs _ | =900(Tew) _ | " rem [y 2m (12.13)
D (" ) - 2m ro '
em Goo\ T yps 1— em
T'obs

If the light source is located on a neutron star surface, i.e. r.,, = Ryg, this equation gives

Vobs [y 2GMNs Ao a0 s DY Ve TVem oy

Vem RNSC2 v Vem

where we have used eq. (12.10). This means that an observer located at infinity with respect
to the neutron star will see the emitted ligth reddened (Avr < 0) by quite a large amount,
much larger than that produced by the Sun which we computed in eq. (12.12).

Let us now suppose that the source of the gravitational field is a black hole, and that the
source emitting light is on a spacecraft orbiting around it. From eq. (12.13) we see that as
the light source approaches the horizon r = 2m,

/ 2m
Vobs ™~ 1_7Vem_>07
Tem

i.e. the observed signal will fade away since the observed frequency tends to zero. Thus, the
signal emitted by a source falling into a black hole has a distinctive feature, i.e. its frequency
will progressively decrease tending to zero near the horizon.

NOTE THAT: to derive the gravitational redshift, we have used only the fact that the
effects of the gravitational field are described by the metric tensor, i.e. we have used basi-
cally only the Equivalence Principle.
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12.2 The geodesic equations in the Schwarzschild back-
ground

The geodesic equations can be derived not only from the Equivalence Principle as shown in
previous chapters, but also from a variational principle, as we shall now show.

12.2.1 A variational principle for geodesic motion

Let us define the Lagrangian of a free particle as

dz® 1 det dxv 1
*— == et 12.14
‘C (x Y d)\) 2gul/(x ) d)\ d)\ 29MZ/( )x x Y ( )

in the space of the curves {z#()\), A € [Ag, \1]}, and the action

S = /E 2% dN = 2/9#,, NHEVdA,

where we have set
TH = @ (12.15)
d\ '

A can be the proper time if we consider massive particles, or an affine parameter which
parametrizes the geodesic, if we consider massless particles. The Euler-Lagrange equations
are obtained, as usual, by varying the action with respect to the coordinates, and by setting
the variation equal to zero. By varying a curve z#(\)

2t (N) — aH(X) + dzH(N)

with dx#(N\g) = dz# (A1) = 0, the action variation is

58 = /(5“ %5( ))d)\. (12.16)

dx dox?
0@%) =9 ( cl)\> X’

the last term in eq. (12.16) can be written as
oL . ., 0L déx® d (0L _, d (oL >
e ) = g T (c%a&c ) d\ (ay) o1

When integrated between A¢ and A; the first term on the RHS vanishes because dx#(\g) =
dzt(A1) = 0, therefore eq. (12.16) becomes

oL\ .
55 = /laxo <8x0>5x]d)\, (12.17)

Since
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which vanishes for all 27 if and only if

oL d oL
dx®  d\O(17)

=0. (12.18)

These are the Euler-Lagrange equations. We shall now show that these equations, when
written for the action (12.14), are the geodesic equations

# 4 T, a5 = 0. (12.19)

By substituting the Lagrangian (12.14) in the Euler-Lagrange equations (12.18), and re-
membering that g, = g, (%) and #* = 2#(\), we find

ggw,ai‘“fb” 0 ggw(ég‘dc” + i+67) (12.20)
., d . .
= guu,axux - A\ [gau$ + gauﬁu]
d
= Juattt’ — — 2G0, "]

d\
G 0T — 200y 775" — 200 7"

_ v Ly cu v ey
= guu,axux — Goup® - goa/,uxux - 290&1/'1: =0

By contracting this equation with ¢*7 we find

., 1, v
o)E" + 59 7 [_g;w,a + Gopy T gow,pt] i =0

1.e.

) 1 "
7+ igav [ga,u,zlgau,,u - g,uu,oz] 'z’ =0 (1221)

which coincides with eq. (12.19).

12.2.2 Geodesics in the Schwarzschild metric
For the Schwarzschild metric, the Lagrangian of a free particle is
-2

L= ‘<l—m>t2+r+r292+r2sin20¢2 :
2 r (1_72;??)

(we put G = c = 1), and a dot indicates differentiation with respect to A. The equations of
motion for ¢, ¢ and 6 are:

1) Equation for i:

oL d oL d 2m\ .
o Ddam Y 7 (1) 2] =0
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1.e.
const

t= g (12.22)
(-7)
r
It should be reminded that, since the Schwarzschild metric admits a timelike Killing vector

% — 5(‘;) = (1,0,0,0), there exists an associated conserved quantity for the geodesic motion

2m .
gapllyu’ =const = goou’ =const  — (1 - T) i=const (12.23)

0

where u® = = “* Note that this equation coincides with eq. (12.22). As discussed in
section 10.3, at radial infinity, where the Schwarzschild metric tends to Minkowski’s metric in
spherical coordinates, goo becomes 1 and the equation goou’ = const reduces to u° = const.
In flat spacetime (putting G = ¢ = 1) the energy-momentum vector of a massive particle is
p® = mu® = {€, mv'y}; therefore u® = const means € /m = const. Therefore we are entitled
to interpret the constant in eqs. (12.22) and (12.23) as the energy per unit mass of the
particle at infinity. In this case the parameter A is the particle proper time. If the particle
is massless A must be an affine parameter which parametrizes the null geodesic, ad it can be
chosen in such a way that the constant is the particle energy at infinity. In the following we
shall put const = E and write eq. (12.22) as

: E
(R — (12.24)

=)

2) Equation for ¢
since the Lagrangian does not depend on ¢ it is easy to show that
d oL - const

Do@d 0 T T e (1225)

Due to its spherical symmetry, the Schwarzschild metric admits the spacelike Killing vector
C% — &) = (0,0,0,1), which is associate to the conserved quantity

ga,gé(a(z,)uﬁ = const — r?sin? 0¢ = const; (12.26)

again eqgs. (12.25) and (12.26) coincide. To understand the meaning of the constant, let us
consider the simple case of a particle in circular orbit on the equatorial plane; in this case
the conservation equation becomes

7’% = const;

from Newtonian mechanics we know that the particle angular momentum 0= FAmv is
conserved so that, being v = rgf}, it follows that |¢| = mr% = const. Thus we can interpret
the constant as the particle angular momentum per unit mass (or as the particle angular
momentum if it is a massless particle) at infinity. In the following we shall put const = L

and write eq. (12.25) as

. L
= — 12.2
¢ r2sin® 6 ( 7)
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3) Equation for 6:

% iﬁ— i 20\ — 2 12
0 dro(h) =0 - d)\(r 6) = r?sin 6 cos 0¢?.

Therefore the equation for 0 is
. 2 . .
0 = — =70 + sin 6 cos 0¢* . (12.28)
r

We will prove that this equations implies that, as in Newtonian theory, orbits are planar.
Due to the spherical symmetry, the metric is invariant under rotations of the polar axes.
Using this freedom, we choose them such that, for a given value of the affine parameter, say

A = 0, the particle is on the equatorial plane § = 7 and its three-velocity (7, 0, qb) lays on
the same plane, i.e. §(A = 0) = 7 and O(A = 0) = 0. Thus, we have to solve the following
Cauchy problem

0 = —irG + 8in 0 cos 0¢° (12.29)
s

é(A =0) = 5

O(A=0)=0

which admits a unique solution. Since
T

(N = 5

(12.30)

satisfies the differential equation and the initial conditions, it must be the solution. Thus,

the orbit is plane and to hereafter we shall assume 6 = 7 and 6 = 0.

