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Chapter 1

Introduction

General Relativity is the physical theory of gravity formulated by Einstein in 1915. It is
based on the Equivalence Principle of Gravitation and Inertia, which establishes a founda-
mental connection between the gravitational field and the geometry of the spacetime, and on
The Principle of General Covariance. General Relativity has changed quite dramatically our
understanding of space and time, and the consequences of this theory, which we shall inves-
tigate in this course, disclose interesting and fascinating new phenomena, like for instance
the existence of black holes and the generation of gravitational waves.

The language of General Relativity is that of tensor analysis, or, in a more modern
formulation, the language of differential geometry. There is no way to understand the theory
of gravity without knowing what is a manifold, or a tensor. Therefore we shall dedicate a
few lectures to the the mathematical tools that are essential to describe the theory and its
physical consequences. The first lecture, however, will be dedicated to answer the following
questions:

1) why does the Newtonian theory become unappropriate to describe the gravitational
field.

2) Why do we need a tensor to describe the gravitational field, and we why do we need to
introduce the concept of manifold, metric, affine connections and other geometrical objects.

3) What is the role played by the equivalence principle in all that.
In the next lectures we shall rigorously define manifolds, vectors, tensors, and then, after

introducing the principle of general covariance, we will formulate Einstein’s equations.
But first of all, since as we have already anticipated that there is a connection between

the gravitational field and the geometry of the spacetime, let us introduce non-euclidean
geometries, which are in some sense the precursors of general relativity.

1.1 Non euclidean geometries

In the prerelativistic years the arena of physical theories was the flat space of euclidean
geometry which is based on the five Euclide’s postulates. Among them the fifth has been
the object of a millennary dispute: for over 2000 years geometers tried to show, without
succeeeding, that the fifth postulate is a consequence of the other four. The postulate states
the following:

1



CHAPTER 1. INTRODUCTION 2

Consider two straight lines and a third straight line crossing the two. If the sum of the two
internal angles (see figures) is smaller than 1800 , the two lines will meet at some point on
the side of the internal angles.

The solution to the problem is due to Gauss (1824, Germany), Bolyai (1832, Austria),
and Lobachevski (1826, Russia), who independently discovered a geometry that satisfies all
Euclide’s postulates except the fifth. This geometry is what we may call, in modern terms,
a two dimensional space of constant negative curvature. The analytic representation of this
geometry was discovered by Felix Klein in 1870. He found that a point in this geometry is
represented as a pair of real numbers (x1, x2) with

(x1)2 + (x2)2 < 1, (1.1)

and the distance between two points x and X, d(x,X) , is defined as

d(x,X) = a cosh−1

 1− x1X1 − x2X2√
1− (x1)2 − (x2)2

√
1− (X1)2 − (X2)2

 , (1.2)

where a is a lenghtscale. This space is infinite, because

d(x,X)→∞

when
(X1)2 + (X2)2 → 1.

The logical independence of Euclide’s fifth postulate was thus established.
In 1827 Gauss published the Disquisitiones generales circa superficies curvas, where for

the first time he distinguished the inner, or intrinsic properties of a surface from the outer,
or extrinsic properties. The first are those properties that can be measured by somebody
living on the surface. The second are those properties deriving from embedding the surface
in a higher-dimensional space. Gauss realized that the fundamental inner property is the
distance between two points, defined as the shortest path between them on the surface.

For example a cylinder has the same inner properties of a plane. The reason is that it can
be obtained by a flat piece of paper suitably rolled, without distorting its metric relations,
i.e. without stretching or tearing. This means that the distance between any two points
on the surface is the same as it was in the original piece of paper, and parallel lines remain
parallel. Thus the intrinsic geometry of a cylinder is flat. This is not true in the case
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of a sphere, since a sphere cannot be mapped onto a plane without distortions: the inner
properties of a sphere are different from those of a plane. It should be stressed that the
intrinsic geometry of a surface considers only the relations between points on the surface.

However, since a cylinder is “round” in one direction, we think it is a curved surfaces.
This is due to the fact that we consider the cylinder as a 2-dimensional surface in a 3-
dimensional space, and we intuitively compare the curvature of the lines which are on the
cylinder with straight lines in the flat 3-dimensional space. Thus, the extrinsic curvature
relies on the notion of higher dimensional space. In the following, we shall be concerned only
with the intrinsic properties of surfaces.

The distance between two points can be defined in a variety of ways, and consequently we
can construct different metric spaces. Following Gauss, we shall select those metric spaces
for which, given any sufficiently small region of space, it is possible to choose a system of
coordinates (ξ1, ξ2) such that the distance between a point P = (ξ1, ξ2), and the point
P
′
(ξ1 + dξ1, ξ2 + dξ2) satisfies Pythagoras’ law

ds2 = (dξ1)2 + (dξ2)2. (1.3)

From now on, when we say the distance between two points, we mean the distance between
two points that are infinitely close.

This property, i.e. the possibility of setting up a locally euclidean coordinate system, is a
local property: it deals only with the inner metric relations for infinitesimal neighborhoods.
Thus, unless the space is globally euclidean, the coordinates (ξ1, ξ2) have only a local mean-
ing. Let us now consider some other coordinate system (x1, x2) . How do we express the
distance between two points? If we explicitely evaluate dξ1 and dξ2 in terms of the new
coordinates we find

ξ1 = ξ1(x1, x2) → dξ1 =
∂ξ1

∂x1
dx1 +

∂ξ1

∂x2
dx2 (1.4)

ξ2 = ξ2(x1, x2) → dξ2 =
∂ξ2

∂x1
dx1 +

∂ξ2

∂x2
dx2

ds2 =

(∂ξ1

∂x1

)2

+

(
∂ξ2

∂x1

)2
 (dx1)2 +

(∂ξ1

∂x2

)2

+

(
∂ξ2

∂x2

)2
 (dx2)2 (1.5)

+ 2

[(
∂ξ1

∂x1

)(
∂ξ1

∂x2

)
+

(
∂ξ2

∂x1

)(
∂ξ2

∂x2

)]
dx1dx2

= g11(dx1)2 + g22(dx2)2 + 2g12dx
1dx2 = gαβdx

αdxβ.

In the last line of eq. (1.5) we have defined the following quantities:

g11 =

(∂ξ1

∂x1

)2

+

(
∂ξ2

∂x1

)2
 (1.6)

g22 =

(∂ξ1

∂x2

)2

+

(
∂ξ2

∂x2

)2


g12 =

[(
∂ξ1

∂x1

)(
∂ξ1

∂x2

)
+

(
∂ξ2

∂x1

)(
∂ξ2

∂x2

)]
,
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namely, we have defined the metric tensor gαβ ! i.e. the metric tensor is an object
that allows us to compute the distance in any coordinate system. As it is clear from the
preceeding equations, gαβ is a symmetric tensor, (gαβ = gβα). In this way the notion of
metric associated to a space, emerges in a natural way.

EINSTEIN’s CONVENTION

In writing the last line of eq. (1.5) we have adopted the convenction that if there is a product
of two quantities having the same index appearing once in the lower and once in the upper
case (“dummy indices”), then summation is implied. For example, if the index α takes the
values 1 and 2

vαV
α =

2∑
i=1

viV
i = v1V

1 + v2V
2 (1.7)

We shall adopt this convenction in the following.

EXAMPLE: HOW TO COMPUTE gµν

Given the locally euclidean coordinate system (ξ1, ξ2) let us introduce polar coordinates
(r, θ) = (x1, x2) . Then

ξ1 = r cos θ → dξ1 = cos θdr − r sin θdθ (1.8)

ξ2 = r sin θ → dξ2 = sin θdr + r cos θdθ

(1.9)

ds2 = (dξ1)2 + (dξ2)2 = dr2 + r2dθ2, (1.10)

and therefore
g11 = 1, g22 = r2, g12 = 0. (1.11)

1.2 How does the metric tensor transform if we change

the coordinate system

We shall now see how the metric tensor transforms under an arbitrary coordinate transfor-
mation. Let us assume that we know gαβ expressed in terms of the coordinate (x1, x2),
and we want to change the reference to a new system (x1′, x2′) . In section 1 we have shown
that, for example, the component g11 is defined as (see eq. 1.7)

g11 = [(
∂ξ1

∂x1
)2 + (

∂ξ2

∂x1
)2], (1.12)

where (ξ1, ξ2) are the coordinates of the locally euclidean reference frame, and (x1, x2) two
arbitrary coordinates. If we now change from (x1, x2) to (x1′ , x2′), where x1 = x1(x1′ , x2′)
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, and x2 = x2(x1′ , x2′) , the metric tensor in the new coordinate frame (x1′, x2′) will be

g′11 ≡ g1′1′ = [(
∂ξ1

∂x1′
)2 + (

∂ξ2

∂x1′
)2] (1.13)

= [(
∂ξ1

∂x1

∂x1

∂x1′
+
∂ξ1

∂x2

∂x2

∂x1′
)2 + [(

∂ξ2

∂x1

∂x1

∂x1′
+
∂ξ2

∂x2

∂x2

∂x1′
)2

= [(
∂ξ1

∂x1
)2 + (

∂ξ2

∂x1
)2](

∂x1

∂x1′
)2 + [(

∂ξ1

∂x2
)2 + (

∂ξ2

∂x2
)2](

∂x2

∂x1′
)2

+ 2(
∂ξ1

∂x1

∂ξ1

∂x2
+
∂ξ2

∂x1

∂ξ2

∂x2
)(
∂x1

∂x1′

∂x2

∂x1′
)

= g11(
∂x1

∂x1′
)2 + g22(

∂x2

∂x1′
)2 + 2g12(

∂x1

∂x1′

∂x2

∂x1′
).

In general we can write

g′αβ = gµν
∂xµ

∂xα′
∂xν

∂xβ′
(1.14)

This is the manner in which a tensor transforms under an arbitrary coordinate
transformation
(this point will be illustrated in more detail in following lectures).

Thus, given a space in which the distance can be expressed in terms of Pythagoras’ law,
if we make an arbitrary coordinate transformation the knowledge of gµν allows us to express
the distance in the new reference system. The converse is also true: given a space in which

ds2 = gαβdx
αdxβ, (1.15)

if this space belongs to the class defined by Gauss, at any given point it is always possible
to choose a locally euclidean coordinate system (ξα) such that

ds2 = (dξ1)2 + (dξ2)2. (1.16)

This concept can be generalized to a space of arbitrary dimensions.
The metric tensor determines the intrinsic properties of a metric space.
We now want to define a function of gαβ and of its first and second derivatives, which depends
on the inner properties of the surface, but does not depend on the particular coordinate
system we choose. Gauss showed that in the case of two-dimensional surfaces this function
can be determined, and it is called, after him, the Gaussian curvature, defined as

k(x1, x2) =
1

2g

[
2
∂2g12

∂x1∂x2
− ∂2g11

∂x22 −
∂2g22

∂x12

]
(1.17)

− g22

4g2

(∂g11

∂x1

)(
2
∂g12

∂x2
− ∂g22

∂x1

)
−
(
∂g11

∂x2

)2


+
g12

4g2

[(
∂g11

∂x1

)(
∂g22

∂x2

)
− 2

(
∂g11

∂x2

)(
∂g22

∂x1

)

+

(
2
∂g12

∂x1
− ∂g11

∂x2

)(
2
∂g12

∂x2
− ∂g22

∂x1

)]
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− g11

4g2

(∂g22

∂x2

)(
2
∂g12

∂x1
− ∂g11

∂x2

)
−
(
∂g22

∂x1

)2


where g is the determinant of the 2-metric gαβ

g = g11g22 − g2
12. (1.18)

For example, given a spherical surface of radius a, with metric ds2 = a2dθ2 + a2 sin2 θdϕ2,
(polar coordinates) we find

k =
1

a2
; (1.19)

no matter how we choose the coordinates to describe the spherical surface, we shall always
find that the gaussian curvature has this value. For the Gauss-Bolyai-Lobachewski geometry
where

g11 =
a2 [1− (x2)2]

[1− (x1)2 − (x2)2]2
, g22 =

a2 [1− (x1)2]

[1− (x1)2 − (x2)2]2
, g12 =

a2x1x2

[1− (x1)2 − (x2)2]2
,

(1.20)
we shall always find

k = − 1

a2
; (1.21)

if the space is flat, the gaussian curvature is k = 0. If we choose a different coordinate
system, gαβ(x1, x2) will change but k will remain the same.

1.3 Summary

We have seen that it is possible to select a class of 2-dimensional spaces where it is possible
to set up, in the neighborhoods of any point, a coordinate system (ξ1, ξ2) such that the
distance between two close points is given by Pythagoras’ law. Then we have defined the
metric tensor gαβ, which allows to compute the distance in an arbitrary coordinate system,
and we have derived the law according to which gαβ transforms when we change reference.
Finally, we have seen that there exists a scalar quantity, the gaussian curvature, which
expressees the inner properties of a surface: it is a function of gαβ and of its first and
second derivatives, and it is invariant under coordinate transformations.

These results can be extended to an arbitrary D-dimensional space. In particular, as we
shall discuss in the following, we are interested in the case D=4, and we shall select those
spaces, or better, those spacetimes, for which the distance is that prescribed by Special
Relativity.

ds2 = −(dξ0)2 + (dξ1)2 + (dξ2)2 + (dξ3)2. (1.22)

For the time being, let us only clarify the following point. In a D-dimensional space we
need more than one function to describe the inner properties of a surface. Indeed, since gij
is symmetic, there are only D(D + 1)/2 independent components. In addition, we can
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choose D arbitrary coordinates, and impose D functional relations among them. Therefore
the number of independent functions that describe the inner properties of the space will be

C =
D(D + 1)

2
−D =

D(D − 1)

2
. (1.23)

If D=2, as we have seen, C=1. If D=4, C=6, therefore there will be 6 invariants to be
defined for our 4-dimensional spacetime. The problem of finding these invariant quantities
was studied by Riemann (1826-1866) and subsequently by Christoffel, LeviCivita, Ricci,
Beltrami. We shall see in the following that Riemaniann geometries play a crucial role in
the description of the gravitational field.

1.4 The Newtonian theory

In this section we shall discuss why the Newtonian theory of gravity became unappropriate
to correctly describe the gravitational field. The Newtonian theory of gravity was published
in 1685 in the “Philosophiae Naturalis Principia Mathematica”, which contains an incredible
variety of fundamental results and, among them, the cornerstones of classical physics:

1) Newton’s law
~F = mI~a, (1.24)

2) Newton’s law of gravitation
~FG = mG~g, (1.25)

where

~g = −G
∑
iMGi(~r − ~r′i)
|~r − ~ri|3

(1.26)

depends on the position of the massive particle with respect to the other masses that generate
the field, and it decreases as the inverse square of the distance g ∼ 1

r2
. The two laws combined

together clearly show that a body falls with an acceleration given by

~a =
(
mG

mI

)
~g. (1.27)

If mG
mI

is a constant independent of the body, the acceleration is the same for every infalling
body, and independent of their mass. Galileo (1564-1642) had already experimentally dis-
covered that this is, indeed, true, and Newton itself tested the equivalence principle studying
the motion of pendulum of different composition and equal lenght, finding no difference in
their periods. The validity of the equivalence principle was the core of Newton’s arguments
for the universality of his law of gravitation; indeed, after describing his experiments with
different pendulum in the Principia he says:

But, without all doubt, the nature of gravity towards the planets is the same as towards
the earth.

Since then a variety of experiments confirmed this crucial result. Among them Eotvos
experiment in 1889 (accuracy of 1 part in 109), Dicke experiment in 1964 (1 part in 1011),
Braginsky in 1972 (1 part in 1012) and more recently the Lunar-Laser Ranging experiments
(1 part in 1013). All experiments up to our days confirm The Principle of Equivalence of



CHAPTER 1. INTRODUCTION 8

the gravitational and the inertial mass. Now before describing why at a certain point the
Newtonian theory fails to be a satisfactory description of gravity, let me briefly describe the
reasons of its great success, that remained untouched for more than 200 years.