4) Equation for 7:

it is convenient to derive this equation from the condition u,u® = —1, or u,u® = 0, respec-
tively valid for massive and massless particles.

A) massive particles:

2 . -2 . .
Japuu’ = — (1 — m) 2+ m +720? + r?sin® 0¢* = —1 (12.31)
r _2m

T

which becomes, by substituting the equations for ¢ and @

2 L?
2y (1 N m) <1+ r2> _ E? (12.32)

,
B) massless particles:
2m 2

Gapu®u® = — (1 — ) £+ (17"2> + 7262 + r?sin 0% = 0 (12.33)
r _ &m

r
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which becomes

Finally, the geodesic equations are:
A) For massive particles:

12.3 The orbits of a massless particle

Let us write the radial equation (12.34) in the following form

where

143

(12.34)

(12.35)

(12.36)

(12.37)

(12.38)
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A VO

Note that:
- For massless particles the angular momentum L acts as a scale factor for the potential
- V(r) tends to —oo as r — 0, and approaches zero at r — oo
- V(r) has only one maximum at 7,,,, = 3m, where it takes the value

L2

27Tm?
It is useful to consider also the radial acceleration, obtained by differentiating eq. (12.37)
with respect to A

Vinaw = (12.39)

dv(r) . 1dV(r)

T — F=—= )
dr 2 dr

Let us assume that the particle, say a photon, starts its path from 400 with # < 0. The

energy of the particle can be:

1) E2> Vi

according to eq. (12.37) 7* > 0 always, and the particle falls into the central body with

increasing radial velocity, possibly making several revolutions around the central body before

falling in.

2) E? = Vmax

as the particle approaches 7,4, || decreases and tends to zero as r = ry,4,. Since at r = 4z

the radial acceleration is zero (see eq. 12.40), if a particle, at a given time, has r = r,,,, and

7 =0 (i.e. E = V), it remains at the same 7 at later times, i.e. its orbit is circular. This

is, however, an unstable orbit; indeed if the position is perturbed, the particle will

2 = —

(12.40)

2
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e cither fall into the central body; this happens when the radial coordinate of the particle
is displaced to r < 1,4, since there the radial acceleration is negative

e or escape toward infinity; this happens when the radial coordinate is displaced to
r > I'mae, Since there the radial acceleration is positive.

Thus, for massless particles, there exists only one circular, unstable orbit, and for this orbit
LQ

E?=——"—_.
27m?

(12.41)
3) E? < Vi

be 7y the abscissa of the point where E? = V (r) (see figure); for r > ry, 72 is always positive
and becomes zero at r = rg. This is a turning point: the particle cannot penetrate the
potential barrier and reach values of r < ry because 7 would become imaginary; since at
r = 1o the radial acceleration is positive, the particle is forced to invert its radial velocity,
and it escapes toward infinity on an open trajectory.

Thus, according to General relativity a light ray is deflected by the gravitational field of a
massive body, provided its energy satisfies the following condition

L2

E? < ——.
27m?

(12.42)

12.3.1 The deflection of light

We shall now compute the deflection angle that a massive body induces on the trajectory
of a massless particle, say a photon. Referring to the figure 12.1, we shall use the following
notation:
r is the radial coordinate of the particle in a frame centered in the center of attraction; r
forms an angle ¢ with the y-axis.
b is the impact parameter, i.e. the distance between the direction of the incoming particle
(dashed vertical line) and the center of attraction.
0 is the deflection angle which we are going to evaluate: it is the angle between the incoming
direction and the outgoing direction (dashed, green line)
Note that, since the Schwarzschild metric is invariant under time reflection, the particle can
go through the red trajectory on the figure either in the direction indicated by the red arrow,
or in the opposite one. Thus, the trajectory must be simmetric. The periastron is indicated
in the figure as ry.

We choose the orientation of the frame axes such that the initial value of ¢ when the
particle starts its motion at radial infinity be

P =0. (12.43)
The outgoing particle will escape to r — oo at
P =1 +4. (12.44)

Our only assumption will be that, for all values of r reached by the particle,

<t (12.45)
.



CHAPTER 12. EXPERIMENTAL TESTS OF GENERAL RELATIVITY 146

This condition is satisfied, for instance, in the case of a photon deflected by the Sun; indeed,
if R, is the radius of the Sun, then r > R,, and

m _m
— < —~107°. 12.46
r — Rs ( )
y A Il
E incoming
r i direction
—~ |
b !
: o
I X
7 i k./i
outgoing
direction
e
Figure 12.1:
From the figure we see that
b=1lim rsing¢. (12.47)
»—0

We shall now express the impact parameter b in terms of the energy and the angular mo-
mentum of the particle.
When the particle arrives from infinity, r is large, ¢ ~ 0 and

dp b

b~ ~—— 12.48
ré Rl (12.48)

99 can also be derived combining toghether the third and the fourth eqs. (12.36)
@ _ L : (12.49)

dr r2 B2 — V(r)7
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taking the limit for r — oo it gives

do L
— ~Et— 12.50
dr r2E’ ( )
thus, combining together eqs. (12.48) and (12.50), we find that b can be written as
L
b= —. 12.51
= (1251)

In order the particle being deflected its energy must satisfy eq. (12.42), and this imposes a
constraint on b, i.e.

b>V2Tm = beir; (12.52)

if b is smaller than this critical value, the particle is captured by the central body. Note
that if the central body is not a black hole but a star, its radius R is in general larger than
V/27m, so the critical value of the impact parameter is R: if the particle reaches the stellar
surface, it is not deflected.

To find the deflection angle, let us consider the third and the fourth eqs. (12.36); we
introduce a new variable

<
Il
S|

: (12.53)

by construction, it must be
w(p=0)=0. (12.54)

Furthermore, u must also vanish when ¢ = 7+ ¢, because this value of ¢ corresponds to the
particle escaping to infinity. .
In terms of the variable u, the third equation (12.36) for ¢ becomes

(/5 = Lu®.
By indicating with a prime differentiation with respect to ¢ we find that
=1 = —%u'(ﬁ = L.
U

By substituting this expression in the fourth eq. (12.36), it becomes

L*(u)* +v*L? — 2mL*u® = E?,
and differentiating with respect to ¢,

2L%u" + 2uu'L? — 6M L*u'v?® = 0.
Dividing by 2L?*/, we finally find the equation u must satisfy
u’ +u—3mu? =0, (12.55)

to which we associate the boundary condition

u(¢p=0)=0 (12.56)
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The second condition is obtained by the relation

u(¢p ~0) = Zsinqﬁ

which derives from eq. (12.47).
If the mass of the central body vanishes, equations (12.55) becomes

W' +u=0 (12.57)

the solution of which .
u(p) = Esinqb — b=rsing (12.58)

describes the trajectory of a particle which is not deflected.