In the Principia, Newton formulates the universal law of gravitation, he develops the
theory of lunar motion and tides and that of planetary motion around the Sun, which are
the most elegant and accomplished descriptions of these phenomena.

After Newton, the law of gravitation was used to investigate in more detail the solar
system; its application to the study of the perturbations of Uranus’ orbit around the Sun
led, in 1846, Adams (England) and Le Verrier (France) to predict the existence of a new
planet which was named Neptune. A few years later, the discovery of Neptun was a triumph
of Newton’s theory of gravitation.

However, already in 1845 Le Verrier had observed anomalies in the motion of Mercury.
He found that the perihelium precession of 35′′/100 years exceeded the value due to the
perturbation introduced by the other planets predicted by Newton’s theory. In 1882 New-
comb confirmed this discrepancy, giving a higher value, of 43′′/100 year. In order to explain
this effect, scientists developed models that predicted the existence of some interplanetary
matter, and in 1896 Seelinger showed that an ellipsoidal distribution of matter surrounding
the Sun could explain the observed precession.

We know today that these models were wrong, and that the reason for the exceedingly
high precession of Mercury’s perihelium has a relativistic origin.

In any event, we can say that the Newtonian theory worked remarkably well to explain
planetary motion, but already in 1845 the suspect that something did not work perfectly
had some experimental evidence.

Let us turn now to a more philosophical aspect of the theory. The equations of Newtonian
mechanics are invariant under Galileo’s transformations

~x′ = R0~x+ ~vt+ ~d0 (1.28)

t′ = t+ τ

where R0 is the orthogonal, constant matrix expressing how the second frame is rotated
with respect to the first (its elements depend on the three Euler angles), ~v is the relative

velocity of the two frames, and ~d0 the initial distance between the two origins. The ten
parameters (3 Euler angles, 3 components for ~v and ~d, + the time shift τ ) identify the
Galileo group.

The invariance of the equations with respect to Galileo’s transformations implies the
existence of inertial frames, where the laws of Mechanics hold. What then determines
which frames are inertial frames? For Newton, the answer is that there exists an absolute
space, and the result of the famous experiment of the rotating vessel is a proof of its existence
1: inertial frames are those in uniform relative motion with respect to the absolute space.

1The vessel experiment: a vessel is filled with water and rotates with a given angular velocity about the
symmetry axis. After some time the surface of the water assumes the typical shape of a paraboloid, being
in equilibrium under the action of the gravity force, the centrifugal force and the fluid forces. Now suppose
that the masses in the entire universe would rigidly rotate with respect to the vessel at the same angular
velocity: in this case, for Newton the water surface would remain at rest and would not bend, because the
vessel is not moving with respect to the absolute space and therefore no centrifugal force acts on it.
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However this idea was rejected by Leibniz who claimed that there is no philosophical need
for such a notion, and the debate on this issue continued during the next centuries. One of
the major opponents was Mach, who argued that if the masses in the entire universe would
rigidly rotate with respect to the vessel, the water surface would bend in exactely the same
way as when the vessel was rotating with respect to them. This is because the inertia is a
measure of the gravitational interaction between a body and the matter content of the rest
of the Universe.

The problems I have described (the discrepancy in the advance of perihelium and the
postulate absolute space) are however only small clouds: the Newtonian theory remains The
theory of gravity until the end of the ninentheenth century. The big storm approaches with
the formulation of the theory of electrodynamics presented by Maxwell in 1864. Maxwell’s
equations establish that the velocity of light is an universal constant. It was soon understood
that these equations are not invariant under Galileo’s transformations; indeed, according to
eqs. (1.28), if the velocity of light is c in a given coordinate frame, it cannot be c
in a second frame moving with respect to the first with assigned velocity ~v. To justify
this discrepancy, Maxwell formulated the hypothesis that light does not really propagate in
vacuum: electromagnetic waves are carried by a medium, the luminiferous ether, and the
equations are invariant only with respect to a set of galilean inertial frames that are at rest
with respect to the ether. However in 1887 Michelson and Morley showed that the velocity of
light is the same, within 5km/s (today the accuracy is less than 1km/s), along the directions
of the Earth’s orbital motion, and transverse to it. How this result can be justified? One
possibility was to say the Earth is at rest with respect to the ether; but this hypothesis was
totally unsatisfactory, since it would have been a coming back to an antropocentric picture of
the world. Another possibility was that the ether simply does not exist, and one has to accept
the fact that the speed of light is the same in any direction, and whatever is the velocity of
the source. This was of course the only reasonable explanation. But now the problem was to
find the coordinate transformation with respect to which Maxwell’s equations are invariant.
The problem was solved by Einstein in 1905; he showed that Galileo’s transformations have
to be replaced by the Lorentz transformations

xα′ = Lαγx
γ, (1.29)

where γ = (1− v2

c2
)−

1
2 , and

L0
0 = γ, L0

j = Lj0 =
γ

c
vj, Lij = δij +

γ − 1

v2
vivj. i, j = 1, 3 (1.30)

and vi are the components of the velocity of the boost.
As it was immediately realised, however, while Maxwell’s equations are invariant with

respect to Lorentz transformations, Newton’s equations were not, and consequently one
should face the problem of how to modify the equations of mechanics and gravity in such a
way that they become invariant with respect to Lorentz transformations. It is at this point
that Einstein made his fundamental observation.
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1.5 The role of the Equivalence Principle in the for-

mulation of the new theory of gravity

Let us consider the motion of a non relativistic particle moving in a constant gravitational
field. Be ~Fk some other forces acting on the particle. According to Newtonian mechanics,
the equation of motion are

mI
d2~x

dt2
= mG~g +

∑
k

~Fk (1.31)

Let us now jump on an elevator which is freely falling in the same gravitational field, i.e. let
us make the following coordinate transformation

~x′ = ~x− 1

2
~gt2, t′ = t. (1.32)

In this new reference frame eq. (1.31) becomes

mI

[
d2~x′

dt2
+ ~g

]
= mG~g +

∑
k

~Fk. (1.33)

Since by the Equivalence Principle mI = mG, and since this is true for any particle, this
equation becomes

mI
d2~x′

dt2
=
∑
k

~Fk. (1.34)

Let us compare eq. (1.31) and eq. (1.34). It is clear that that an observer O′ who is in the
elevator, i.e. in free fall in the gravitational field, sees the same laws of physics as the initial
observer O, but he does not feel the gravitational field. This result follows from the
equivalence, experimentally tested, of the inertial and gravitational mass. If mI

would be different from mG, or better, if their ratio would not be constant and the same for
all bodies, this would not be true, because we could not simplify the term in ~g in eq. (1.33)!
It is also apparent that if ~g would not be constant eq. (1.34) would contain additional
terms containing the derivatives of ~g. However, we can always consider an interval of time
so short that ~g can be considered as constant and eq. (1.34) holds. Consider a particle

at rest in this frame and no force ~Fk acting on it. Under this assumption, according to eq.
(1.34) it will remain at rest forever. Therefore we can define this reference as a locally
inertial frame. If the gravitational field is constant and unifom everywhere, the coordinate
transformation (1.32) defines a locally inertial frame that covers the whole spacetime. If this
is not the case, we can set up a locally inertial frame only in the neighborhood of any given
point.

The points discussed above are crucial to the theory of gravity, and deserve a further
explanation. Gravity is distinguished from all other forces because all bodies, given the
same initial velocity, follow the same trajectory in a gravitational field, regardless of their
internal constitution. This is not the case, for example, for electromagnetic forces, which act
on charged but not on neutral bodies, and in any event the trajectories of charged particles
depend on the ratio between charge and mass, which is not the same for all particles. Simi-
larly, other forces, like the strong and weak interactions, affect different particles differently.
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It is this distinctive feature of gravity that makes it possible to describe the effects of gravity
in terms of curved geometry, as we shall see in the following.

Let us now state the Principle of Equivalence. There are two formulations:
The strong Principle of Equivalence
In an arbitrary gravitational field, at any given spacetime point, we can choose a locally

inertial reference frame such that, in a sufficiently small region surrounding that point, all
physical laws take the same form they would take in absence of gravity, namely the form
prescribed by Special Relativity.

There is also a weaker version of this principle
The weak Principle of Equivalence
Same as before, but it refers to the laws of motion of freely falling bodies, instead of all

physical laws.
The preceeding formulations of the equivalence principle resembles very much to the

axiom that Gauss chose as a basis for non-euclidean geometries, namely: at any given point
in space, there exist a locally euclidean reference frame such that, in a sufficiently small region
surrounding that point, the distance between two points is given by the law of Pythagoras.

The Equivalence Principle states that in a locally inertial frame all laws of physics must
coincide, locally, with those of Special Relativity, and consequently in this frame the distance
between two points must coincide with Minkowsky’s expression

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −(dξ0)2 + (dξ1)2 + (dξ2)2 + (dξ3)2. (1.35)

We therefore expect that the equations of gravity will look very similar to those of Riema-
niann geometry. In particular, as Gauss defined the inner properties of curved surfaces in
terms of the derivatives ∂ξα

∂xµ
(which in turn defined the metric, see eqs. (1.5) and (1.7)),

where ξα are the “locally euclidean coordinates” and xµ are arbitrary coordinates, in
a similar way we expect that the effects of a gravitational field will be described in terms
of the derivatives ∂ξα

∂xµ
where now ξα are the “locally inertial coordinates”, and xµ are

arbitrary coordinates. All this will follow from the equivalence principle. Up to now we have
only established that, as a consequence of the Equivalence Principle there exist a connection
between the gravitational field and the metric tensor. But which connection?

1.6 The geodesic equations as a consequence of the

Principle of Equivalence

Let us start exploring what are the consequences of the Principle of Equivalence. We want
to find the equations of motion of a particle that moves under the exclusive action of a
gravitational field (i.e. it is in free fall), when this motion is observed in an arbitrary
reference frame. We shall now work in a four-dimensional spacetime with coordinates (x0 =
ct, x1, x2, x3).

First we start analysing the motion in a locally inertial frame, the one in free fall with
the particle. According to the Principle of Equivalence, in this frame the distance between
two neighboring points is

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 = ηµνdξ
µdξν , (1.36)
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where ηµν = diag(−1, 1, 1, 1) is the metric tensor of the flat, Minkowsky spacetime. If τ
is the particle proper time, and if it is chosen as time coordinate, for what we said before
the equations of motion are

d2ξα

dτ 2
= 0. (1.37)

We now change to a frame where the coordinates are labelled xα = xα(ξα), i.e. we assign a
transformation law which allows to express the new coordinates as functions of the old ones.
In a following lecture we shall clarify and make rigorous all concepts that we are now using,
such us metric tensor, coordinate transformations etc. In the new frame the distance is

ds2 = ηαβ
∂ξα

∂xµ
dxµ

∂ξβ

∂xν
dxν = gµνdx

µdxν , (1.38)

where we have defined the metric tensor gµν as

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ. (1.39)

This formula is the 4-dimensional generalization of the 2-dimensional gaussian formula (see
eq. (1.5)). In the new frame the equation of motion of the particle (1.37) becomes:

d2xα

dτ 2
+

[
∂xα

∂ξλ
∂2ξλ

∂xµ∂xν

] [
dxµ

dτ

dxν

dτ

]
= 0. (1.40)

(see the detailed calculations in appendix A). If we now define the following quantities

Γαµν =
∂xα

∂ξλ
∂2ξλ

∂xµ∂xν
, (1.41)

eq. (1.40) become
d2xα

dτ 2
+ Γαµν

[
dxµ

dτ

dxν

dτ

]
= 0. (1.42)

The quantities (1.41) are called the affine connections, or Christoffel’s symbols, the
properties of which we shall investigate in a following lecture. Equation (1.42) is the
geodesic equation, i.e. the equation of motion of a freely falling particle when observed
in an arbitrary coordinate frame. Let us analyse this equation. We have seen that if we
are in a locally inertial frame, where, by the Equivalence Principle, we are able to eliminate
the gravitational force, the equations of motion would be that of a free particle (eq. 1.37).
If we change to another frame we feel the gravitational field (and in addition all apparent
forces like centrifugal, Coriolis, and dragging forces). In this new frame the geodesic equation
becomes eq. (1.42) and the additional term

Γαµν

[
dxµ

dτ

dxν

dτ

]
(1.43)

expresses the gravitational force per unit mass that acts on the particle. If we were in
Newtonian mechanics, this term would be ~g (plus the additional apparent accelerations,
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but let us assume for the time being that we choose a frame where they vanish), and ~g is
the gradient of the gravitational potential. What does that mean? The affine connection
Γαµν contains the second derivatives of (ξα). Since the metric tensor (1.39) contains the first
derivatives of (ξα) (see eq. (1.39)), it is clear that Γαµν will contain first derivatives of
gµν . This can be shown explicitely, and in a next lecture we will show that

Γσλµ =
1

2
gνσ

{
∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

}
. (1.44)

Thus, in analogy with the Newtonian law, we can say that the affine connections
are the generalization of the Newtonian gravitational field, and that the metric
tensor is the generalization of the Newtonian gravitational potential.

I would like to stress that this is a physical analogy, based on the study of the motion of
freely falling particles compared with the Newtonian equations of motion.

1.7 Summary

We have seen that once we introduce the Principle of Equivalence, the notion of metric
and affine connections emerge in a natural way to describe the effects of a gravitational
field on the motion of falling bodies. It should be stressed that the metric tensor gµν
represents the gravitational potential, as it follows from the geodesic equations. But in
addition it is a geometrical entity, since, through the notion of distance , it characterizes the
spacetime geometry. This double role, physical and geometrical of the metric tensor, is a
direct consequence of the Principle of Equivalence, as I hope it is now clear.

Now we can answer the question “ why do we need a tensor to describe a gravitational
field”: the answer is in the Equivalence Principle.

1.8 Locally inertial frames

We shall now show that if we know gµν and Γαµν (i.e. gµν and its first derivatives) at a
point X, we can determine a locally inertial frame ξα(x) in the neighborhood of X in the

following way. Multiply Γβµν by ∂ξβ

∂xλ

∂ξβ

∂xλ
Γλµν =

∂ξβ

∂xλ
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
= (1.45)

δβα
∂2ξα

∂xµ∂xν
=

∂2ξβ

∂xµ∂xν
,

i.e.
∂2ξβ

∂xµ∂xν
=
∂ξβ

∂xλ
Γλµν . (1.46)
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This equation can be solved by a series expansion near X

ξβ(x) = ξβ(X) + [
∂ξβ(x)

∂xλ
]x=X(xλ −Xλ) (1.47)

+
1

2
[
∂ξβ(x)

∂xλ
Γλµν ]x=X(xµ −Xµ)(xν −Xν) + ...

= aβ + bβλ(xλ −Xλ) +
1

2
bβλΓλµν(x

µ −Xµ)(xν −Xν) + ...

On the other hand we know by eq. (1.39) that

gµν(X) = ηαβ
∂ξα(x)

∂xµ
|x=X

∂ξβ(x)

∂xν
|x=X = ηαβb

α
µb
β
ν , (1.48)

and from this equation we compute bβµ. Thus, given gµν and Γαµν at a given point X we
can determine the local inertial frame to order (x−X)2 by using eq. (1.47). This equation
defines the coordinate system except for the ambiguity in the constants aµ. In addition
we have still the freedom to make an inhomogeneous Lorentz transformation, and the new
frame will still be locally inertial, as it is shown in appendix B.