If there is a central body with a finite mass m, the solution of (12.55) is different from
(12.58), and the light ray is deflected. We note that equations (12.55) and (12.57) differ by
a term, 3mu?, which is much smaller than, say, the term u by a factor

3mu®  3m

=<1, (12.59)
u T

Consequently, it is appropriate to solve eq. (12.55) using a perturbative approach; we shall
proceed as follows. We put

= u© 4y (12.60)
where 1% is the solution of equation (12.57),
=1
ut =y sin ¢ (12.61)
and we assume that
uV < u@ (12.62)

By substituting (12.60) in eq. (12.55) we find
)" + 49 = 3m(u)? + ()" +u® = 3m(uV)? - 6muOuV =0. (12.63)
Since u® satisfies (12.57), eq. (12.63) becomes
(™) + 6D = 3mu®)? — 3m(u)? - 6mu®uV = 0. (12.64)

The terms 3m(u™)? and 6mu@u® are of higher order with respect to 3m(u(®)2, therefore
the leading terms in equation (12.55) are

(™) + 4D = 3mu®)? =0. (12.65)
Consequently,
" am 3m
1 1) _ in2 b

The solution of (12.66) which satisfies the boundary conditions (12.57) is

3 1 4
ut = Q—Z; (1 + 3 cos 20 — 3 cos gb) , (12.67)
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as can be checked by direct substitution. It should be noticed that the boundary conditions
(12.57) must be satisfied by the complete solution u = u© + 4@ Therefore,

1. 3m 1 4
u:b31n<;5—|—2b2<1+30082¢—3(:os<;§) ) (12.68)

We now want to find the deflection angle, i.e., the small angle ¢ such that (7 + ¢) = 0. By
substituting ¢ = 7 + ¢ in (12.68) we finally find

o 3m 8
~_ 0, Om 8 12.
u(m+0) = =3 + o5 o (12.69)
which vanishes for 4
5= Tm (12.70)
For a light ray which passes close to the surface of the Sun
0 ~ 1.75 seconds of arc (12.71)

The first measurement of the deflection of light was done by Eddington, Dayson and David-
son during the solar eclypse in 1919. What was measured was the apparent position of a
star behind the Sun (see figure) during the eclypse, when some light coming from the star
was able to reach the Earth because the luminosity of the Sun was obscured by the eclypse.
Comparing this apparent position with the position of the star as measured when the Earth
is on the opposite side of its orbit around the Sun, one finds d¢. The deflection was measured
with an accuracy of about 10% at that time. Today, the bending of radio waves by quasars
has been measured with an accuracy of 1%.

star apparent position true position
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12.4 The orbits of a massive particle

Let us first discuss the orbits that a massive particle is allowed to move on. The equations
of motion are

_ _
0= 5, U= o (12.72)
(=)
r
_ L oo ({_ 27") L
¢_T27 =k <1 r <1+T2
Let us study the radial equation
i = E? —V(r), (12.73)
where 12
2m
=(1-—)[1+—=]. 12.74
Vir) ( r><+r2> (12.74)

First of all we note that, contrary to the massless case, the potential does not scale with the
angular momentum and that V' (r) — 1 when r — oo. To plot the potential, let us first see
if it admits a minimum or a maximum by solving

oV mr? — L*r 4+ 3mL>
or r4
this equation has two roots
L? £ VLA —12m2L?
e — me (12.75)

2m

If L? < 12m? the roots are complex and there are no extrema; the potential will have the
shape shown in the figure
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0.6

04

02

02+ i

04 F i

'06 | | |

from which is clear that a particle arriving from infinity with 7 < 0 and having L? < 12m?
will be captured by the black hole.
If L? > 12m? the potential has the following form
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V(r) has a maximum in r = r_ followed by a minimum in r = r,; thus, a particle with
energy E? = V(r_) = V.4, will move on an unstable circular orbit at r = r_, whereas if
E? = V(ry) = Vin it will move on a stable circular orbit at r = r,. (See the discussion
for E? = Vax in section 12.3 )

Depending on the value of L the maximum of the potential can be greater or smaller than
1, i.e.

a) L? > 16m? Vinaz > 1,
b) 12m? < L? < 16m? Vi < 1.

Case b) is shown in the following figure
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Therefore:

in case a) a particle with V,,;, < E? < 1 will move on an ellipse (actually, an approximate
ellipse as we will see below), if 1 < E? < V., and 7 < 0 it will approach the black hole,
reach a turning point rq where E? = V(r,) and 7 = 0 then, since it cannot penetrate the
barrier, it will invert its radial velocity and escape free at infinity. (See the discussion for
E? < Vpax in section 12.3 ).

Conversely, if E? > V., and 7 < 0 it will fall in the black hole.

In case b) a particle with V,,;, < E? < V0o will move on an elliptic orbit, whereas if
E? > 1 and 7 < 0, since 72 = E? — V/(r), it will approach the black hole horizon with
increasing velocity and finally fall in.
From the expression of 7. given in eq. (12.75) we see that if L? = 12m? the two roots
coincide and
r_ =1y =6m;

furthermore, r is an increasing function of L and, as L — oo, r; — oo. This means that
there cannot exist stable circular orbits with radius smaller than 6m. In addition, it is easy
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to show that r_ is a decreasing function of L and, as L — oo,

L2 12m? L? 6m? m

m 2m
therefore, unstable circular orbits exist only bewteen

3Im < r_ < bm.

12.4.1 The radial fall of a massive particle

Let us consider a massive particle falling radially into a Schwarzschild black hole.
In this case d¢/dr = 0, therefore L = 0; moreover, since the particle is moving inwards,
7 < 0. Equations (12.72) become

dt FE dr 2m

o = E?2 1422 12.76
dr 1-— 277" dr + r ( )
do do

— =0 — =0. 12.77
dr dr ( )

If we consider a particle which is at rest at infinity, i.e. such that

lim — =0 12.78
M (12.78)
from (12.76) it follows that
E=1 (12.79)
and the equations for ¢ and r reduce to
dt 1
= = 12.80
dr 1-— 27’” ( )
dr 2m
— = —y/—. 12.81
dt r ( )
We shall now integrate these equations.
e Putting o = r(7 = 0), eq. (12.81) gives
- d - = / dr' ()
7(r) r 5 = s
2 3/2 r3/2
= = 12.82
3v2m ) ( )

e To find ¢(r), we combine equations (12 80) and (12.81):

\/T (12.83)
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If we set t = 0 when 7 = 0 we find

) /t dt’ T (12.84)
r)= = — P! :
0 ml—z%q' 2m’

by solving the integral in (12.84) we get (we omit the explicit computation and give
only the result):

2 1
t(r) = 37 [T3/2 — 32y 6m7‘é/2 — 6mr1/2}
V2m
/To — V2 V2
+2m1In [ ! myrs m] ; (12.85)
VTo +V2m /T —/2m

r(t) is the inverse function of t(r) and, as r(7), is not known analytically.

In figure 12.2 we plot ¢(r) and 7(r).

2M o

Figure 12.2:

Assuming for simplicity o > 2m, the behaviour of ¢(r) for r — 2m and r > 2m is:

e forr ~2m

t ~ —2mIn(\/7 — V2m) + const. — oo (12.86)
e for r > 2m 5 1
t~ 3\/%(7’8/2 =7, (12.87)

From eq. (12.86) we see that for r — 2m , t(r) diverges® while eq. (12.82) shows that 7(r) is
reqular at r = 2m. The inverse functions r(7) and r(t) are plotted in figure 12.3. From figure
12.3 we also see that r(7), which is the radial trajectory as a function of the proper time,
i.e. as seen by an observer moving with the particle, for r = 2m has a regular behaviour:
this observer does not feel anything strange in crossing the horizon, and after crossing it he
reaches the singularity in a finite amount of proper time.

2We also note that even if the coordinate frame {t,r,6, ¢} is defined in {0 < r < 2m} U {r > 2m},
namely, outside and inside the horizon, these coordinates are really meaningful (i.e., they are useful to
describe physical processes) only for r» > 2m, i.e. outside the horizon.
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2M 2M

Figure 12.3:

The function r(t), instead, approaches r = 2m only asymptotically. In order to under-
stand what is the meaning of this behaviour, let us consider a spaceship which, while falling
radially into the black hole, sends an SOS in the form of a sequence of equally spaced elec-
tromagnetic pulses; these signals are received by an observer at radial infinity (the spaceship
and the observer have the same ¢ = const), located at r = 7°*. The SOS travels along null
geodesics t = t(A), r = r(\), with 0, ¢ constants and L = 0; A is the affine parameter along
the geodesic. Therefore, from egs. (12.36) we find

it B d
=", 6=const, o = R (12.88)

2 dx 1227 d)
hence @t
r
— == 12.89
dr r—2m’ ( )
and the solution is
t = +£r, + const, (12.90)
where 7, is the tortoise coordinate already introduced in eq. (11.74)
+2ml (T 1) (12.91)
re =1 +2mlog (— —1), :
& 2m
so that p 5
r m
=1——. 12.92
dr, r ( )
As in (11.75) we define the outgoing coordinate
u=t-—r, (12.93)

so that a given outgoing null geodesic is characterized by a constant value of u.

Let us consider two electromagnetic pulses sent from the spaceship as it approaches the
horizon, the first at 7 = 7y, the second at 7 = 7 (see figure 12.4.1). The two pulses
correspond to u = u; and u = usy, respectively. The observer at infinity detects the pulses at
two values of its own proper time, which coincides with the coordinate time, i.e. at t = ¢$*
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T, .
\ * r*obs

Figure 12.4: A spaceship radially falling into the black hole sends electromagnetic signals to
a distant observer

and t = t$**. Thus, while the person on the spaceship measures a proper time interval

between the pulses
AT =Ty — T, (12.94)

the observer at infinity measures a corresponding coordinate time interval
At = 1575 — 9% = (ug + 1r2%) — (ug +79%) = uy — u; = Au. (12.95)

Since u is constant along the two null geodesics, u; and us can also be evaluated in terms of
points along the spaceship geodesic:

uy = t(Tl)—T'*(Tl)
uy = t(m) — ri(T2) (12.96)

thus Au = At(71) — Ar.(7). Therefore, assuming that the pulses are emitted at very short
time intervals, we can write (12.93), we find

At Ay dt dr, dt dr,dr 1 2m
AT AT dr dr dr drdr 1—27m ( + V r ) (12.97)
obs
This equation shows that as r — 2m, NS — 00, which means that the time interval
T

between pulses as detected by the observer at infinity increases, and finally diverges, as the
spaceship approaches the horizon.

It is interesting to note that the right hand side of eq. (12.97) has two terms: the first is
the square of the gravitational redshift, the second is a Doppler contribution due to the fact
that, while sending the pulses, the ship is moving away from the observer.
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12.4.2 The motion of a planet around the Sun

Let us now use the geodesic equations (12.72) to study the motion of a planet around the

Sun. We can consider the limit m
— <1, (12.98)
,

indeed, if we consider Mercury, which is the closest planet to the Sun, since the Mercury-Sun
distance is 7 ~ 5.8 - 107 km, we find

GM,  1.4768
re2  5.8-107
In what follows, we shall indicate with a prime differentiation with respect to ¢, and use the

variable wu = % , as we did in Section 12.3.1. In therms of u, the equation for ¢ becomes

~25-1078%.

¢ = Lu?,

and .
F=rg=——u'd=—Lu.
U

By substituting in eq. (12.72), it becomes

L*(W)? +1—=2mu+u’L?* — 2mL*u* = F,
and differentiating with respect to ¢,

2L%u" — 2ma’ 4 2uu/ L* — 6mL*u/u® = 0.
Dividing by 2L?u/, we find the equation for u

u +u— % ~ 3mu? =0. (12.99)

The Newtonian equation

The Newtonian equation which corresponds to the third eq. (12.72) is derived from the
energy conservation law
m, m ) 2m

= const = (r)? = =+ — = const.
r rooor

1 , -
Sy [+ 72(6)7] -
where m,, is the particle mass and we have set G = 1. By expressing (12.4.2) in terms of u

and differentiating with respect to ¢, we find
202 ' — 2mu’ 4+ 2ud'L? =0,

which becomes m

u +u— 5 =0, (12.100)
Equation (12.100) differs from equation (12.99) only by the term 3mu?, which is smaller
than, say, u by a factor

3
3mu:—m<<1.
r
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Equation (12.100) can be written as

U—E:Acos(qﬁ—qﬁo) = U—Z;llﬁ—Ln;ACOS((ﬁ_ﬁbO) )

where ¢y and A are integration constants. In terms of r the solution is

L? 1
r=— .
m 1+ L%A cos(¢ — ¢o)
If we set 124
e=— (12.101)
m
the previous equation becomes
L? 1
r— (12.102)

m1+ecos(¢p— )

which describes an ellipse with eccentricity e in polar coordinates (r, ¢). If we set for example

periastron apastron

¢o = 0, we see that the periastron, i.e. the minimum distance the planet reaches in its motion
around the central body (perihelion if the central body is the Sun) occurs when ¢ = 0, i.e.

Iz 1
ml4e

(12.103)

Tperiastron =
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The apastron (the maximum distance from the central body, aphelion in the case of the Sun)
is

L? 1
apastron — . 12.104
Fapast ml—e ( )
It is worth noting that, since
mo_ 1 N mi2 B m
L2 B Tperiastron(l + 6) L2 rpem'zzstron(l + 6) 7
and since m/r < 1, it follows that
2
% <1. (12.105)
The relativistic equations
In order to solve equation (12.99)
w4 u— % ~3mu? =0 (12.106)

we adopt the same perturbative approach used in Section 12.3.1 to study the deflection of
light by a massive body. We search for a solution in the form

u=u® + u®

where u(© is the solution of the Newtonian equation, i.e.

0 _ m

72 (1+ecoso) ,

ul
and
u < u®.

Proceeding as for eq. (12.55) we find

()" — % —3mu)? + (uM)" +u® = 3m(u®)? - 6mu@uV =0.  (12.107)

Since u® satisfies (12.100), eq. (12.107) becomes

1

(u™)" + 0D = 3mu®)? = 3m(u)? - 6mu@uV = 0. (12.108)
The terms 3m(u™)? and 6mu@u® are of higher order with respect to 3m(u(®)2, therefore
the leading terms in equation (12.55) are

(M) + u® = 3m(u®)?, (12.109)

1.e. X
m
=3—

(1+ecosg)’ . (12.110)
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Let us expand the right-hand side
(uM) +ut = 3— 1+ €2 cos? ¢ + 2ecos (b}

I 1
= 3— |1+ 562(1 + cos 2¢) + 2e cos gb}

[ 1
= 3— cost+2620082¢+26008¢] .