1.9 Appendix 1A

Given the equation of motion of a free particle

d2ξα

dτ 2
= 0, (A1)

let us make a coordinate transformation to an arbitrary system xα

ξα = ξα(xγ), → dξα

dτ
=
∂ξα

∂xγ
dxγ

dτ
, (A2)

eq. (A1) becomes

d

dτ

(
∂ξα

∂xγ
dxγ

dτ

)
=
d2xγ

dτ 2

∂ξα

∂xγ
+

∂2ξα

∂xβ∂xγ
dxβ

dτ

dxγ

dτ
= 0. (A3)

Multiply eq. (A3) by ∂xσ

∂ξα
remembering that

∂ξα

∂xγ
∂xσ

∂ξα
=
∂xσ

∂xγ
= δσγ ,

where δσγ is the Kronecker symbol (= 1 if σ = γ 0 otherwise), we find

d2xγ

dτ 2
δσγ +

∂xσ

∂ξα
∂2ξα

∂xβ∂xγ
dxβ

dτ

dxγ

dτ
= 0, (A4)

which finally becomes

d2xσ

dτ 2
+ [

∂xσ

∂ξα
∂2ξα

∂xβ∂xγ
]
dxβ

dτ

dxγ

dτ
= 0, (A5)

which is eq. (1.40).
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1.10 Appendix 1B

Given a locally inertial frame ξα

ds2 = ηµνdξ
µdξν . (B1)

let us consider the Lorentz transformation

ξi = Lij′ξ
j′, (B2)

where

Lij = δij+v
ivj
γ − 1

v2
, L0

j =
γvj
c
, L0

0 = γ, γ = (1−v
2

c2
)−

1
2 . (B3)

The distance will now be

ds2 = ηµνdξ
µdξν = ηµν

∂ξµ

∂ξi′
∂ξν

∂ξj′
dξi′dξj′.; (B4)

Since
∂ξµ

∂ξi′
= Lµβδ

β
i′ = Lµi′, (B5)

it follows that
ds2 = ηµνL

µ
i′L

ν
j′dξ

i′dξj′. (B6)

Since Lij is a Lorentz transformation,

ηµνL
µ
i′L

ν
j′ = ηi′j′,

consequently the new frame is still a locally inertial frame.

ds2 = ηµ′ν′dξ
µ′dξν′. (B7)



Chapter 2

Topological Spaces, Mapping,
Manifolds

In chapter 1 we have shown that the Principle of Equivalence allows to establish a relation
between the metric tensor and the gravitational field. We used vectors and tensors, we
made coordinate transformations, but we did not define the geometrical objects we were
introducing, and we did not discuss whether we are entitled to use these notions. We shall
now define in a more rigorous way what is the type of space we are working in, what is a
coordinate transformation, a vector, a tensor. Then we shall introduce the metric tensor
and the affine connections as geometrical objects and, after defining the covariant derivative,
we shall finally be able to introduce the Riemann tensor. This work is preliminary to the
derivation of Einstein’s equations.

2.1 Topological spaces

In general relativity we shall deal with topological spaces. The word topology has two distinct
meanings: local topology (to which we are mainly interested), and global topology, which
involves the study of the large scale features of a space.

Before introducing the general definition of a topological space, let us recall some prop-
erties of Rn, which is a particular case of topological space; this will help us in the under-
standing of the general definition of topological spaces.

Given a point y = (y1, y2, ...yn) ∈ Rn, a neighborhood of y is the collection of points x
such that

|x− y| ≡

√√√√ n∑
i=1

(xi − yi)2 < r, (2.1)

where r is a real number. (This is sometimes called an ‘open ball’).

16



CHAPTER 2. TOPOLOGICAL SPACES, MAPPING, MANIFOLDS 17

A set of points S∈ Rn is open if every point x ∈S has a neighborhood entirely contained
in S. This implies that an open set does not include the points on the boundary of the set.
For instance, an open ball is an open set; a closed ball, defined by |x − y| ≤ r, is not an
open set, because the points of the boundary, i.e. |x− y| = r, do not admit a neighborhood
contained in the set.

Intuitively we have an idea that this is a continuum space, namely that there are
points of Rn arbitrarily close to any given point, that the line joining two points can be
subdivided into arbitrarily many pieces which also join points of Rn. A non continuous
space is, for example, a lattice. A formal characterization of a continuum space is the
Haussdorff criterion: any two points of a continuum space have neighborhoods which do not
intersect.

The open sets of Rn satisfy the following properties:
(1) if O1 and O2 are open sets, so it is their intersection.
(2) the union of any collection (possibly infinite in number) of open sets is open.

Let us now consider a general set T. Furthermore, we consider a collection of subsets of
T, say O={Oi}, and call them open sets. We say that the couple (T,O) formed by the set
and the collection of subsets is a topological space if it satisfies the properties (1) and (2)
above.

We remark that the space T is not necessarily Rn: it can be any kind of set; the only
specification we give is the collection of subsets O, which are by definition the open sets,
and that satisfy the properties (1), (2). In particular, in a topological space the notion of
distance is a structure which has not been introduced: all definitions only require the notion
of open sets.

2.2 Mapping

A map f from a space M to a space N is a rule which associates with an element x of M,
a unique element y = f(x) of N
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M and N need not to be different. For example, the simplest maps are ordinary real-valued
functions on R

EXAMPLE y = x3, x ∈ R, and y ∈ R. (2.2)

In this case M and N coincide.
A map gives a unique f(x) for every x, but not necessarily a unique x for every f(x).

EXAMPLE

map many to one map one to one
If f maps M to N then for any set S in M we have an image in N, i.e. the set T of all

points mapped by f from S in N

Conversely the set S is the inverse image of T

S = f−1(T). (2.3)
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Inverse mapping is possible only in the case of one-to-one mapping. The statement “f maps
M to N” is indicated as

f : M→ N. (2.4)

f maps a particular element x ∈M to y ∈ N is indicated as

f : x | → y (2.5)

the image of a point x is f(x).

2.3 Composition of maps

Given two maps f : M → N and g : N → P , there exists a map g ◦ f that maps M
to P

g ◦ f : M→ P. (2.6)

This means: take a point x ∈ M and find the image f(x) ∈ N, then use g to map
this point to a point g (f(x)) ∈ P

EXAMPLE f : x | → y y = x3 (2.7)

g : y | → z z = y2

g ◦ f : x | → z z = x6

Map into: If a map is defined for all ponts of a manifold M, it is a mapping from M into
N.
Map onto: If, in addition, every point of N has an inverse image (but not necessarily a
unique one), it is a map from M onto N.

EXAMPLE: be N the unit open disc in R2, i.e. the set of all points in R2 such that the
distance from the center is less than one, d(0, x) < 1. Be M the surface of an emisphere
θ < π

2
belonging to the unit sphere.
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There exists a one-to one mapping f from M onto N.

2.4 Continuous mapping

A map f : M → N is continuous at x ∈ M if any open set of N containing f(x)
contains the image of an open set of M. M and N must be topological spaces, otherwise the
notion of continuity has no meaning.

This definition is related to the familiar notion of continuous functions. Suppose that f
is a real-valued function of one real variable. That is f is a map of R to R

f : R→ R. (2.8)

In the elementary calculus we say that f is continuous at a point x0 if for every ε > 0
there exists a δ > 0 such that

|f(x)− f(x0)| < ε, ∀x such that |x− x0| < δ. (2.9)
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Let us translate this definition in terms of open sets. From the figure it is apparent that any
open set containing f(x0), i.e. |f(x)− f(x0)| < r with r arbitrary, contains an image
of an open set of M . This is true at least in the domain of definition of f. This definition
is more general than that of continuous functions, because it is based on the notion of open
sets, and not on the notion of distance.

2.5 Manifolds and differentiable manifolds

The notion of manifold is crucial to define a coordinate system.
A manifold M is a topological space, which satisfies the Haussdorff criterion, and such

that each point of M has an open neighborhood which has a continuous 1-1 map onto an
open set of Rn. n is the dimension of the manifold.

————————————————————————
In this definition we have used the concepts defined in the preceeding pages: the space

must be topological, continuous, and we want to associate an n-tuple of real numbers, i.e. a
set of coordinates to each point. For example, when we consider the diagram

we are just using the notion of manifold: we take a point P, and map it to the point
(x1, y1) ∈ R2 . And this operation can be done for any open neighborhood of P. It should
be stressed that the definition of manifold involves open sets and not the whole of M and
Rn, because we do not want to restrict the global topology of M . Moreover, at this stage
we only require the map to be 1-1. We have not yet introduced any geometrical notion as
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lenght, angles etc. At this level we only require that the local topology of M is the same as
that of Rn. A manifold is a space with this topology.

DEFINITION OF COORDINATE SYSTEMS
A coordinate system, or a chart, is a pair consisting of an open set of M and its map

to an open set of Rn. The open set does not necessarily include all M , thus there will be
other open sets with the associated maps, and each point of M must lie in at least one of
such open sets.

AND NOW WE WANT TO MAKE A COORDINATE TRANSFORMATION.
Let us consider, for example, the following situation: U and V are two overlapping open

sets of M with two distinct maps onto Rn

The overlapping region is open (since it is the intesection of two open sets), and is given two
different coordinate systems by the two maps, thus there must exist some equation relating
the two. We want to find it.

Pick a point in the image of the overlapping region belonging to f(U), say the point
(x1, ...xn). The map f has an inverse f−1 which brings to the point P. Now from P, by
using the map g, we go to the image of P belonging to g(V), i.e. to the point (y1, ...yn)
in Rn

g ◦ f−1 : Rn → Rn. (2.10)
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The result of this operation is a functional relation between the two sets of coordinates:
y1 = y1(x1, ...xn)
.
.
yn = yn(x1, ...xn),

(2.11)

If the partial derivatives of order ≤ k of all the functions {yi} with respect to all {xi}
exist and are continuous, then the charts (U, f) and (V, g) are said to be Ck related.
If it is possible to construct a system of charts such that each point of M belongs at least to
one of the open sets, and every chart is Ck related to every other one it overlaps with, then
the manifold is said to be a Ck manifold. If k=1, it is called a differentiable manifold.

The notion of differentiable manifold is crucial, because it allows to add “structure” to
the manifold, i.e. one can define vectors, tensors, differential forms, Lie derivatives etc.

In order to complete our definition of a coordinate transformation we still need another
element. Eqs. (2.11) can be written as

yi = f i(x1, ...xn), i = 1, ...n, (2.12)

where f i are Ck differentiable. Be J the jacobian of the transformation

J =
∂(f 1, ...fn)

∂(x1, ...xn)
= det



∂f1

∂x1
∂f1

∂x2
. . . ∂f1

∂xn
∂f2

∂x1
∂f2

∂x2
. . . ∂f2

∂xn

. . . . . .

. . . . . .
∂fn

∂x1
∂fn

∂x2
. . . ∂fn

∂xn

 (2.13)

If J is non zero at some point P, then the inverse function theorem ensures that the map f
is 1-1 and onto in some neighborhood of P. If J is zero at some point P the transformation
is singular.

AN EXAMPLE OF MANIFOLD.
Consider the 2-sphere (also called S2). It is defined as the set of all points in R3 such

that (x1)2 + (x2)2 + (x3)2 = const. Suppose that we want to map the whole sphere to R2

by using a single chart. For example let us use spherical coordinates θ ≡ x1, and ϕ ≡ x2.
The sphere appears to be mapped onto the rectangle 0 ≤ x1 ≤ π, 0 ≤ x2 ≤ 2π
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(note that this manifold has no boundary). But now consider the north pole θ = 0 : this
point is mapped to the entire line

x1 = 0, 0 ≤ x2 ≤ 2π. (2.14)

Thus there is no map at all.
In addition all points of the emicircle ϕ = 0 are mapped in two places

x2 = 0, and x2 = 2π. (2.15)

Again there is no map at all. In order to avoid these problems, we must restrict the map to
open regions

0 < x1 < π, 0 < x2 < 2π. (2.16)

The two poles and the semicircle ϕ = 0 are left out. Then we may consider a second
map, again in spherical coordinates but “rotated” in such a way that the line ϕ = 0
would coincide with the equator of the old system. Then every point of the sphere would be
covered by one of the two charts, and in principle one should be able to find the coordinate
transformation for the overlapping region. It is interesting to note that

1) this mapping does not preserve angles and lenghts.
2) there exist manifolds that cannot be covered by a single chart, i.e. by a single coordi-

nate system.



Chapter 3

Vectors and One-forms

3.1 The traditional definition of a vector

Let us consider an N -dimensional manifold, and a generic coordinate transformation

xα
′
= xα

′
(xµ), α′, µ = 1, . . . , N . (3.1)

————————————————————————
A comment on notation

Here and in the following, we shall use indices with and without primes to refer to different
coordinate frames.

Strictly speaking, eq. (3.1) should be written as

x′
α′

= x′
α′

(xµ), α′, µ = 1, . . . , N , (3.2)

because the coordinate with (say) α′ = 1 belongs to the new frame, and is then different from
the coordinate with µ = 1, belonging to the old frame. However, for brevity of notation, we
will omit the primes in the coordinates, keeping only the primes in the indices.

————————————————————————
A contravariant vector

~V →0 {V µ}, µ = 1, 2, . . . N, (3.3)

where the symbol→0 indicates that ~V has components {V µ} with respect to a given frame
O, is a collection of N numbers which transform under the coordinate transformation (3.1)
as follows:

V µ′ =
∑

α=1,...,N

∂xµ
′

∂xα
V α =

∂xµ
′

∂xα
V α. (3.4)

Notice that in writing the last term we have used Einstein’s convenction. V µ′ are the
components of the vector in the new frame. If we now define the N ×N matrix

(Λα′
β) =



∂x1
′

∂x1
∂x1
′

∂x2
...

. . ...

. . ...

. . ...
∂xN

′

∂x1
∂xN

′

∂x2
...

 , (3.5)

25
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the transformation law can be written in the general form

V α′ = Λα′
βV

β. (3.6)

In addition, covariant vectors are defined as objects that transform according to the following
rule

Aµ′ =
∂xβ

∂xµ′
Aβ = Λβ

µ′Aβ, (3.7)

where Λβ
µ′ is the inverse matrix of Λβ′

µ. However, a vector is a geometrical object. In
fact it is an oriented segment that joins two points of a given space. We can associate to this
object the components with respect to an assigned reference frame; when we change frame
the vector components change, but the vector itself does not change. We shall now give a
more adequate definition.

3.2 A geometrical definition

In order to define a vector as a geometrical object we need to introduce the notions of paths
and curves.
PATH
A path is a connected series of points in the plane (or in any arbitrary N -dimensional
manifold)

CURVE
A curve is a path with a real number associated with each point of the path, i.e. it is a
mapping of an interval of R1 into a path in the plane (or in the N -dimensional manifold).
The number is called the parameter. For example

curve : {x1 = f(s), x2 = g(s), a ≤ s ≤ b}, (3.8)

means that each point of the path has coordinates that can be expressed as functions of s.
The path is called the image of the curve in the plane (or in the manifold). What happens
if we change the parameter? If s′ = s′(s) we shall get a new curve

{x1 = f ′(s′), x2 = g′(s′), a′ ≤ s′ ≤ b′}, (3.9)
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where f ′, g′ are new functions of s′. This is a new curve, but with the same image. Thus
there are an infinite number of curves corresponding to the same path.

FOR EXAMPLE: The position of a bullet shot by a gun in the 2-dimensional plane (x,z)
is a PATH; when we associate the parameter t (time) at each point of the trajectory, we
define a CURVE; if we change the parameter, say for instance the curvilinear abscissa, we
define a new curve.
VECTORS
A vector is a geometrical object defined as the tangent vector to a given curve
at a point P.
The set of numbers {dxi

ds
} = (dx

1

ds
, dx

2

ds
) are the components of a vector tangent to the curve.

(In fact if {dxi} are infinitesimal displacements along the curve, dividing them by ds
only changes the scale but not the direction of the displacement). Every curve has a unique
tangent vector

~V → {dx
i

ds
}. (3.10)

One must be careful and not to confuse the curve with the path. In fact a path has, at
any given point, an infinite number of tangent vectors, all parallel, but with different lenght.
The lenght depends on the parameter s that we choose to label the points of the path,
and consequently it is different for different curves having the same image. A curve has a
unique tangent vector, since the path and the parameter are given.
It should be reminded that a vector is tangent to an infinite number of different curves , for
two different reasons. The first is that there are curves that are tangent to one another in
P, and therefore have the same tangent vector:
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The second is that a path can be reparametrized in such a way that its tangent vector
remains the same.