This is the equation of a harmonic oscillator with three forcing terms. They are all very
small, because, as shown in eq. (12.105), 72—22 < 1. However, the term

2e cos(¢),

is in resonance with the free oscillations of the harmonic oscillator, therefore, even if its
amplitude is comparable to that of the other terms, it determines a secular perturbation
of the planet motion which, after a long time, becomes relevant. For this reason, we will
neglect the constant term and the term %62 cos 2¢ and look for the solution of the resulting
equation

3
” m
(D) oV = 6e— cos(¢). (12.111)
As can be checked by direct substitution, the solution of this equation is

) _ 3em?
= 7

¢sing ,

u(

therefore, the complete solution is

u = % [14—6 (cosqﬁ—i—fﬂzquﬁsin(b)] i

At first order in m?/L?,

therefore we can write
m

m2
U~ T3 l1+ecos¢<1—3y>] . (12.112)
A comparison with the corresponding newtonian equation shows that the term ?’L%2¢ deter-
mines a secular precession of the periastron. When the argument of the sinusoidal function
in eq. (12.112) goes from zero to 27, i.e. when the planet reaches again the radial distance

T = Tperiastron, §b Changes by

2T 3m?
AP = ~or |14+ — ).
¢ 1 3m ( L2 )
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Consequently, in one period the periastron is shifted by

6mm?>

A¢P = 12 )

(12.113)

as shown in the following figure.

30 T T T T T

20

10

-10

X

Thus, in general relativity the orbit of a planet around a central object is not an ellipse;
it is an open orbit, and the periastron shifts by A¢p at each revolution.

For example, for Mercury equation (12.113) gives a precession of 42.98 arcsec/century.
The observed value, after all effects which can be explained with newtonian theory (precession

of the equinoxes, perturbations of other planets on Mercury’s orbit, etc) is 42.98 + 0.04
arcsec/century.



Chapter 13

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity is the existence of
gravitational waves. The idea that a perturbation of the gravitational field should propagate
as a wave is, in some sense, intuitive. For example electromagnetic waves were introduced
when the Coulomb theory of electrostatics was replaced by the theory of electrodynamics,
and it was shown that they transport through space the information about the evolution
of charged systems. In a similar way when a mass-energy distribution changes in time, the
information about this change should propagate in the form of waves. However, gravitational
waves have a distinctive feature: due to the twofold nature of g, which is the metric tensor
and the gravitational potential, gravitational waves are metric waves. Thus when they
propagate the geometry, and consequently the proper distance between spacetime points,
change in time.

Gravitational waves can be studied by following two different approaches, one based on
perturbative methods, the second on the solution of the non linear Einstein equations.

The perturbative approach
Be gfw a known exact solution of Einstein’s equations; it can be, for instance, the metric

of flat spacetime 1), or the metric generated by a Schwarzschild black hole. Let us consider

a small perturbation of ggy caused by some source described by a stress-energy tensor Tpe,;.

We shall write the metric tensor of the perturbed spacetime, g,,, as follows
G = ggy + hy, (13.1)
where N, is the small perturbation
[P << 19 .

It is clear that this assumption is ambiguous, because we should specify in which reference
frame this is true; however we shall assume that this frame does exists.
The inverse metric can be written as

g = g"" — ' 1 O(h?), (13.2)
where the indices of h#*” have been raised with the unperturbed metric

W = g% g P hog . (13.3)
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Indeed, with this definition,
(%1 = W) (G0 + hua) = 04 + O(h?) . (13.4)

In order to find the equations that describe h,,, we shall write Einstein’s equations for the

metric (13.1) in the form

Iz

871G 1
Ry = —2 (TW _ gw,T) , (13.5)

ct 2
where T}, is the sum of two terms, one associate to the source that generates the background
geometry ggy, say T',, and one associate to the source of the perturbation 67}, which is of

o
order h. We remind that the Ricci tensor R, is
8 6% a (6% (6% o (6% loa
R, = %F ww — %F po T 1%l — T has (13.6)
and that the affine connections Fg# are
1
Fgu = 5970 [gaﬂ,u + Jop,p — gﬁ,u,a] . (137)

The I'},, computed for the perturbed metric (13.1) are

[goav - hfw} [(Qgﬁ,u + ggu,ﬁ - ggu,a) + (haﬁ,u + hcw,ﬂ - hﬁma)}

Oary {

I3, (9w)

1

2

! 0+ gL —0]+10a7[h + haps — hgpal

2 goz,B,,u gau,ﬁ gﬁu,a 29 af,u ap,B B,
Loy o 0 0 2

- §h ! [gaﬂw + Gapp gﬂu,a} + O(h )

= 17, (¢°) + 0T}, (h) + O(h?), (13.8)

9

where 61"}, (h) are of first order in A,
1 « 1 o
(51—%“ (h) = 590 " [happ + haps — hopal — ih K {ggﬁ,u + ggu,ﬁ - ggu,a} : (13.9)
When we substitute eq. (13.9) in the Ricci tensor we get

Ry (gw) = R, (¢°) (13.10)
o . 0

@611 j2% (h) - %

+ 1% (6°) 6T (h) + 010 () 17, (4°)

— 1%, (6°) 6T a (h) = 0T%, () 17,0 (¢°) + O(h?) = RS, (9°) + Ry, (h) + O(h?)

oI (R)

We now have to work out the right-hand side of the Einstein equations (13.5), i.e. (T = % 9T ) ,
and separate the terms which are of order h. Since 7}, = TSZ, + 0T,
T = T = (¢" — ") (T3, +0T,) (13.11)
= g™, — WY, — g 6T,, + O(h?) = T° + 6T + O(h?).
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Consequently
1 1
(TW — 2gWT) = T+ 0T — 5 (90 + ) (T +0T') + O(h?) (13.12)
1 1
(TSV - 292,,T0> 4 [5TW — 5 (ghoT + h,WTO)} o).

Combining eqs. (13.10) and (13.11), and reminding that ggy is, by assumption, the exact so-
lution of Einstein’s equations in vacuum R, (¢°) = 8240
for the perturbations h,, reduce to

(T[jl, -1 gfwTo), Einstein’s equations

0 0

r« - —TI“ 13.1
el (1) = 5 2% (h) (13.13)
+ T%a (6°) T (B) + T () T, (g°)

= 1% (6°) T () = T, (W) 170 (9°) = &f [5TW - ; (95,07 + hWTO)] +0(h?),

that are linear in h,,,. Their solution describes the propagation of gravitational waves in the
considered background.! This approximation works sufficiently well in a variety of physical
situations because gravitational waves are very weak. This point will be better understood
in the next chapter, when we will discuss the generation of gravitational waves.

The "exact” approach

The second approach to the study of gravitational waves seeks for exact solutions of
Einstein’s equations which describe both the source and the emitted wave, but no solution
of this kind has been found so far. Of course the non-linearity of the equations makes
the problem very difficult; however, it may be noted that also in electrodynamics an exact
solution of Maxwell’s equations appropriate to describe the electromagnetic field produced
by a current which decreases in an electric oscillator due to the emission of electromagnetic
waves has never been found, although Maxwell’s equations are linear.