We shall now derive how does a vector transform if we change the coordinate system,
and put for example x1′ = x1′(x1, x2), x2′ = x2′(x1, x2). The parameter s is unaffected,
thus  dx1

′

ds
= ∂x1

′

∂x1
dx1

ds
+ ∂x1

′

∂x2
dx2

ds
dx2
′

ds
= ∂x2

′

∂x1
dx1

ds
+ ∂x2

′

∂x2
dx2

ds

 dx1
′

ds
dx2
′

dx2

 =

 ∂x1
′

∂x1
∂x1
′

∂x2

∂x2
′

∂x1
∂x2
′

∂x2

 · ( dx1

ds
dx2

ds

)

As expected, this is the same transformation as (3.6) that was used to define a contravariant
vector

V µ′ = Λµ′
βV

β. (3.11)

3.3 The directional derivative along a curve form a vec-

tor space at P

In order to understand the meaning of the statement contained in the heading of this section,
let us consider a curve, parametrized with an assigned parameter λ, and a differentiable
function Φ(x1, ...xN), in a general N -dimensional manifold. The directional derivative of Φ
along the curve will be

dΦ

dλ
=
∂Φ

∂x1

dx1

dλ
+ ...+

∂Φ

∂xN
dxN

dλ
=
∂Φ

∂xi
dxi

dλ
, i = 1, ....N. (3.12)

Since the function Φ is totally arbitrary, we can rewrite this expression as

d

dλ
=
dxi

dλ

∂

∂xi
, (3.13)

where d
dλ

is now the operator of directional derivative, while {dxi
dλ
} are the components

of the tangent vector.
Let us consider two curves xi = xi(λ) and xi = xi(µ) passing through the same point

P, and write the two directional derivatives along the two curves

d

dλ
=
dxi

dλ

∂

∂xi
,

d

dµ
=
dxi

dµ

∂

∂xi
. (3.14)

{dxi
dµ
} are the components of the vector tangent to the second curve. Let us also consider

a real number a.

• We define the sum of the two directional derivatives as the directional derivative

d

dλ
+

d

dµ
≡
(
dxi

dλ
+
dxi

dµ

)
∂

∂xi
. (3.15)

The numbers
(
dxi

dλ
+ dxi

dµ

)
are the components of a new vector, which is certainly

tangent to some curve through P. Thus there must exist a curve with a parameter, say,
s, such that at P

d

ds
=

(
dxi

dλ
+
dxi

dµ

)
∂

∂xi
=

d

dλ
+

d

dµ
. (3.16)



CHAPTER 3. VECTORS AND ONE-FORMS 29

• We define the product of the directional derivative ∂/∂λ with the real number a as the
directional derivative

a
d

dλ
≡
(
a
dxi

dλ

)
∂

∂xi
. (3.17)

The numbers
(
adx

i

dλ

)
are the components of a new vector, which is certainly tangent

to some curve through P. Thus there must exist a curve with a parameter, say, s′,
such that at P

d

ds′
=

(
a
dxi

dλ

)
∂

∂xi
= a

d

dλ
. (3.18)

In this way we have defined two operations on the space of the directional derivatives along
the curves passing through a point P : the sum of two directional derivatives, and the mul-
tiplication of a directional derivative with a real number.

We remind the mathematical definition of a vector space1.
A vector space is a set V on which two operations are defined:

1. Vector addition
(~v, ~w)→ ~v + ~w (3.19)

2. Multiplication by a real number:
(a,~v)→ a~v (3.20)

(where ~v, ~w ∈ V , a ∈ IR), which satisfy the following properties:

• Associativity and commutativity of vector addition

~v + (~w + ~u) = (~v + ~w) + ~u

~v + ~w = ~w + ~v . ∀~v, ~w, ~u ∈ V . (3.21)

• Existence of a zero vector, i.e. of an element ~0 ∈ V such that

~v +~0 = ~v ∀~v ∈ V .

• Existence of the opposite element: for every ~w ∈ V there exists an element ~v ∈ V such
that

~v + ~w = ~0 .

• Associativity and distributivity of multiplication by real numbers:

a(b~v) = (ab)~v

a(~v + ~w) = a~v + a~w

(a+ b)~v = a~v + b~v ∀~v ∈ V , ∀ a, b ∈ IR . (3.22)

1To be precise, what we are defining here is a real vector space, but we will omit this specification, because
in this book only real vector spaces will be considered.
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• Finally, the real number 1 must act as an identity on vectors:

1~v = ~v ∀~v . (3.23)

Coming back to directional derivatives (taken at a given point P of the manifold), it is easy
to verify that the operations of addition and multiplication by a real number defined in
(3.15),(3.17) respectively, satisfy the above properties. For instance:

• Commutativity of the addition:

d

dλ
+

d

dµ
=

(
dxi

dλ
+
dxi

dµ

)
∂

∂xi
=

(
dxi

dµ
+
dxi

dλ

)
∂

∂xi
=

d

dµ
+

d

dλ
. (3.24)

• Associativity of multiplication by real numbers:

a

(
b
d

dλ

)
= a

((
b
dxi

dλ

)
∂

∂xi

)

=

(
a

(
b
dxi

dλ

))
∂

∂xi
=

(
ab
dxi

dλ

)
∂

∂xi

= ab
d

dλ
. (3.25)

• Distributivity of multiplication by real numbers:

a

(
d

dλ
+

d

dµ

)
= a

((
dxi

dλ
+
dxi

dµ

)
∂

∂xi

)

=

(
a

(
dxi

dλ
+
dxi

dµ

))
∂

∂xi
=

(
a
dxi

dλ
+ a

dxi

dµ

)
∂

∂xi

=

(
a
dxi

dλ

)
∂

∂xi
+

(
a
dxi

dµ

)
∂

∂xi
= a

d

dλ
+ a

d

dµ
. (3.26)

• The zero element is the vector tangent to the curve xµ ≡ const., which is simply the
point P .

• The opposite of the vector ~v tangent to a given curve is obtained by changing sign to
the parametrization

λ→ −λ . (3.27)

The proof of the remaining properties is analogous.
Therefore, the set of directional derivatives is a vector space.

In any coordinate system there are special curves, the coordinates lines (think for example
to the grid of cartesian coordinates). The directional derivatives along these lines are

d

dxi
=
dxk

dxi
∂

∂xk
= δki

∂

∂xk
=

∂

∂xi
,
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Eq. (3.13) shows that the generic directional derivative d
dλ

can always be expressed as a
linear combination of ∂

∂xi
. It follows that d

dxi
≡ ∂

∂xi
are a basis for this vector space, and

{dxi
dλ
} are the components of d

dλ
on this basis. But {dxi

dλ
} are also the components of a

tangent vector at P. Therefore the space of all tangent vectors and the space of all derivatives
along curves at P are in 1-1 correspondence. For this reason we can say that d

dλ
is the

vector tangent to the curve xi(λ).
TO SUMMARIZE: the vectors tangent to the coordinate lines in a point P, i.e. the direc-
tional derivatives in P along these lines in a coordinate system (x1, ...xN), have the following
components

~∂

∂x1
= (1, 0, ...0),

∂

∂x2
= (0, 1, ...0), ....,

∂

∂xN
= (0, 0, ...1).

If we use the
{
~∂
∂xi

}
as a basis for vectors, the vector ~d

dλ
, tangent to the curve xi(λ), with

respect to this basis has components {dxi
dλ
}.

Vectors do not lie in M, but in the tangent space to M, called TpFor example in the two-
dimensional case analysed above the tangent plane was the plane itself, but if the manifold
is a sphere, since we cannot define a vector as an “arrow” on the sphere, we need to define
the tangent space, i.e. the plane tangent to the sphere at each point. For more general
manifolds it is not easy to visualize Tp. In any event Tphas the same dimensions as the
manifold M.

3.4 Coordinate bases

Any collection of n linearly independent vectors of Tpis a basis for Tp. However, a natural

basis is provided by the vectors that are tangent to the coordinate lines, i.e.
{
~e(i)

}
≡{

~∂
∂x(i)

}
; this is the coordinate basis.

IMPORTANT:
To hereafter, we shall enclose within () the indices that indicate which vector of the basis
we are choosing, not to be confused with the index which indicates the vector components.
For instance e1

(2) indicates the component 1 of the basis vector ~e(2).
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Any vector ~Aat a point P, can be expressed as a linear combination of the basis vectors

~A = Ai~e(i), (3.28)

(Remember Einstein’s convention:
∑
iA

i~e(i) ≡ Ai~e(i)) where the numbers {Ai} are the

components of ~Awith respect to the chosen basis.
If we make a coordinate transformation to a new set of coordinates (x1′ , x2′ , ...xn

′
), there

will be a new coordinate basis: {~e(i′)} ≡
{

~∂
∂x(i

′)

}
.

We now want to find the relation between the new and the old basis, i.e we want to express
each new vector ~e(j′) as a linear combination of the old ones {~e(j)}. In the new basis, the

vector ~A will be written as
~A = Aj

′
~e(j′), (3.29)

where {Aj′} are the components of ~Awith respect to the basis
{
~e(j′)

}
. But the vector

~Ais the same in any basis, therefore

Ai~e(i) = Ai
′
~e(i′). (3.30)

From eq. (3.11) we know how to express Ai
′

as functions of the components in the old basis,
and substituting these expressions into eq. (3.30) we find

Ai~e(i) = Λi′
kA

k~e(i′). (3.31)

By relabelling the dummy indices this equation can be written as[
Λi′

k~e(i′) − ~e(k)

]
Ak = 0, (3.32)

i.e.
~e(k) = Λi′

k~e(i′). (3.33)
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Multiplying both members by Λk
j′ and remembering that

Λk
j′Λ

i′
k =

∂xk

∂xj′
∂xi

′

∂xk
=
∂xi

′

∂xj′
= δi

′

j′ (3.34)

we find the transformation we were looking for

~e(j′) = Λk
j′~e(k). (3.35)

Summarizing: {
~e(k) = Λi′

k~e(i′),
~e(i′) = Λk

i′~e(k).
(3.36)

We are now in a position to compute the new basis vectors in terms of the old ones.
EXAMPLE
Consider the 4-dimensional flat spacetime of Special Relativity, but let us restrict to the

(x-y) plane, where we choose the coordinates (ct, x, y) ≡ (x0, x1, x2). The coordinate basis
is the set of vectors

~∂
∂x(0)

= ~e(0) → (1, 0, 0) (3.37)

~∂
∂x(1)

= ~e(1) → (0, 1, 0)

~∂
∂x(2)

= ~e(2) → (0, 0, 1),

or, in a compact form
eβ(α) = δβα. (3.38)

(The superscript β now indicates the β-component of the α-th vector). In this basis

any vector ~A can be written as

~A = A0~e(0) + A1~e(1) + A2~e(2) = Aα~e(α), α = 0, ..2 (3.39)

where {Aα} = (A0, A1, A2) are the components of ~A with respect to this basis. Let us
consider the following coordinate transformation

(x0, x, y)→ (x0, r, θ)
x0 = x0′

x1 = r cos θ
x2 = r sin θ,

(3.40)

i.e. x1′ = r, x2′ = θ. The new coordinate basis is

~∂

∂x(0′)
= ~e(0′),

~∂

∂r
≡

~∂

∂x(1′)
= ~e(1′),

~∂

∂θ
≡

~∂

∂x(2′)
= ~e(2′). (3.41)

From eq. (3.35) we find

~e(0′) = Λα
0′~e(α), Λα

0′ =
∂xα

∂x0′
. (3.42)
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In the example we are considering only Λ0
0′ 6= 0 and it is equal to 1. It follows that

~e(0) ≡
~∂

∂x(0′)
= ~e(0′). (3.43)

In addition
~e(1′) = Λα

1′~e(α), (3.44)

and since

Λ0
1′ =

∂x0

∂r
= 0, Λ1

1′ =
∂x1

∂r
= cos θ, Λ2

1′ =
∂x2

∂r
= sin θ, (3.45)

~e(1′) ≡
~∂

∂r
= cos θ~e(1) + sin θ~e(2). (3.46)

Similarly
~e(2′) = Λα

2′~e(α), (3.47)

and since

Λ0
2′ = 0, Λ1

2′ =
∂x1

∂θ
= −r sin θ, Λ2

2′ =
∂x2

∂θ
= r cos θ, (3.48)

hence

~e(2′) ≡
~∂

∂θ
= −r sin θ~e(1) + r cos θ~e(2). (3.49)

Summarizing, 
~e(0′) = ~e(0)

~e(1′) = ~e(r) = cos θ~e(1) + sin θ~e(2)

~e(2′) = ~e(θ) = −r sin θ~e(1) + r cos θ~e(2) .
(3.50)

It should be noted that we do not need to choose necessarily a coordinate basis. We may
choose a set of independent basis vectors that are not tangent to the coordinate lines. In
this case the matrix which allows to transform from one basis to another has to be assigned
and will not be Λα

β′ as in eq. (3.35).

3.5 One-forms

A one-form is a linear, real valued function of vectors. This means the following: a
one-form (or 1-form) q̃ at the point P takes the vector ~V at P and associates a number

to it, which we call q̃(~V ). To hereafter a “ ˜ ” will indicate 1-forms, as an arrow “→”
indicates vectors.

By definition, a one-form is linear. This means that, for every couple of vectors ~V , ~W ,
for every couple of real numbers a, b, for every one-form q̃,

q̃(a~V + b ~W ) = aq̃(~V ) + bq̃( ~W ). (3.51)

We define two operations acting on the space of one-forms:
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• Multiplication by real numbers: given a one-form q̃ and a real number a, we define the
new one-form aq̃ such that, for every vector ~V ,

(aq̃)(~V ) = a[q̃(~V )] . (3.52)

• Addition: given two one-forms q̃, σ̃, we define the new one-form q̃ + σ̃ such that, for
every vector ~V ,

[q̃ + σ̃](~V ) = q̃(~V ) + σ̃(~V ). (3.53)

One-forms satisfy the axioms (3.21-3.23). Let us show this for some of the axioms.

• Commutativity of addition. Given two one-forms q̃, σ̃, we have that, for every vector
field ~V ,

(q̃ + σ̃)
(
~V
)

= q̃
(
~V
)

+ σ̃
(
~V
)

= σ̃
(
~V
)

+ q̃
(
~V
)

= (σ̃ + q̃)
(
~V
)
. (3.54)

• Distributivity of multiplication with real numbers. Given two one-forms q̃, σ̃ and a real
number a, we have that, for every vector field ~V ,

[a (q̃ + σ̃)]
(
~V
)

= a [(q̃ + σ̃)]
(
~V
)

= a
[
q̃
(
~V
)

+ σ̃
(
~V
)]

= a
[
q̃
(
~V
)]

+ a
[
σ̃
(
~V
)]

= (aq̃)
(
~V
)

+ (aσ̃)
(
~V
)

= [(aq̃) + (aσ̃)]
(
~V
)

(3.55)

then, being this true for every ~V ,

a (q̃ + σ̃) = (aq̃) + (aσ̃) . (3.56)

• Existence of the zero element. The zero one-form 0̃ is the one-form such that, for every
~V ,

0̃(~V ) = 0 . (3.57)

The other axioms can be proved in a similar way.
Therefore, one-forms form a vector space, which is called the dual vector space to Tp, and
it is indicated as T∗p; this is also called the cotangent space in P .

T∗pis the space of the maps (the 1-forms) that associate to any given vector a number,

i.e. that map Tpon R1. The reason why T∗pis called dual to Tpis that vectors also can

be regarded as linear, real valued functions of one-forms: a vector ~V takes a 1-form q̃ and
associates a number to it, which we call ~V (q̃), and

q̃(~V ) ≡ ~V (q̃), (3.58)

in the sense that the two “operations” give as a result the same number. This point will be
further clarified in the following. Once we choose a basis for vectors, say {~e(i), i = 1, . . . , N},
we can introduce a dual basis for one-forms defined as follows:
the dual basis {ω̃(i), i = 1, . . . , N}, takes any vector ~V in Tpand produces its components

ω̃(i)(~V ) = V i. (3.59)
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It should be remembered that an index in parenthesis does not refer to a component, but
selects the -th one-form (or vector) of the basis. Thus the i-th basis one-form applied to
~V gives as a result a number, which is the component V i of the vector ~V . As expected,
this operation is linear in the argument

ω̃(i)(~V + ~W ) = V i +W i, (3.60)

since ~V+ ~W is a vector whose i-th component is V i +W i. In particular, if the argument of
a one-form is ~e(j), i.e. one of the basis vectors of the tangent space at the point P , since
only the j-th component of ~e(j) is different from zero and equal to 1, we have

ω̃(i)(~e(j)) = δij. (3.61)

We now want to answer the questions:

1. Who tells us that {ω̃(i)} form a basis for one-forms?

2. Can we define the components of a 1-form as we define the components of a vector?

——————————————————————–

1. Consider any one-form q̃ acting on an arbitrary vector ~V . By expressing ~V as a linear
combination of the basis vectors ~e(j), and using the linearity of one-forms we can write

q̃(~V ) = q̃(V j~e(j)) = V j q̃(~e(j)) = (3.62)

= ω̃(j)(~V )q̃(~e(j)),

where the last equality follows from eq.(3.59). This equation holds for any vector
~V therefore we can write

q̃ = ω̃(j) q̃(~e(j)); (3.63)

since q̃(~e(j)) are real numbers, this equation shows that any one-form q̃ can be written
as a linear combination of the {ω̃(j)}; consequently {ω̃(j)} form a basis for one-forms.

2. We now define the components of q̃ on the basis {ω̃(i)} as

qj = q̃(~e(j)) (3.64)

and consequently we can write
q̃ = qj ω̃

(j). (3.65)

Consider an open region U of the manifold M, and choose a coordinate system {xi} . We

have seen that this defines a natural coordinate basis for vectors ~e(i) ≡ {
~∂

∂x(i)
}. Furthermore,

it also defines a natural coordinate basis for one-forms (dual to the natural basis for vectors),
often indicated as {d̃x(i)} , whose components are

ω̃(i)
j ≡ d̃x

(i)
j = d̃x

(i)

 ~∂

∂x(j)

 = δij.
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And now the most important thing. From eq. (3.65) it follows that for any vector ~V

q̃(~V ) = qj ω̃
(j)(~V ). (3.66)

Since ω̃(j)(~V ) = V j, we find

q̃(~V ) = qjV
j. (3.67)

This operation is called contraction and tells us how to compute the number which results
from the application of q̃ on ~V (or viceversa), once we know the components of q̃ and ~V .

——————————————————————–
From eq. (3.67) we can now better understand why vectors and one-forms are dual of

each other. In fact, if qj and V j are respectively the components of the one-form q̃

and of the vector ~V
q̃(~V ) = qjV

j = q1V
1 + . . .+ qNV

N ; (3.68)

The right-hand side of this equation can be considered as a linear combination of the compo-
nents of ~V with coefficients qj, or alternatively, as a linear combination of the components of
q̃ with coefficients V j, and this follows from the linearity of the previous expression. There-
fore, we can define vectors as those linear functions that, when applied to one-forms, produce
a number.

——————————————————————–
Let us now make a coordinate transformation xk

′
= xk

′
(xi) and let us consider the

following questions.

1. How do the components of one-forms transform?

2. Will the new coordinate basis for one-forms be a linear combination of the old ones,
and if so, and which combination?

——————————————————————–

1. By definition
qj = q̃(~e(j)). (3.69)

If we change coordinates, we will have a new set of basis vectors {~e(j′)}, and we have
seen that they are related to the old ones by

~e(i′) = Λk
i′~e(k), (3.70)

where Λk
i′ = ∂xk

∂xi′
. The new components of q̃ will be

qj′ = q̃(~e(j′)) = q̃[Λk
j′~e(k)] = Λk

j′ q̃(~e(k)) = Λk
j′qk, (3.71)

hence
qj′ = Λk

j′qk. (3.72)

If we compare this result with eq. (3.7) we immediately recognize that this is the way
covariant vectors transform, thus covariant vectors are one-forms.
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2. We now want to check whether the new basis one-forms can be expressed as a linear
combination of the old ones. We shall proceed along the same lines of section 3.4.
From eq. (3.65) we see that

q̃ = qj ω̃
(j) = qk′ ω̃

(k′), (3.73)

(sum removed according to Einstein’s convenction), where {ω̃(k′)} are the new basis
one-forms. But

qk′ = Λi
k′qi, (3.74)

therefore
qjω̃

(j) = Λi
k′qiω̃

(k′). (3.75)

This equation can be rewritten as

[Λi
k′ω̃

(k′) − ω̃(i)]qi = 0, (3.76)

hence
ω̃(i) = Λi

k′ω̃
(k′). (3.77)

The matrix Λi
j′ is inverse of Λk′

i. Thus

Λk′
jΛ

j
i′ = δk

′

i′ , or Λk′
jΛ

i
k′ = δij. (3.78)

Multiplying both sides of eq. (3.77) by Λj′
i we find

Λj′
i ω̃

(i) = Λj′
iΛ

i
k′ ω̃

(k′) = δj
′

k′ ω̃
(k′), (3.79)

hence
ω̃(j′) = Λj′

i ω̃
(i), (3.80)

Summarizing, the transformation laws for the basis one-forms are{
ω̃(i) = Λi

k′ ω̃
(k′)

ω̃(k′) = Λk′
j ω̃

(j) (3.81)

EXAMPLE
Let us consider the same coordinate transformation analyzed in section 3.4. We start

with Minkowskian coordinates (x0, x1, x2). The coordinate basis for vectors is { ~∂
∂xα
} and

the dual basis for one-forms is {d̃xα}

d̃x(0) → (1, 0, 0) (3.82)

d̃x(1) → (0, 1, 0) (3.83)

d̃x(2) → (0, 0, 1) (3.84)

If we now change to polar coordinates (x0′ = x0, x1′ = r, x2′ = θ), according to eq. (3.80) we
find

ω̃(0′) = Λ0′
αd̃x

(α). (3.85)
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Since Λ0′
α = ∂x0

′

∂xα
, only Λ0′

0 = 1 6= 0, thus

ω̃(0′) = d̃x(0). (3.86)

Similarly

ω̃(1′) = Λ1′
αd̃x

(α) =
∂x1′

∂xα
d̃x(α) =

∂x1′

∂x1
d̃x(1) +

∂x1′

∂x2
d̃x(2). (3.87)

Since
∂x1′

∂x1
=
x1

x1′
= cos θ, and

∂x1′

∂x2
=
x2

x1′
= sin θ (3.88)

it follows that
ω̃(1′) = cos θd̃x1 + sin θd̃x2. (3.89)

Moreover

ω̃(2′) =
∂x2′

∂x1
d̃x(1) +

∂x2′

∂x2
d̃x(2), (3.90)

hence

ω̃(2′) = −1

r
sin θd̃x(1) +

1

r
cos θd̃x(2). (3.91)

Summarizing, 
ω̃(0′) = ω̃(0)

ω̃(1′) = cos θω̃(1) + sin θω̃(2)

ω̃(2′) = −1
r

sin θω̃(1) + 1
r

cos θω̃(2) .
(3.92)

————————————————————————
AN EXAMPLE OF ONE-FORM.
Consider a scalar field Φ(x1, ...xN). The gradient of a scalar field is

Φ̃→ (
∂Φ

∂x1
, ...,

∂Φ

∂xN
). (3.93)

It is easy to see, for example, that the components transform according to eq. (3.72), in fact

Φ̃j =
∂Φ

∂xj
, and Φ̃j′ =

∂Φ

∂xj′
=

∂Φ

∂xk
· ∂x

k

∂xj′
; (3.94)

since Λk
j′ = ∂xk

∂xj′
, it follows that

Φ̃j′ = Λk
j′Φ̃k, (3.95)

same as eq. (3.72). Thus the gradient of a scalar field is a one-form.

3.6 Vector fields and one-form fields

The vectors and one-forms are defined on a point P of the manifold, and belong to the vector
spaces Tpand T∗p, respectively, which also refer to a specific point P of the manifold; to

make this explicit, we could also denote a vector in P as ~Vp, a one-form in P as W̃p. We
shall now define vector fields and one-form fields.
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Given an open set S of a differentiable manifold M, we define the vector spaces

TS ≡
⋃
P∈S

Tp

T∗S ≡
⋃
P∈S

T∗p ,

i.e., the union of the tangent spaces on the points P ∈S, and the union of the cotangent
spaces on the points P ∈S.

A vector field ~V is a mapping

~V : S → TS

P → ~Vp

which associates, to every point P ∈S, a vector ~Vp defined on the tangent space in P , Tp.

A one-form field W̃ is a mapping

W̃ : S → T∗S
P → W̃p

which associates, to every point P ∈S, a one-form ~Wp defined on the cotangent space in P ,
T∗p. If a coordinate system (a chart) {xµ} is defined on S, we can indicate the vector field

and the one-form field as ~V (x), W̃ (x).
In the following, we will mainly consider vector fields and one-form fields; however, for

brevity of notation, we will often refer to them simply as vectors and one-forms.



Chapter 4

Tensors

4.1 Geometrical definition of a Tensor

The definition of a tensor is a generalization of the definition of one-forms.

Consider a point P of an n-dimensional manifold M . A tensor of type

(
N
N ′

)
at P is

defined to be a linear, real valued function, which takes as arguments N one-forms and N ′

vectors and associates a number to them.

For example if F is a

(
2
2

)
tensor this means that

F (ω̃, σ̃, ~V , ~W )

is a number and the linearity implies that

F (aω̃ + bg̃, σ̃, ~V , ~W ) = aF (ω̃, σ̃, ~V , ~W ) + bF (g̃, σ̃, ~V , ~W )

and
F (ω̃, g̃, a~V1 + b~V2, ~W ) = aF (ω̃, g̃, ~V1, ~W ) + bF (ω̃, g̃, ~V2, ~W )

and similarly for the other arguments.
This definition of tensors is rather abstract, but we shall see how to make it concrete with
specific examples.
The order in which the arguments are placed is important, as it is true for any function of
real variables. For example if

f(x, y) = 4x3 + 5y , then f(1, 5) 6= f(5, 1). (4.1)

In the same way
F (ω̃, g̃, ~V , ~W ) 6= F (g̃, ω̃, ~V , ~W ). (4.2)

EXAMPLES

A

(
0
1

)
tensor is a function that takes a vector as argument, and produces a number.

This is precisely what one-forms do (on the other hand this is the definition of one-forms).

41
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Thus, a

(
0
1

)
tensor is a one-form.

q̃(~V ) =
∑
α

qαV
α ≡ qαV

α. (4.3)

A

(
1
0

)
tensor is a function that takes a one-form as an argument, and produces a number.

Thus a

(
1
0

)
tensor is a vector

~V (q̃) = qαV
α. (4.4)

Let us now consider a

(
0
2

)
tensor. It is a function that takes 2 vectors and associates a

number to them.
Let us first define the tensor components: generalizing the definition (3.64) for the com-

ponents of a one-form, they are the numbers that are obtained when the

(
0
2

)
tensor is

applied to the basis vectors:
Fαβ = F (~e(α), ~e(β)); (4.5)

since there are n basis vectors, Fαβ will be an n× n matrix.

If we now take as arguments of F two arbitrary vectors ~A and ~B we find

F ( ~A, ~B) = F (Aα~e(α), B
β~e(β)) =

= AαBβF (~e(α), ~e(β)) =

= FαβA
αBβ. (4.6)

It should be stressed that in going from the first to the second line of eq. (4.6) we have used
the property that tensors are linear functions of the arguments.

It is now clear what is the number that F associates to the two vectors: the number is
FαβA

αBβ.

We shall now construct a basis for

(
0
2

)
tensors as we did for one-forms.

We want to write
F = Fαβω

(α)(β) (4.7)

where ω(α)(β) are the basis

(
0
2

)
tensors.

If the arguments of F are two arbitrary vectors ~A and ~B, eq. (4.7) gives

F ( ~A, ~B) = Fαβω
(α)(β)( ~A, ~B). (4.8)

On the other hand, since Aα = ω̃(α)( ~A) and Bβ = ω̃(β)( ~B), eq. (4.6) gives

F ( ~A, ~B) = Fαβω̃
(α)( ~A)ω̃β( ~B), (4.9)

and, by equating eqs. (4.8) and (4.9) we find

ω(α)(β)( ~A, ~B) = ω̃(α)( ~A)ω̃(β)( ~B).
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The previous equation holds for any two vectors ~A and ~B, consequently we write

ω(α)(β) = ω̃(α) ⊗ ω̃(β), (4.10)

where the symbol ⊗ indicates the “outer product” of the two basis one-forms, and means
precisely that if ω(α)(β) is applied to the vectors ~A and ~B, the result is a number, which
coincides with the number produced by the application of ω̃(α) to ~A, times that produced by
the application of ω̃(β) to ~B (the order is important!).

Thus the basis for

(
0
2

)
tensors can be constructed by taking the outer product of the

basis one-forms. Finally, we can write

F = Fαβω̃
(α) ⊗ ω̃(β). (4.11)

It is now clear that we can construct any sort of tensors using the procedure that we

have developed in the previous pages. Thus for example a

(
2
0

)
tensor T is a function that

associates to two one-forms α̃ and σ̃ a number, T (α̃, σ̃).
The components of this tensor are found by applying T to the basis one-forms

T µν = T (ω̃(µ), ω̃(ν)), (4.12)

and the number produced when T is applied to any two one-forms α̃, σ̃ will be

T (α̃, σ̃) = T (αµω̃
(µ), σνω̃

(ν)) = αµσνT (ω̃(µ), ω̃(ν)) = αµσνT
µν , (4.13)

where again use has been made of the linearity of tensors with respect to their arguments.

By following the same procedure used to find the basis for a

(
0
2

)
tensor, it is easy to show

that the basis appropriate for a

(
2
0

)
tensor will be

e(α)(β) = ~eα ⊗ ~eβ, (4.14)

and consequently
T = Tαβ~eα ⊗ ~eβ. (4.15)

————————————————————————

Exercise: prove that the

(
1
1

)
tensor ~V ⊗ σ̃ has components V µσν and find the basis

for

(
1
1

)
tensors.

————————————————————————

Now we ask the following question: how do the components of a tensor transform if we
make a coordinate transformation?

We start with a

(
0
2

)
tensor

F = Fαβω̃
(α) ⊗ ω̃(β) (4.16)
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If we change coordinates, we shall have a new set of basis one forms {ω̃(µ′)} which are
related to the old ones by the equations

ω̃(α) = Λα
µ′ω̃

(µ′) , ω̃(µ′) = Λµ′
αω̃

(α) (4.17)

In the new basis the tensor

(
0
2

)
will be

F = Fα′β′ω̃
(α′) ⊗ ω̃(β′). (4.18)

By equating (4.16) and (4.18)

Fα′β′ω̃
(α′) ⊗ ω̃(β′) = Fαβω̃

(α) ⊗ ω̃(β).

Replacing ω̃(α) and ω̃(β) by using the first of eqs. 4.17

Fα′β′ω̃
(α′) ⊗ ω̃(β′) = FαβΛα

µ′ω̃
(µ′) ⊗ Λβ

ν′ω̃
(ν′) = FαβΛα

µ′Λ
β
ν′ω̃

(µ′) ⊗ ω̃(ν′),

or by relabelling the dummy indices

Fµ′ν′ω̃
(µ′) ⊗ ω̃(ν′) = FαβΛα

µ′Λ
β
ν′ω̃

(µ′) ⊗ ω̃(ν′),

and finally
Fµ′ν′ = FαβΛα

µ′Λ
β
ν′ , (4.19)

or, by writing explicitely the elements of the matrix Λα
µ′

Fµ′ν′ = Fαβ
∂xα

∂xµ′
∂xβ

∂xν′
, (4.20)

where {xµ′} are the new coordinates.
In a similar way, by using eqs. 3.33 and 3.35 we would find that

T µ
′ν′ = TαβΛµ′

αΛν′
β, (4.21)

and
T µ
′
ν′ = TαβΛµ′

αΛβ
ν′ (4.22)

IMPORTANT

The following point should be stressed: the notion of tensor we have introduced is indepen-
dent of which coordinates, i.e. which basis, we use.