Exact solutions of Einstein’s equations describing gravitational waves can be found only
if one imposes some particular symmetry as for example plane, spherical, or cylindrical sym-
metry. The interaction of plane waves can also be described in terms of exact solutions, and
due to the non-linearity of the equations of gravity it is very different from the interaction
of electromagnetic waves.

In the following we shall use the perturbative approach to show that a weak perturbation
of the flat spacetime satisfies the wave equation.

Notice that the right-hand side of eq.(13.13) is a particular case of the Palatini identity.
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13.1 A perturbation of the flat spacetime propagates
as a wave

Let us consider the flat spacetime described by the metric tensor 7,, and a small pertur-
bation h,,, such that the resulting metric can be written as

Guv = N + h;u/a |h;w| << 1 (1314)
The affine connections (13.8) computed for the metric (13.14) give

0 9, 0

1
F/\,w = 577)\'0 [Whpy + %hw — Whuyl + O(h2) (1315)

Since the metric gﬂy = 1), is constant, I'*,,(¢°) = 0 and the right-hand side of eq. (13.13)
simply reduces to

ore,, oI e 9
— 13.1
S0 B + O(h?) (13.16)

B S S s S A Y SR ot Y ) QY
2 Flow T 9p2 oz " 9z oxv M Oxrdzy '

The operator Of is the D’Alambertian in flat spacetime

o 0 0?

Op = af_7 7 2. 13.17
F=0 Ozxe OxP c20t? v ( )

Einstein’s equations (13.5) for Ay, finally become

2 2 2 1 1
{DFhW— [ 0y 9 jp_ 9 hAH __16nC <6TW— 277W6T). (13.18)

Ox oxr v 9z 0xr * Qardxv ct

As already discussed in chapter 8, the solution of egs. (13.18) is not uniquely determined.
If we make a coordinate transformation, the transformed metric tensor is still a solution: it
describes the same physical situation seen from a different frame. But since we are working
in the weak field limit, we are entitled to make only those transformations which preserve
the condition |h], [ << 1 (note that in this Section we denote the transformed tensor
as hj,, rather than as hy,,, since this simplifies the discussion of infinitesimal coordinate
transformations).
If we make an infinitesimal coordinate transformation

o = ot + (x), (13.19)

(the prime refers to the coordinate z*, not to the index p) where €* is an arbitrary vector

such that g;ﬁ is of the same order of h,,, then

ox™ Oe®
— =Y —. 13.2
o 0, + e (13.20)
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Since

G = Yap gﬁlgﬁl = (o + M) (5;‘ + g;i) (55 + gj)
= N+, + €+ up +O(h?), (13.21)

and ¢, = N + hu, then (up to O(h?))
Oe,  Oey

dxv  dar
In order to simplify eq. (13.18) it appears convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied, i.e.

h:u/ = h/“’ o

(13.22)

g"Ty, = 0. (13.23)

Let us see why. This condition is equivalent to say that, up to terms that are first order in
h,., the following equation is satisfied

0 10
—h*, == ht . 13.24
oxH 20xzv M ( )
Using this condition the term in square brackets in eq. (13.18) vanishes, and Einstein’s

equations reduce to a simple wave equation supplemented by the condition (13.24)

{ Ophy = —1%5€ (5T, — 11,07

(13.25)

O pp — 1 0 pp
8x“hl’_28xuh K

(to hereafter, we omit the superscript 'pert’ to indicate the stress-energy tensor associated
to the source of the perturbation). If we introduce the tensor

- 1
huu = huu - 577uyh, (1326)

where h = n#"h,,, = h*,, eqs. (13.25) become

Ophy, = —1296T,,
{aiﬁiu o, H (13.27)
and outside the source where 67}, = 0
Ophy =0
{ [;Li;#y 0 (13.28)

1 oh oh oh 1
UVTAN TPV AR KK KV 22 T AR v i N2
9" = 2T 1 { oxv + Oxt Ox* } — 9" (W W = R}

Since the first two terms are equal we find

1
gﬂul—‘/};v = TIM {hﬂmlt - 2hul/,/-i}

q.e.d.
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Thus, we have shown that a perturbation of a flat spacetime propagates as
a wave travelling at the speed of light, and that Einstein’s theory of gravity
predicts the existence of gravitational waves.

As in electrodynamics, the solution of eqs. (13.27) can be written in terms of retarded
potentials

/
_ 4G [T, (t — XX
hyy(ta}C): G H( c X )

3/
- x| d’a’, (13.29)
and the integral extends over the past light-cone of the event (¢,x). In eq. (13.29) we have
removed the ‘07 in front of the stress energy tensor which, to hereafter, will be considered as
a quantity of order h. Equation (13.29) describes the gravitational waves generated by the
source 1},,,.

We may now ask how eqs. (13.28) and (13.27) should be modified if, instead of consid-
ering the perturbation of a flat spacetime, we would consider the perturbation of a curved
background. For example, suppose ggy is the Schwarzshild solution for a non rotating
black hole. In this case, it is possible to show that, by a suitable choice of the gauge, the
Einstein equations written for certain combinations of the components of the metric tensor,
can be reduced to a form similar to eqs. (13.27). However, since the background spacetime is
now curved, the propagation of the waves will be modified with respect to the flat case. The
curvature will act as a potential barrier by which waves are scattered and the final equation

will have the form
167G

Op® — V()@ = ——

T (13.30)

where ® is the appropriate combination of metric functions, T is a combination of the stress-
energy tensor components, Op is the d’Alambertian of the flat spacetime and V' is the
potential barrier generated by the spacetime curvature. In other words, the perturbations of
a sperically symmetric, stationary gravitational field would be described by a Schroedinger-
like equation! A complete account on the theory of perturbations of black holes can be
found in the book The Mathematical Theory of Black Holes by S. Chandrasekhar, Oxford:
Claredon Press, (1984).

13.2 How to choose the harmonic gauge

We shall now show that if the harmonic-gauge condition is not satisfied in a reference frame,
we can always find a new frame where it is, by making an infinitesimal coordinate transfor-
mation

N =t 4 (13.31)
provided
ohs  10n}
Ope, = —& — 2 (13.32)

oxP 2 0xr
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Indeed, when we change the coordinate system I = ¢*T?,, transforms according to
equation (9.63), i.e.

;o oxN 0N
M=_——I"—g"——— 13.33
Oxr T wrdze ( )
where, from eq. (13.31)
0z o 0
oxe  F Oxr’
If 9. =nu + hu (see footnote after eq. (13.23))
1
I =n {h“n,u - 2h”m} ; (13.34)
moreover
0%z o (0> o0&
po — po = 13.35
T oredze g [83% (8:{;" N 8x”>] ( )
5, et 02N
po | Y (')‘)\ ~ PP -0 A
g L(hp ( ot &'L‘U)] 1 L‘)xpcf)x”} re
therefore in the new gauge the condition I'V =0 becomes
, et Oht 10h”
Y =10+ —|n" |2 —-——2| —Ope* = 0. 13.36
[ ot &UP] " [8# 2 8x“] re ( )
If we neglect second order terms in h eq.(13.36) becomes
, oh¥  10h”
Y — e AL T P S
g [83:“ 2 Oz~ re

Contracting with 7y, and remembering that n,n** = 6% we finally find
C o (om, 1o,
Fea =\ "gpr 2 9z )

This equation can in principle be solved to find the components of ¢,, which identify the
coordinate system in which the harmonic gauge condition is satisfied.

13.3 Plane gravitational waves
The simplest solution of the wave equation in vacuum (13.28) is a monocromatic plane wave
B = R{ Ay}, (13.37)

where A, is the polarization tensor, i.e. the wave amplitude and k is the wave vector.
By direct substitution of (13.37) into the first equation we find

- ) T
Ophy, =1 0 i(el’wf‘”) i [zk: O e]””] = (13.38)

=1 ozxe OxP oze | 9P

= _naﬁkakﬁ et — 0, — naﬁkakb’ =0,
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thus, (13.37) is a solution of (13.28) if k is a null vector. In addition the harmonic gauge
condition requires that

aiuh“y =0, (13.39)
which can be written as 5 _
n“a@hw =0. (13.40)
Using eq. (13.37) it gives
nﬂa(;;Awe“W =0 — 9"Auk,=0 — kA", =0. (13.41)

This further condition expresses the orthogonality of the wave vector and of the polarization
tensor.
Since h,,, is constant on those surfaces where

kox® = const, (13.42)
these are the equations of the wavefront. It is conventional to refer to k% as £, where w
is the frequency of the waves. Consequently
k= (%,k). (13.43)
Since k is a null vector
—(ko)* + (ko)* + (ky)? + (k.)? =0,  ie. (13.44)
w = cky = c\/ (k)2 + (k)2 + (k.)2, (13.45)

where (k,, k,, k) are the components of the unit 3-vector k.
13.4 The TT-gauge

We now want to see how many of the ten components of h,, have a real physical meaning,
i.e. what are the degrees of freedom of a gravitational plane wave. Let us consider a wave
propagating in flat spacetime along the 2! = z-direction. Since hy, is independent of y
and z, eqs. (13.28) become (as before we raise and lower indices with 7,, )

2 2
( 0 0 ) h*, =0, (13.46)

— _I_ -
20t - Ox?
i.e. h*, is an arbitrary function of ¢4+ £, and

aiuﬁ“” =0. (13.47)
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Let us consider, for example, a progressive wave h*, = h*, [x(t,z)], where x(t,z) =
t — . Being

Ox Ot ox ’
D b, OX _ _10RM, (13.48)
ox'” VT

Ox Ox ~ ¢ Ox

O Oht, Ox _ Ok,
o't v = =

eq. (13.47) gives
d - 10n', 0Oh*, 10 [+, -
—ht, =" Y= - |n', —h",| =0. 13.49
ozt c Ot + ox c Oy [ } ( )
This equation can be integrated, and the constants of integration can be set equal to zero

because we are interested only in the time-dependent part of the solution. The result is

h', = h*,, h', = h*,, (13.50)
h', = h*,, ht, = h*,.

We now observe that the harmonic gauge condition does not determine the gauge uniquely.
Indeed, if we make an infinitesimal coordinate transformation

i (13.51)
from eq. (13.33) we find that, if in the old frame I'” = 0, in the new frame IV = 0, provided

a2x>\/
Pr———— =0 13.52
TI axpaxo- Y ( )

namely, if e# satisfies the wave equation
Opet = 0. (13.53)
If we have a solution of the wave equation,
Orhp =0 (13.54)
and we perform a gauge transformation, the perturbations in the new gauge
W = huw — 0ue, — Ouey (13.55)

give ) )
h,,uu = hHV - auev - al/E,U, + T],u,l/aaea (1356)

and, due to (13.53), the new tensor is solution of the wave equation,
_
Ophy, =0. (13.57)

It can be shown that the converse is also true: it is always possible to find a vector €,
satisfying (13.53) to set to zero four components of h,, solution of (13.54).
Thus, we can use the four functions €* to set to zero the following four quantities

By =hy=h's =Y, + B, =0, (13.58)
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From eq. (13.50) it then follows that

Wy =h*, =h*, = h'y = 0. (13.59)

The remaining non-vanishing components are h?, and hY, —h*,. These components cannot
be set equal to zero, because we have exhausted our gauge freedom.
From eqs. (13.58) and (13.59) it follows that

B = Bt R, R, B, =0, (13.60)
and since -
h*, = ht, = 20", = =h",, (13.61)
it follows that B
h*, =0, — h*, = h*,, (13.62)

ie. in this gauge h,, and Buu coincide and are traceless. Thus, a plane gravitational
wave propagating along the z-axis is characterized by two functions h,, and hy, = —h..,
while the remaining components can be set to zero by choosing the gauge as we have shown:

00 0 0
00 0 0

M =100 hy (13.63)
00 hy —h

Yz vy

In conclusion, a gravitational wave has only two physical degrees of freedom
which correspond to the two possible polarization states. The gauge in which this
is clearly manifested is called the TT-gauge, where ‘T'T-" indicates that the components of
the metric tensor hy, are different from zero only on the plane orthogonal to the direction
of propagation (transverse), and that h,, is traceless.

13.5 How does a gravitational wave affect the motion
of a single particle

Consider a particle at rest in flat spacetime before the passage of the wave. We set an
inertial frame attached to this particle, and take the x-axis coincident with the direction of
propagation of an incoming TT-gravitational wave. The particle will follow a geodesic of the
curved spacetime generated by the wave

d*z> . daxtdz¥  dU®

— + 1% =

dr? dr dr dr
At t =0 the particle is at rest (U* = (1,0,0,0)) and the acceleration impressed by the
wave will be

+ T, UPUY = 0. (13.64)

due .
< dT ) e —Faoo - —5770‘/8 [h5070 + h01370 — hOO,ﬁ] , (1365)
(t=0)
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but since we are in the TT-gauge it follows that

d (0%
( v ) =0. (13.66)
dr (t=0)

Thus, U® remains constant also at later times, which means that the particle is not acceler-
ated neither at t = 0 nor later! It remains at a constant coordinate position, regardeless
of the wave. We conclude that the study of the motion of a single particle is not
sufficient to detect a gravitational wave.