In fact the number that an

(
N
N ′

)
tensor associates to N one-forms and N ′ vectors does

not depend on the particular basis we choose.
This is the reason why, for example, we can equate eqs. (4.16) and (4.18).

The operations that we are allowed to make with tensors are the following.
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• Multiplication by a real number

Given a tensor T of type

(
N
N ′

)
and a real number a, we define the tensor, of the

same type,
W = aT .

Let the components of T , in a given frame, be {Tα...β...}. The components of W are

Wα...
β... = aTα...β... .

• Addition of tensors

Given two tensors T,G of the same type

(
N
N ′

)
, we define the tensor, of the same

type,
W = T +G .

Let the components of T,G, in a given frame, be {Tα...β...}, {Gα...
β...}. The components

of W in that frame are
Wα...

β... = Tα...β... +Gα...
β... .

• Outer product

Given two tensors T,G of types

(
N1

N ′1

)
,

(
N2

N ′2

)
, respectively. We define the tensor,

of type

(
N1 +N2

N ′1 +N ′2

)
,

W = T ⊗G .
Let the components of T,G, in a given frame, be {Tα...β...}, {G

γ...
δ...}. The components

of W in that frame are
Wα...γ...

β...δ... = Tα...β...G
γ...
δ... .

For instance, if both T,G are of type

(
0
2

)
,

Wαβγδ = TαβGγδ .

• Contraction

Given a tensor T of type

(
N
N ′

)
, with components {Tα1α2...αN

β1β2...βN′
} in a given frame.

We define a new tensor W of type

(
N − 1
N ′ − 1

)
, the components of which are obtained

by contraction of one contravariant (i.e. upper) and one covariant (i.e. lower) index of
T , i.e.

W
...αi−1 αi+1...

...βj−1 βj+1...
= T

...αi−1 σ αi+1...
...βj−1 σ βj+1...

.

For instance, if T is of type

(
2
3

)
and we choose to contract the first contravariant

index with the second covariant index

W β
σδ = Tαβσαδ = T 0β

σ0δ + T 1β
σ1δ + T 2β

σ2δ + . . .
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and W is a

(
1
2

)
tensor.

These are called tensor operations and an equation involving tensor components and ten-
sor operations is a tensor equation.

Finally, we remark that since a tensor T has been defined as an application from vectors
and one-forms, it is defined on the product of a certain number of copies of the tangent and
the cotangent spaces on a point P , Tp, T∗p. Then, we can define tensor fields, i.e., a tensor
for each point P of an open subset of the manifold; in a given coordinate system {xµ}, we
can write a tensor field as T (x). For brevity of notation, in the following we will often refer
to a tensor field simply as a tensor.

4.2 Symmetries

A

(
0
2

)
tensor F is Symmetric if

F ( ~A, ~B) = F ( ~B, ~A) ∀ ~A, ~B. (4.23)

As a consequence of eq. (4.6) we see that if the tensor is symmetric

FαβA
αBβ = FαβB

αAβ, (4.24)

and, by relabelling the indices on the RHS

FαβA
αBβ = FβαB

βAα, (4.25)

i.e.
Fαβ = Fβα (4.26)

i.e. if a

(
0
2

)
tensor is symmetric the matrix representing its components is symmetric.

Given any

(
0
2

)
tensor F we can always construct from it a symmetric tensor F(s)

F (s)( ~A, ~B) =
1

2
[F ( ~A, ~B) + F ( ~B, ~A)]. (4.27)

In fact ∀ ~A, ~B
1

2
[F ( ~A, ~B) + F ( ~B, ~A)] =

1

2
[F ( ~B, ~A) + F ( ~A, ~B)].

Moreover

F (s)( ~A, ~B) = F
(s)
αβA

αBβ =
1

2
[FαβA

αBβ + FαβB
αAβ] =

1

2
[FαβA

αBβ + FβαB
βAα]

=
1

2
[Fαβ + Fβα]AαBβ,
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and consequently the components of the symmetric tensor are

F
(s)
αβ =

1

2
[Fαβ + Fβα]. (4.28)

The components of a symmetric tensor are often indicated as

F(αβ) =
1

2
[Fαβ + Fβα]. (4.29)

A

(
0
2

)
tensor F is antisymmetric if

F ( ~A, ~B) = −F ( ~B, ~A) ∀ ~A, ~B, i.e. Fαβ = −Fβα. (4.30)

Again from any

(
0
2

)
tensor we can construct an antisymmetric tensor F (a) defined as

F (a)( ~A, ~B) =
1

2
[F ( ~A, ~B)− F ( ~B, ~A)].

Proceeding as before, we find that its components are

F
(a)
αβ =

1

2
[Fαβ − Fβα],

also indicated as

F[αβ] =
1

2
[Fαβ − Fβα]. (4.31)

It is clear that any tensor

(
0
2

)
can be written as the sum of its symmetric and antisym-

metric part

h[ ~A, ~B] =
1

2
[h( ~A, ~B) + h( ~B, ~A)] +

1

2
[h( ~A, ~B)− h( ~B, ~A)]

4.3 The metric Tensor

In chapter 1 we have seen that the metric tensor has a central role in the relativistic theory
of gravity. In this section we shall discuss its geometrical meaning.

Definition: the metric tensor g is a

(
0
2

)
tensor that, having two arbitrary vectors ~A

and ~B as arguments, associates to them a real number that is the inner product (or scalar

product) ~A · ~B
g( ~A, ~B) = ~A · ~B. (4.32)

The scalar product is usually defined to be a linear function of two vectors that satisfies the
following properties

~U · ~V = ~V · ~U
(a~U) · ~V = a(~U · ~V )

(~U + ~V ) · ~W = ~U · ~W + ~V · ~W (4.33)
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From the first eq. (4.33) it follows that g is a symmetric tensor. In fact

~U · ~V = g(~U, ~V ) = ~V · ~U = g(~V , ~U), → g(~U, ~V ) = g(~V , ~U). (4.34)

The second and third eqs. (4.33) imply that g is a linear functions of the arguments, a
condition which is automatically satisfied since g is a tensor.

As usual the components of the metric tensor are obtained by replacing ~A and ~B with
the basis vectors

gαβ = g(~e(α), ~e(β)) = ~e(α) · ~e(β) . (4.35)

Thus the metric tensor allows to compute the scalar product of two vectors in any space
and whatever coordinates we use:

~A · ~B = g( ~A, ~B) = g(Aα~e(α), B
β~e(β)) = AαBβg(~e(α), ~e(β)) = (4.36)

AαBβgαβ.

——————————————————————–

EXAMPLES

1)
The metric of four dimensional Minkowski spacetime, in Minkowskian coordinates xα =
(ct, x, y, z) is

gαβ =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 ≡ ηαβ

i.e.
ds2 = gαβdx

αdxβ = −c2dt2 + dx2 + dy2 + dz2 . (4.37)

This implies that the basis vectors in the coordinate basis

~e(0) = ~e(ct) → (1, 0, 0, 0)

~e(1) = ~e(x) → (0, 1, 0, 0)

~e(2) = ~e(y) → (0, 0, 1, 0)

~e(3) = ~e(z) → (0, 0, 0, 1)

are, in this case, mutually orthogonal:

~e(α) · ~e(β) = gαβ = 0 if α 6= β .

In addition, since
g11 = g22 = g33 = 1, and g00 = −1 ,

the basis vectors are unit vectors, ~e(0) is a timelike vector, and ~e(i) (i = 1, 2, 3) are
spacelike vectors:

~e(k) · ~e(k) = 1 if k = 1, . . . , 3 ,
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~e(0) · ~e(0) = −1 .

From now on we shall indicate as ηαβ the components of the metric tensor of the Minkowski
spacetime when expressed in cartesian coordinates.

2)
Let us now consider the metric of Minkowski spacetime in three dimensions, i.e. we suppress
the coordinate z:

gαβ =

 −1 0 0
0 +1 0
0 0 +1

 ≡ ηαβ (4.38)

with α, β = 0, . . . , 2. The vectors of the coordinate basis have components

~e(0) → (1, 0, 0)

~e(1) → (0, 1, 0)

~e(2) → (0, 0, 1) .

We now change to polar coordinates

x0 = x0′ , x1 = r cos θ, x2 = r sin θ. (4.39)

The vectors of the coordinate basis in the new coordinate system have been computed in
Sec. 3.4, and are

~e(0′) = ~e(0) (4.40)

~e(1′) = ~e(r) = cos θ~e(1) + sin θ~e(2) (4.41)

~e(2′) = ~e(θ) = −r sin θ~e(1) + r cos θ~e(2).

We can determine the metric tensor in the new frame by computing the scalar product of
the vectors of this frame:

g0′0′ = ~e(0′) · ~e(0′) = ~e(0) · ~e(0) = −1

g0′i′ = 0 i′ = 1, 2

g1′1′ = ~e(1′) · ~e(1′) = (cos θ~e(1) + sin θ~e(2)) · (cos θ~e(1) + sin θ~e(2)) = cos2 θ + sin2 θ = 1

g2′2′ = ~e(2′) · ~e(2′) = r2 sin2 θ + r2 cos2 θ = r2

g1′2′ = −r cos θ sin θ + r cos θ sin θ = 0

i.e.

gα′β′ =

 −1 0 0
0 +1 0
0 0 r2

 (4.42)

i.e.
ds2 = gαβdx

αdxβ = gα′β′dx
α′dxβ

′
= −dt2 + dr2 + r2dθ2 . (4.43)

We note that although the metric tensor is the same, its components in the two coordinate
frames, (4.38) and (4.42), are different, since g2′2′ = ~e(2′) · ~e(2′) = r2 6= 1. Thus, ~e(2′) is not
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an unit vector. In general the basis vectors are not required to have unitary norm, even in
a coordinate frame.

Usually, to determine the components of the metric tensor in a new frame, one does
not use the procedure above, based on the computation of the scalar products. One rather
employs the transformation law

gµ′ν′ = Λα
µ′Λ

β
ν′gαβ

which, in this case, has the form

gµ′ν′ = Λα
µ′Λ

β
ν′ηαβ .

Since ηαβ is diagonal, we only need to consider the components with α = β.

g0′0′ = Λα
0′Λ

β
0′ηαβ =

(
∂x0

∂x0′

)2

η00 = 1 · (−1) = −1

g0′i′ = Λα
0′Λ

β
i′ηαβ =

∂x0

∂x0′

∂x0

∂xi′
η00 +

∂x1

∂x0′

∂x1

∂xi′
η11 +

∂x2

∂x0′

∂x2

∂xi′
η22 = 0 i′ = 1, 2

because ∂x0

∂xi′
= ∂x1

∂x0′
= ∂x2

∂x0′
= 0.

g1′1′ = Λα
1′Λ

β
1′ηαβ = (Λ0

1′)
2η00 + (Λ1

1′)
2η11 + (Λ2

1′)
2η22 =

=

(
∂x0

∂x1′

)2

· (−1) +

(
∂x1

∂x1′

)2

· 1 +

(
∂x2

∂x1′

)2

· 1 =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

g1′1′ = cos2 θ + sin2 θ = 1

Proceeding in this way we find the metric in the frame (x0′ , x1′ , x2′) = (ct, r, θ), i.e. (4.42).

4.3.1 The metric tensor allows to compute the distance between
two points

Let us consider, for example, a three-dimensional space.

(x0, x1, x2) ≡ (ct, x, y)

The distance between two points infinitesimally close, P (x0, x1, x2) and P ′(x0 + dx0, x1 +
dx1, x2 + dx2) , is

~ds = dx0~e(0) + dx1~e(1) + dx2~e(2) = dxα~e(α) (4.44)

where ~e(α) are the basis vectors. ds2 is the norm of the vector ~ds, i.e. the square of the
distance between P and P ′:

ds2 = ~ds · ~ds = (dx0~e(0) + dx1~e(1) + dx2~e(2)) · (dx0~e(0) + dx1~e(1) + dx2~e(2))

= (dx0)2(~e(0) · ~e(0)) + dx1dx0(~e(1) · ~e(0)) + dx2dx0(~e(2) · ~e(0)) +

+ dx0dx1(~e(0) · ~e(1)) + (dx1)2(~e(1) · ~e(1)) + dx2dx1(~e(2) · ~e(1)) +

+ dx0dx2(~e(0) · ~e(2)) + dx2dx1(~e(2) · ~e(1)) + (dx2)2(~e(2) · ~e(2))
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By definition of the metric tensor

(~e(i) · ~e(j)) = g(~e(i), ~e(j)) = gij,

therefore

ds2 = g( ~ds, ~ds) = (dx0)2g00 + 2dx0dx1g01 + 2dx0dx2g02 + 2dx1dx2g12 + (dx1)2g11 + (dx2)2g22

(4.45)
where we have used the fact that gαβ = gβα.
This calculation is simplified if we use the following notation

ds2 = g( ~ds, ~ds) = g(
2∑

α=0

dxα~e(α),
2∑

β=0

dxβ~e(β)) ≡ g(dxα~e(α), dx
β~e(β)) =

= dxαdxβg(~e(α), ~e(β)) = gαβdx
αdxβ (4.46)

with α, β = 0, . . . , 2.
This way of writing is completely equivalent to eq. (4.45). For example, if the space is
Minkowski spacetime gαβ = ηαβ = diag(−1, 1, 1), and eq. (4.46) gives

ds2 = −(dx0)2 + (dx1)2 + (dx2)2, (4.47)

as expected.
If we now change to a coordinate system (x0′ , x1′ , x2′), the distance ~PP ′ will be ds

′2
= ds2,

i.e.

g( ~ds′, ~ds′) = ~ds′ · ~ds′ = ds′
2

= ds2 =

= g(dxα
′
~e(α′), dx

β′~e(β′)) = dxα
′
dxβ

′
g(~e(α′), ~e(β′)),

where {~e(α′)} are the new basis vectors. Therefore

ds2 = gα′β′dx
α′dxβ

′
(4.48)

where now gα′β′ are the components of the metric tensor in the new basis. For example, if
we change from carthesian to polar coordinates (x0′ , x1′ , x2′) ≡ (ct, r, θ),

ds2 = (dx0′)2g0′0′ + (dx1′)2g1′1′ + (dx2′)2g2′2′ = −(dx0)2 + dr2 + r2dθ2. (4.49)

Thus if we know the components of the metric tensor in any reference frame, we can compute
the distance between two points infinitesimally close, ds2.

The “infinitesimal” interpretation of ds2 we have discussed above is useful to understand
the role of the metric in measuring distances. In order to compute finite distances, we need
to proceed as follows. Let us consider a curve, i.e. a path C and a map

[a, b] ⊂ IR → C
λ → P (λ) (4.50)

which, in a given coordinate system {xµ}, corresponds to the real functions

λ→ {xµ(λ)} . (4.51)
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We can define the lenght of the path C as

∆s =
∫ b

a
dλ
ds

dλ
=
∫ b

a
dλ

√√√√∣∣∣∣∣gµν dxµdλ dxν

dλ

∣∣∣∣∣ . (4.52)

This definition corresponds, in infinitesimal form, to ds =
√
|ds2| =

√
|gµνdxµdxν |.

In other words, if we have a curve, characterized, in a given coordinate system, by the
functions {xµ(λ)}, and then by the tangent vector

Uµ =
dxµ

dλ
,

the measure element on the curve ds/dλ (which, integrated in dλ, gives the lenght of the
path) is

ds

dλ
=

√√√√∣∣∣∣∣gµν dxµdλ dxν

dλ

∣∣∣∣∣ =
√
|gµνUµUν | . (4.53)

This can be expressed in a coordinate-independent way:

ds

dλ
=

√∣∣∣g(~U, ~U)
∣∣∣ . (4.54)

Note that if we change coordinate system, {xµ} → {xα′}, the quantity (4.54) does not
change. Furthermore, if we change the parametrization of the curve,

λ→ λ′ = λ′(λ) ,

the new measure element is

ds

dλ′
=

√√√√∣∣∣∣∣gµν dxµdλ′
dxν

dλ′

∣∣∣∣∣ =

√√√√∣∣∣∣∣gµν dxµdλ dλ

dλ′
dxν

dλ

dλ

dλ′

∣∣∣∣∣ =
ds

dλ

dλ

dλ′
(4.55)

and

∆s =
∫ b

a
dλ
ds

dλ
=
∫ b

a

(
dλ′

dλ

dλ′

)
ds

dλ
=
∫ b′

a′
dλ′

ds

dλ′
. (4.56)

Therefore, ∆s does not depend on the parametrization, and is a charateristic of the path,
given the metric, not of the curve.

4.3.2 The metric tensor maps vectors into one-forms

As we have seen, the metric tensor is a linear function of two vectors: this means that it
takes two vectors and associates a number to them. The number is their scalar product.
But now suppose that we write g( , ~V ), namely we leave the first slot empty. What is this?

We know that if we fill the first slot with a generic vector ~A we will get a number, thus
g( , ~V ) must be a linear function of a generic vector that we can put in the empty slot, and
that associates a number to this vector.
But this is the definition of one-forms! Thus g( , ~V ) is a one-form.
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In addition, it is a particular one-form because it depends on ~V : if we change ~V , the
one-form will be different. Let us indicate this one-form as

g( , ~V ) = Ṽ . (4.57)

By definition the components of Ṽ are

Vα = Ṽ (~e(α)) = g(~e(α), ~V ) = g(~e(α), V
β~e(β)) = V βg(~e(α), ~e(β)) = V βgαβ,

hence
Vα = gαβV

β. (4.58)

Thus the tensor g associates to any vector ~V a one-form Ṽ , dual of ~V , whose components
can be computed if we know gαβ and V α.

In addition, if we multiply eq. (4.58) by gαγ, where gαγ is the matrix inverse to gαγ

gαγg
γβ = δβα, (4.59)

we find
gαγVα = gαγgαβV

β = δγβV
β = V γ,

i.e.
V γ = gαγVα, (4.60)

Consequently the metric tensor also maps one-forms into vectors . In a similar way the

metric tensor can map a

(
2
0

)
tensor in a

(
1
1

)
tensor

Aαβ = gβγA
αγ,

or in a

(
0
2

)
tensor

Aαβ = gαµgβνA
µν ,

or viceversa
Aαβ = gαµgβνAµν .

These maps are called index raising and lowering.
Summarizing, the metric tensor

1) allows to compute the inner product of two vectors g( ~A, ~B) = ~A · ~B, and consequently

the norm of a vector g( ~A, ~A) = ~A · ~A = A2.

2)As a consequence it allows to compute the distance between two points ds2 = g( ~ds, ~ds) =
gαβdx

αdxβ.
3) It maps one-forms into vectors and viceversa.
4) It allows to raise and lower indices.



Chapter 5

Affine Connections and Parallel
Transport

In chapter 1 we showed that there are two quantities that describe the effects of a gravita-
tional field on moving bodies by virtue of the Equivalence Principle: the metric tensor and
the affine connections. In chapter 4 we discussed the geometrical properties of the metric
tensor. In this chapter we shall define the affine connections as the quantities that allow
to compute the derivative of a vector in an arbitrary space, and we shall show that they
coincide with the Γ ’s introduced in chapter 1.

5.1 The covariant derivative of vectors

Let us consider a vector (field) ~V = V µ~e(µ) . The derivative of ~V is

∂~V

∂xβ
=
∂V α

∂xβ
~e(α) + V α∂~e(α)

∂xβ
. (5.1)

The first term on the right-hand side is a linear combination of the basis vectors, therefore it
is a vector and we know how to compute it. The second term involves the derivative of the
basis vectors, for which we need to compute the quantities ~e(α)(p

′)−~e(α)(p), i.e. to subtract
vectors which are applied in different points of the manifold M . Note that the vectors ~e(α)(p)
and ~e(α)(p

′) belong to the tangent space to M , respectively, in p and p′, and that Tp 6= Tp′ .
Thus, to define the derivative of a vector field on a manifold, we need to specify a rule to
compare vectors belonging to different tangent spaces; such a rule is called a connection.

Let us start considering Minkowski’s spacetime, where it is possible to define a global
coordinate system (ct, x, y, z) which covers the entire spacetime; at any given point p of the
manifold there exists the coordinate basis ~eM(α)(p) which belongs to the tangent space Tp.
In this case a simple rule to compare vectors on different tangent spaces is to impose that
each basis vector in a point p of the manifold is equal to the corresponding basis vector in
any other point p′, i.e.

~eM(α)(p) = ~eM(α)(p
′) . (5.2)

54
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This rule is the affine connection in Minkowski’s spacetime. Note that, with this choice the
basis vectors of the Minkowskian frame are, by definition, constant:

∂~eM(α)

∂xβ
= ~0 . (5.3)

Let us now consider a general spacetime. The equivalence principle tells us that at any
point of the manifold we can choose a locally inertial frame, in which the laws of physics
are (locally) those of Special Relativity. Thus, the natural choice for the affine connection
in a general spacetime is the following: we impose that in a locally inertial frame the basis
vectors are constant. We shall now show that, using this rule, we will be able to compute
the derivative of a vector 5.1 at a given point p of the manifold.

Let us make a coordinate transformation to the local inertial frame in p, introducing the
new basis vectors ~eM(α′) , related to the old basis vectors ~e(α) by the equation

~e(α) = Λα′
α~eM(α′). (5.4)

From (5.3) we know that the vectors ~eM(α′) are constanta. Consequently

∂~e(α)

∂xβ
=

(
∂

∂xβ
Λα′

α

)
~eM(α′). (5.5)

The R.H.S. of (5.5) is a linear combination of the basis vectors {~eM(α′)}, therefore it is a
vector.

Since
∂~e(α)
∂xβ

is a vector, we must be able to express it as a linear combination of the
basis vectors {~e(µ)} we are working with, i.e.:

∂~e(α)

∂xβ
= Γµαβ~e(µ), (5.6)

where the constants Γµαβ have three indices because α indicates which basis vector ~e(α) we
are differentiating, and β indicates the coordinate with respect to which the differentiation
is performed. The Γµβα are called affine connection or Christoffel symbols. Note that
in the case of Minkowski space, the basis vectors in the Minkowskian frame are constant,
thus Γµαβ = 0.

Thus, coming back to eq. (5.1), the derivative of ~V becomes

∂~V

∂xβ
=
∂V α

∂xβ
~e(α) + V αΓµβα~e(µ),

or relabelling the dummy indices

∂~V

∂xβ
=

[
∂V α

∂xβ
+ V σΓαβσ

]
~e(α). (5.7)

For any fixed β, ∂~V
∂xβ

is a vector field because it is a linear combination of the basis vectors

{~e(α)} with coefficients
[
∂V α

∂xβ
+ V σΓαβσ

]
.
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If we introduce the following notation

V α
,β =

∂V α

∂xβ
, and V α

;β =
∂V α

∂xβ
+ V µΓαβµ, (5.8)

eq. (5.7) becomes

∂~V

∂xβ
= V α

;β ~e(α). (5.9)

5.1.1 V α
;β are the components of a tensor

Let us define the following quantity:

∇~V =
[
V α

;β ~e(α)

]
⊗ ω̃(β). (5.10)

As shown in section 5.1, for any fixed value of β the quantity
[
V α

;β ~e(α)

]
is a vector; thus,

∇~V defined in eq. (5.10) is the outer product between these vectors and the basis one-forms,

i.e. it is a

(
1
1

)
tensor. This tensor field is called Covariant derivative of a vector,

and its components are
(∇~V )αβ ≡ ∇βV

α ≡ V α
;β. (5.11)

NOTE THAT
In a locally inertial frame the basis vectors are constant, and consequently, according to eq.
(5.6) the affine connections vanish and from eq. (5.8) it follows that

V α
;β = V α

,β =⇒ ∂~V

∂xβ
= V α

,β ~e(α). (5.12)

Thus, in a locally inertial frame covariant and ordinary derivative coincide.

5.2 The covariant derivative of one-forms and tensors

In order to find the covariant derivative of a one-form consider a scalar field Φ . At any
space point it is a number, therefore it does not depend on the coordinate basis: this implies
that ordinary and covariant derivative coincide

∇µΦ =
∂Φ

∂xµ
= (d̃Φ)µ. (5.13)

Now remember the definition of one-forms: they are linear, real valued functions of vectors
such that

q̃(~V ) = qαV
α, (5.14)

where qα and V α are the components of the one-form and vector fields, and qαV
α is a

scalar function. Let us assume that the scalar field in eq. (5.13) is the the function qαV
α;

consequently its covariant derivative will be

∇µΦ ≡ ∂Φ

∂xµ
=
∂qα
∂xµ

V α + qα
∂V α

∂xµ
.
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Substituting ∂V α

∂xµ
from eq. (5.8) we find

∇µΦ =
∂qα
∂xµ

V α + qα[V α
;µ − V βΓαµβ],

and relabeling the indices

∇µΦ =
∂qα
∂xµ

V α + qσV
σ

;µ − qσV αΓσµα =

= [
∂qα
∂xµ
− qσΓσµα]V α + qσV

σ
;µ. (5.15)

Since ∇µΦ are the components of a

(
0
1

)
tensor, this equation is true only if all terms

on the right-hand side are the components of tensors of the same rank. Let us consider the

second term: it is the result of the contraction of a

(
0
1

)
and a

(
1
1

)
tensor, therefore it

is a

(
0
1

)
tensor. The first term is a

(
0
1

)
tensor only if the terms in square brackets are

the components of a

(
0
2

)
tensor, which we call covariant derivative of the one-form

q̃
(∇q̃)αµ ≡ ∇µqα ≡ qα;µ = qα,µ − qσΓσµα. (5.16)

Thus, eq. (5.15) can be written as

∇µΦ = ∇µ(qαV
α) = qα;µV

α + qαV
α

;µ, (5.17)

which shows that the covariant derivative satisfies the standard property of the derivative of
a product.

The same procedure can be used to define the covariant derivative of

(
N
N ′

)
tensors.

(do it as an exercise)
(∇Tµν)β = Tµν,β − TανΓαβµ − TµαΓαβν (5.18)

(∇Aµν)β = Aµν,β + AανΓµαβ + AµαΓναβ (5.19)

(∇Bµ
ν)β = Bµ

ν,β +Bα
νΓ

µ
βα −Bµ

αΓαβν (5.20)

what is the rule?

5.3 The covariant derivative of the metric tensor

The covariant derivative of gµν is zero

gµν;α = 0.

The reason is the following. We know from the principle of equivalence that at each point
of spacetime we can choose a coordinate system such that gµν reduces to ηµν . The
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coordinate basis associated to these coordinates has constant basis vectors, therefore the
affine connections also vanish (see eq. 5.6). In this frame

gαβ;µ = ηαβ;µ =
∂ηαβ
∂xµ

− Γναµηνβ − Γνβµηαν = 0

gαβ;µ is a

(
0
3

)
tensor, and if all components of a tensor are zero in a coordinate system,

they are zero in any coordinate system therefore

gαβ;µ = 0 (5.21)

always.

5.4 Symmetries of the affine connections

Consider an arbitrary scalar field Φ.
Its first covariant derivative is a one-form and coincides with the ordinary derivative. Its

second covariant derivative ∇∇Φ is a

(
0
2

)
tensor of components Φ,β;α. In minkowskian

coordinates, i.e. in a locally inertial frame, covariant derivative reduces to ordinary deriva-
tive:

Φ,β;α = Φ,β,α =
∂

∂xα
∂

∂xβ
Φ, (5.22)

and since partial derivatives commute

Φ,β,α = Φ,α,β ⇒ Φ,β;α = Φ,α;β. (5.23)

Thus, the tensor ∇∇Φ is symmetric. But if a tensor is symmetric in one basis, it is
symmetric in any basis, therefore

Φ,β,α − Φ,µΓµβα = Φ,α,β − Φ,µΓµαβ

in any coordinate system. It follows that for any Φ

Φ,µΓµβα = Φ,µΓµαβ,

and consequently
Γµβα = Γµαβ (5.24)

in any coordinate system.

5.5 The relation between the affine connections and

the metric tensor

From eq. (5.21) it follows that

gαβ;µ = gαβ,µ − Γναµgνβ − Γνβµgαν = 0,
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therefore
gαβ,µ = Γναµgνβ + Γνβµgαν . (5.25)

Let us now consider the following equations

gαµ,β = Γναβgνµ + Γνµβgαν ,

−gβµ,α = −Γνβαgνµ − Γνµαgβν ,

It follows that

gαβ,µ + gαµ,β − gβµ,α = (Γναµ − Γνµα)gνβ +

+ (Γνβµ + Γνµβ)gαν + (Γναβ − Γνβα)gνµ,

where we have used gαβ = gβα.
Since Γαβγ are symmetric in β and γ, it follows that

gαβ,µ + gαµ,β − gβµ,α = 2Γνβµgαν .

If we multiply by gαγ and remember that since gαγ is the inverse of gαγ

gαγgαν = δγν ,

we finally find

Γγβµ =
1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α) (5.26)

This expression is extremely useful, since it allows to compute the affine connec-
tion in terms of the components of the metric.

Are the Γαβγ components of a tensor?
They are not, and it is easy to see why. In a locally inertial frame the Γαβγ vanish, but in
any other frame they don’t. If it would be a tensor they should vanish in any frame.
In the first chapter we defined the Christoffel symbols as

Γαµν =
∂xα

∂ξλ
∂2ξλ

∂xµ∂xν
. (5.27)

This definition was a consequence of the equivalence principle. We did the following: We
considered a free particle in a locally inertial frame {ξα}:

d2ξα

dτ 2
= 0. (5.28)

Then we transformed this equation to an arbitrary coordinate system {xα} and we showed
that it becomes

d2xα

dτ 2
+ Γαµν

[
dxµ

dτ

dxν

dτ

]
= 0, (5.29)

with Γαµν defined in eq. (5.27).
In this chapter we have defined the Γ’s as those functions that satisfy the equation

∂~e(µ)

∂xν
= Γαµν~e(α). (5.30)
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What is the relation between eq. (5.27) and eq. (5.30)?
In a localy inertial frame {ξα} be ~eM(µ) the constant basis vectors. If we make a coordinate
transformation to a new coordinate system {xα′}, the new basis {~e(µ′)} will be

~e(µ′) = Λα
µ′~eM(α) =

∂ξα

∂xµ′
~eM(α). (5.31)

In this frame, eq. (5.30)which defines the affine connections can be rewritten as

∂

∂xν′
[
Λβ

µ′~eM(β)

]
= Γα

′

µ′ν′Λ
γ
α′~eM(γ) (5.32)

or, being the ~eM(β) constant

∂Λβ
µ′

∂xν′
~eM(β) = Γα

′

µ′ν′Λ
γ
α′~eM(γ). (5.33)

This equation can be re-written as(
∂Λβ

µ′

∂xν′
− Γα

′

µ′ν′Λ
β
α′

)
~eM(β) = 0. (5.34)

We now multiply eq. (5.34) by Λσ′
β and find

Λσ′
β
∂Λβ

µ′

∂xν′
− Γα

′

µ′ν′Λ
σ′
βΛβ

α′ = 0. (5.35)

Since Λσ′
βΛβ

α′ = δσ
′
α′ , it follows that

Γσ
′

µ′ν′ = Λσ′
β
∂Λβ

µ′

∂xν′
=
∂xσ

′

∂ξβ
∂2ξβ

∂xν′∂xµ′
,

which coincides with eq. (5.27). Thus, as expected, the two definitions are equivalent. How
do the Γαβγ transform?
The easiest way to see it is from the definition (5.27). In an arbitrary coordinate system
{xµ′} they are

Γλ
′

µ′ν′ =
∂xλ

′

∂ξα
∂2ξα

∂xν′∂xµ′
=

=
∂xλ

′

∂xρ
∂xρ

∂ξα
∂

∂xµ′

(
∂ξα

∂xσ
∂xσ

∂xν′

)
=

=
∂xλ

′

∂xρ
∂xρ

∂ξα

[
∂xσ

∂xν′
∂2ξα

∂xτ∂xσ
∂xτ

∂xµ′
+
∂ξα

∂xσ
∂2xσ

∂xν′∂xµ′

]
=

=
∂xλ

′

∂xρ
∂xσ

∂xν′
∂xτ

∂xµ′
Γρτσ +

∂xλ
′

∂xσ
∂2xσ

∂xν′∂xµ′
(5.36)

The first term is what we should get if Γαβγ were a tensor. But we know it is not, and in
fact there is an additional term.