13.6 (eodesic deviation induced by a gravitational wave

We shall now study the relative motion of particles induced by a gravitational wave. Consider
two neighbouring particles A and B, with coordinates x'y, 25. We shall assume that the two
particles are initially at rest, and that a plane-fronted gravitational wave reaches them at
some time ¢ = 0, propagating along the x-axis. We shall also assume that we are in the TT-
gauge, so that the only non-vanishing components of the wave are those on the (y, z)-plane.
In this frame, the metric is

ds® = Gudztdz” = (1, + hZVT)dx“dx”. (13.67)
Since gog = 1o = —1, we can assume that both particles have proper time 7 = ct. Since the

two particles are initially at rest, they will remain at a constant coordinate position even
later, when the wave arrives, and their coordinate separation

dzt = aly — ¥y (13.68)

remains constant. However, since the metric changes, the proper distance between them will
change. For example if the particles are on the y-axis,

yB 1 yB 1
Al = /ds = / |gyyl2dy = / 11+ h"",,(t — x/c)|2dy # constant. (13.69)
ya ya
We now want to study the effect of the wave by using the equation of geodesic deviation.
To this purpose, it is convenient to change coordinate system and use a locally inertial
frame {2%} centered on the geodesic of one of the two particles, say the particle A; in the
neighborhood of A the metric is

ds? = Nespdz®dz” + O(|0z]?) . (13.70)

i.e. it differs from Minkowski’s metric by terms of order |§z|>. It may be reminded that, as
discussed in Chapter 1, it is always possible to define such a frame.
In this frame the particle A has space coordinates 2%y = 0 (i = 1,2, 3), and

dx”

dr |

=(1,0,0,0), guvia="ww, Guvaia=0 (Le.T%, 4, =0),
(13.71)

tA:T/C,
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where the subscript | A means that the quantity is computed along the geodesic of the particle
A. Moreover, the space components of the vector 6z* which separates A and B are the
coordinates of the particle B:

ah = o (13.72)

To simplify the notation, in the following we will rename the coordinates of this locally
inertial frame attached to A as {2}, and we will drop all the primes.
The separation vector dz* satisfies the equation of geodesic deviation (see Chapter 7):
D25zt dz® dz”
g2 = RZBW?W&U”. (13.73)
If we evaluate this equation along the geodesic of the particle A, using egs. (13.71) (removing
the primes) we find
1 d?6a’
2 dt?
If the gravitational wave is due to a perturbation of the flat metric, as discussed in this
chapter, the metric can be written as g,, = 7., + h and the Riemann tensor

= R{;02’ . (13.74)

ns

1 829 829 \ 829 A\ 829
Rawre =5 e o e T 13.75
A 9 <65L‘”ax)‘ OxeOrt OOt Oredr + ( )
+ oo (Tl = I"ul7ar)
after neglecting terms which are second order in h,,,, becomes
1 [ 0%hay 0?h,. Phoy 0h,,
ard\ — 5 S o S = h? ) 13.
R A 2 <8x”8xk + axaaxlt 8x’€8xu axaax,\ + O( ) ( 3 76)
consequently
1 [ 02h; 9?hoo 02hig 8%h, 1
Rioom = 5 - 0 TR0 Z ) Tt 13.77
00 2 <axoagj‘0 oxrtOxm 0x09xr™ O1iOxO 9 im,00 ( )

because in the T7T-gauge h; = hgo = 0. ¢ and m can assume only the values 2 and 3,
i.e. they refer to the y and 2z components. It follows that

. 1, 0*h™T,
R)\ = MRi = — i m 13.78
00 n 00 B n T 202 ( )
and the equation of geodesic deviation (13.74) becomes
d? 1, 02hTT;
— 0t = - N 13.79
i’ T2 T (13.79)

For t <0 the two particles are at rest relative to each other, and consequently

o = o), with ox) =  const, t <0. (13.80)
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Since hy, is asmall perturbation, when the wave arrives the relative position of the particles
will change only by infinitesimal quantities, and therefore we put

oz’ (t) = o) + 0xl(t),  t >0, (13.81)

where 51‘{ (t) has to be considered as a small perturbation with respect to the initial position
dzy . Substituting (13.81) in (13.79), remembering that dxj, is a constant and retaining
only terms of order O(h), eq. (13.79) becomes

P 1 PRy,

Y ] = 5T 5 Sk (13.82)
This equation can be integrated and the solution is
. ' 1 ..
6xd = daf) + 5 Ry, Sk, (13.83)

which clearly shows the tranverse nature of the gravitational wave; indeed, using the fact
that if the wave propagates along x only the components hoy = —hss, hog = hgs are different
from zero, from eqgs. (13.83) we find

1

Sat = dxg + 3 "I Sak = S (13.84)
1 1

0a® = bug + 5 0P oy G = G+ o (W™ 0 + W G

L1 .1 :
62 = duf + 5 P o Sl = S+ 5 (W52 0+ h"7 5 0a) .

Thus, the particles will be accelerated only in the plane orthogonal to the direction of
propagation.

Let us now study the effect of the polarization of the wave. Consider a plane wave whose
nonvanishing components are (we omit in the following the superscript 77T")

hyy = —h..=2R{A 0D} (13.85)
hy: = hoy=2R{A*00],

Consider two particles located, as indicated in figure (13.1) at (0, yo,0) and (0,0, 29). Let us
consider the polarization '+’ first, i.e. let us assume

AL #0 and Ay =0. (13.86)

Assuming A, real eqs. (13.85) give
hyy = —hay = 244 cosw(t — =), hy, = hyy = 0. (13.87)
c

Ifat t=0 w(t—2)=7% ,eqs. (13.84) written for the two particles for ¢ >0 give

1
1) 2=0, y=vo+ zhy vo=1o0 [1+ Ay cosw(t—

5 )], (13.88)

].

SRS

~—

1
2)  y=0, z:zo+§hzz Zozzo[l—AJFcosw(t—%
c
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After a quarter of a period (cosw(t — ) = —1)
1) 220, y=ull- A, (13.89)
2) y =0, z=20[1+ Ay]

1) z=0, Y=y, (13.90)

After three quarters of a period ( cosw(t — %) = 1)

1) Z = 07 Yy = yo[l + A+]7 (1391)
2) y =0, z =zl — Al
Similarly, if we consider a small ring of particles centered at the origin, the effect produced

by a gravitational wave with polarization '+’ is shown in figure (13.2).
Let us now see what happens if Ay #0 and A, =0 :

hyy = h.. =0, hy, = h,y = 2A, cosw(t — E). (13.92)
c

Comparing with egs. (13.84) we see that a generic particle initially at P = (yo, z0), when
t > 0 will move according to the equations

1
—hy. 20 = Yo + 20Ax cosw(t — E), (13.93)

=Yy +
yy02 c

1 T
z2=2z+ ihzy Yo = 20 + YoAx cosw(t — E)

Let us consider four particles disposed as indicated in figure (13.3)

1) y=r, z=r, (13.94)
2) y=-r, z=r,

3) y=-r, z=-r,

4) y=r, z=-—r

As before, we shall assume that the initial time ¢ =0 corresponds to w(t—2) =7 . After

a quarter of a period (cosw(t — %) = —1), the particles will have the following positions
1) y=r[l— A, z=r[l— Ay, (13.95)
2) y=r[—1—Ay], z=r[l+ A,
3) y=r[—1+A], z=r[—-1+ A,
4) y=r[l+ A, z=r[-1-A]
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Figure 13.1:
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After half a period cosw(t — %) = 0, and the particles go back to the initial positions. After

three quarters of a period, when cosw(t — %) =1

N N R
N e N N

=r[l+ A,
y=r[-1+ A,
y=r[-1-A,

y=r[l— A,

(13.96)

The motion of the particles is indicated in figure (13.3).

It follows that a small ring of particles centered at the origin, will again become an
ellipse, but rotated at 45° (see figure (13.4)) with respect to the case previously analysed.
In conclusion, we can define A, and A, as the polarization amplitudes of the wave.
The wave will be linearly polarized when only one of the two amplitudes is different from

Zero.
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