CHAPTER 5. AFFINE CONNECTIONS AND PARALLEL TRANSPORT 61

5.6 Non coordinate basis

In Sec. 3.4 we have seen that if we pass from Minkowskian coordinates {xα} ≡ (ct, x, y) to
polar coordinates {xα′} ≡ (ct, r, θ) the coordinate basis

{~e(α)} →


~e(0) → (1, 0, 0)
~e(1) → (0, 1, 0)
~e(2) → (0, 0, 1)

(5.37)

transforms to {~e(α′)} 
~e(0′) = ~e(0)

~e(1′) = ~e(r) = cos θ~e(1) + sin θ~e(2)

~e(2′) = ~e(θ) = −r sin θ~e(1) + r cos θ~e(2)

(5.38)

according to the law
~e(α′) = Λµ

α′~e(µ).

The new basis is a coordinate basis and the matrix Λµ
α′ = ∂xµ

∂xα
′ is the matrix associated

to the coordinate transformation. However we may choose a different basis for vectors. For
example the vectors {~e(α′)} in the previous example are not normalized. In fact

~e(α′) · ~e(β′) = gα′β′ =

 −1 0 0
0 1 0
0 0 r2

 6= ηα′β′ .

We may decide that we want a basis composed by unit vectors, and choose
~er̂ = ~er
~et̂ = ~et
~eθ̂ = 1

r
~eθ.

(5.39)

In this case we would find
~e(α̂) · ~e(β̂) = ηα̂β̂.

But now the question is: do there exist coordinates {xα̂} such that

e(α̂) = Λµ
α̂~e(µ) =

∂xµ

∂xα̂
~e(µ)

so that the basis {~e(α̂)} is a coordinate basis? Alternatively, we can formulate the same
question for the basis one-forms: if {ω̃(α′)} is the coordinate basis for one-forms and {ω(α̂)}
is the normalized basis, is {ω̃(α̂)} a new coordinate basis associated to some coordinates
{xα̂} ? i.e.

ω̃(α̂) = Λα̂
βω̃

(β) =
∂xα̂

∂xβ
ω̃(β)?

For instance, in the previous example,

ω̃1̂ = ω̃r̂ = ω̃r = cos θd̃x+ sin θd̃y

ω̃2̂ = ω̃θ̂ = rω̃θ = − sin θd̃x+ cos θd̃y (5.40)
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The point is that if this is true, Λα̂
β must coincide with the partial derivative ∂xα̂

∂xβ
, and

consequently the following condition must be satisfied for any Λα̂
γ:

∂

∂xγ
Λα̂

β =
∂2xα̂

∂xγ∂xβ
=

∂2xα̂

∂xβ∂xγ
=

∂

∂xβ
Λα̂

γ. (5.41)

This is an “integrability condition” that all the components of Λα̂
γ must satisfy in order

the coordinates {xα̂} do exist.
For example, let us check whether the basis (5.40) is a coordinate basis. From the expression
of ω̃θ we find that

Λ2̂
1 =

∂x2̂

∂x
= − sin θ Λ2̂

2 =
∂x2̂

∂y
= cos θ,

eq. (5.41) gives
∂

∂y
Λ2̂

1 =
∂

∂x
Λ2̂

2 ⇒
∂

∂y
(− sin θ) =

∂

∂x
(cos θ),

But

x = r cos θ y = r sin θ r =
√
x2 + y2,

so that it should be
∂

∂y

[
− y√

x2 + y2

]
=

∂

∂x

[
y√

x2 + y2

]
,

which is certainly not true.
We conclude that the basis {ω̃(α̂)} is not a coordinate basis, since we cannot associate to
it a coordinate transformation.

What are the consequences of choosing a noncoordinate basis?
As we have seen at the end of section 3.5, the gradient of a scalar field Φ is a one-form:

d̃Φ →
{
∂Φ

∂xα

}
≡ {Φ,α} . (5.42)

For example let us start in a 2-dimensional plane with coordinates (x, y) = (x1, x2). Then
change to polar coordinates (r, θ) = (x1′ , x2′). The gradient will transform as one-forms do:

d̃Φα′ = Λβ
α′ d̃Φβ

where d̃Φx = Φ,x = ∂Φ
∂x

and d̃Φy = Φ,y = ∂Φ
∂y

.
The components of the gradient in the new coordinate basis are

d̃Φr = Λx
rd̃Φx + Λy

rd̃Φy =
∂x

∂r
d̃Φx +

∂y

∂r
d̃Φy

d̃Φθ = Λx
θd̃Φx + Λy

θd̃Φy =
∂x

∂θ
d̃Φx +

∂y

∂θ
d̃Φy.

(5.43)

Being

x = r cos θ,

y = r sin θ ,
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
d̃Φr = cos θd̃Φx + sin θd̃Φy =

∂Φ

∂r
= Φ,r

d̃Φθ = −r sin θd̃Φx + r cos θd̃Φy =
∂Φ

∂θ
= Φ,θ.

(5.44)

Thus the components of the gradient in the new coordinate basis (~e(r), ~e(θ)) will still be

d̃Φ′ →
∂Φ

∂x′
.

But this is certainly non true if we use the non coordinate basis {~e(α̂)}: there are no

coordinates associated to this basis, thus we cannot define d̃Φĵ = ∂Φ

∂xĵ
!

Let us see what happens to the affine connections if we use a non-coordinate basis. We have
defined Γαβγ as

∇α~e(β) =
∂~e(β)

∂xα
= Γνβα~e(ν) . (5.45)

This is a definition valid in any basis, therefore in terms of a noncoordinate basis {~e(α̂)} eq.
(5.45) becomes

∇α̂~e(β̂) = Γν̂
β̂α̂
~e(ν̂) . (5.46)

But now, since the {xα̂} do not exist, is not longer true that

Φ,β̂;α̂ = Φ,α̂;β̂ .

If we go back to eq.(5.23) we see that we used this condition to show the simmetry of the
affine conection in the two lower indices. Thus if the basis is a non coordinate basis

Γα̂
β̂γ̂
6= Γα̂

γ̂β̂

and moreover eq (5.26) which gives the connections in terms of gαβ is no longer true as
well.
In the following of this course we shall use mainly coordinate basis, and we shall explicitely
specify when we will use a non coordinate basis.

—————————————
EXERCISE

In this chapter we have introduced the connections as those quantities that allow to find the
covariant derivative of a vector in an arbitrary frame. Given the metric components, the
simplest way to compute the connection is to use eq. (5.26). As an exercise, let us compute
the connection Γµαβ in a different way, using directly the definition

∂~e(α)

∂xβ
= Γµαβ~e(µ). (5.47)

Let us consider for example a 2-dimensional flat space in polar coordinates, i.e. (x1′ , x2′) ≡
(r, θ) and remember that the basis vectors are related to the coordinate basis associated to
cartesian coordinates by the equations (3.50)

~e(1′) = cos θ~e(1) + sin θ~e(2)

~e(2′) = −r sin θ~e(1) + r cos θ~e(2).
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Let us indicate, for simplicity (~e(1), ~e(2)) with (~e(x), ~e(y)), and (~e(1′), ~e(2′)) with (~e(r), ~e(θ)). From
these expressions we find

∂~e(r)

∂r
=

∂

∂r
(cos θ~e(x) + sin θ~e(y)) = 0,

and consequently

Γµrr~e(µ) = Γrrr~e(r) + Γθrr~e(θ) = 0 =⇒ Γrrr = Γθrr = 0.

Moreover

∂~e(r)

∂θ
=

∂

∂θ
(cos θ~e(x) + sin θ~e(y)) =

= − sin θ~e(x) + cos θ~e(y) =
1

r
~e(θ),

therefore
1

r
~e(θ) = Γµrθ~e(µ) = Γrrθ~e(r) + Γθrθ~e(θ) =⇒ Γrrθ = 0 , Γθrθ =

1

r
.

Proceeding along these lines one can show that

Γrθr = 0 , Γθθr =
1

r
, Γrθθ = −r , Γθθθ = 0.

It should be noted that altough we have used the cartesian basis to express ~e(r) and ~e(θ)

and compute their derivatives, at the end the Γ’s depend only on the coordinates r and
θ. Note also that the same result can be obtained by using eq. (5.26) and the metric

gαβ =

(
1 0
0 r2

)
.

5.7 Summary of the preceeding Sections

In chapter 1 we have seen that the equation of motion of a particle which moves under the
exclusive action of a gravitational field is

d2xα

dτ 2
+ Γαµν

[
dxµ

dτ

dxν

dτ

]
= 0. (5.48)

In the frame associated to the coordinates {xµ} the line element is

ds2 = gµνdx
µdxν . (5.49)

Then we have seen that the Equivalence Principle allows to find a locally inertial frame {ξα}
where eq. (5.48) becomes

d2ξα

dτ 2
= 0, (5.50)

and the line element reduces to
ds2 = ηµνdx

µdxν . (5.51)
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However we do not know if this transformation holds everywhere, i.e. if the spacetime is
really flat, or if it holds only locally, which would mean that there is a non constant and non
uniform gravitational field. It follows that the study of the motion of a single particle and
the knowledge of the Γαµν ’s do not allow to decide whether there is a non constant and non
uniform gravitational field.

Then we have introduced vectors and tensors on a manifold, we have defined the metric
tensor as a geometric object and we have shown that its role is not only that of defining the
distance between points, but also that of mapping vectors into one-forms, and of computing
the scalar product between vectors. We have shown that if we introduce at each point of the
manifold a basis for vectors {~e(α)} (and a dual basis for one forms {ω̃(β)} ) any vector (or
one-form) can be assigned “components” with respect to the basis

~A = Aα~e(α). (5.52)

Then we have introduced an operator of covariant derivative, which generates a tensor
according to the following rule

∇βV
α = V α

,β + ΓαµβV
µ. (5.53)

(and similar rules for tensors). The covariant derivative coincides with ordinary derivative
in two particular cases:

1) the spacetime is flat and we are using a basis where the vectors ~e(α) are constant.
Consequently from the definition (5.6) it follows that Γαµβ = 0.

2) the spacetime is curved, but we are in a locally inertial frame. Indeed, in this frame
eq. (5.48) reduces to eq. (5.50), which means again that Γαµβ = 0.

The fact that we can always find a frame where gµν reduces to ηµν and the Γαµβ = 0
(and consequently the first derivatives of gµν vanish) implies that in order to know if we
are in the presence of a gravitational field, (i.e. if the spacetime is curved), we need to
know the second derivatives of the metric tensor gµν,α,β. This result should not be
surprising: in chapter 1 we introduced the 2-dimensional Gaussian geometry and we said
that one can always choose a frame where the metric looks flat, but there exists a quantity,
the Gaussian curvature, which tells us that the space is curved. The gaussian curvature
depends on the first derivatives (non linearly) and on the second derivatives (linearly) of the
metric; thus, we shall now look for a generalization of the Gaussian curvature. We already
mentioned that in four dimensions we need more than one invariant to describe the intrinsic
properties of a curved surface: we need six functions, and it is clear that a vector would not
be enough. Thus, we need a tensor, but which tensor? The only thing we know is that it
should contain the second derivatives of gµν . In order to introduce the curvature tensor we
first need to introduce the notion of parallel transport of a vector along a curve.

5.8 Parallel Transport

In chapter 1 we discussed and compared the intrinsic geometry of cones, cylinders and
spheres, and we noticed that while it is flat for cones and cylinders, it is curved for spheres.
That means, for example, that two lines which start parallel do not remain parallel when
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prolonged:

BA

consider two segments in A and
B, perpendicular to the equator,
i.e. parallel.

BA

The same lines when prolonged:
they do not remain parallel.

It is also interesting to see what happens when we parallely transport a vector along a path.
Parallel Transport means that for each infinitesimal displacement, the displaced
vector must be parallel to the original one, and must have the same lenght. Let
us consider first the case when the path belongs to a flat space.

a) FLAT SPACE

C

A B

When we return to A the dis-
placed vector coincides with the
original vector in A.

b) ON A SPHERE
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U

V

(remember that the vector must always be tangent to the sphere)

C

A B

When the vector goes back to A
it is rotated of 90 degrees This is
a consequence of the curvature of
the sphere.

On a curved manifold it is impossible to define a globally parallel vector
field. The parallel transport of a vector depends on the path along which it is
transported.

Let us now compute how does a vector change when it is parallely transported. Consider
a curve of parameter λ and a vector field ~V defined at every point of the curve. Be
~U → {dxα

dλ
} the vector tangent to the curve

At every point of the curve we can choose a locally inertial frame {ξα}. In this frame, if

we move ~V along the curve of an infinitesimal dλ, parallel to itself and keeping its lenght
unchanged, its components do not change

dV α

dλ
= 0. (5.54)

But
dV α

dλ
=
∂V α

∂ξβ
dξβ

dλ
= UβV α

,β = 0. (5.55)
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Since we are in a locally inertial frame, ordinary and covariant derivative coincide and there-
fore we can write

UβV α
;β = 0. (5.56)

If this equation is true in a locally inertial frame, since it is a tensor equation it must be true
in any other frame. Therefore eq. (5.56) is the frame-invariant definition of the parallel

transport of ~V along the curve identified by the tangent vector ~U .
Eq. (5.56) is written in terms of the components of ~V and ~U ; if we want to write it in a

frame-independent form we shall write

∇~U
~V = 0, (5.57)

which means that the covariant derivative along the direction of the vector ~U is zero. Written
explicitely for a generic reference frame with coordinates {xα} eq. (5.57) gives(

∇~U
~V
)α
≡ UβV α

;β (5.58)

=
dxβ

dλ

[
∂V α

∂xβ
+ ΓαβνV

ν

]
=
dV α

dλ
+ ΓαβνV

νUβ = 0.

Thus, contrary to what happens in flat space the components of a vector parallely transported
along a curve in curved space do change, and the change is given by

dV α

dλ
= −ΓαβνV

νUβ.

5.9 The geodesic equation

In Chapter 1 we introduced the geodesics, as the curves which describe the motion of free
particles; “free” here means that no other force than gravity is acting on them. We showed
that they are the solution of the geodesic equation (1.37)

d2xα

dτ 2
+ Γαµβ

[
dxµ

dτ

dxβ

dτ

]
= 0 . (5.59)

A different derivation of this equation, simpler than that given in Chapter 1, makes use of
the notion of covariant derivative. Let us consider a “free” particle, with worldline xµ(τ)
and four-velocity (i.e. tangent vector to the worldline) Uµ = dxµ/dτ . By the equivalence
principle, at any point of the worldline we can define a locally inertial frame {xα′}, in which
the laws of special relativity hold; then, in this frame the particle four-acceleration is zero,
i.e.

dUµ′

dτ
=
dxα

′

dτ

∂Uµ′

∂xα′
= Uα′Uµ′

,α′ = 0 . (5.60)

In a locally inertial frame ordinary and covariant derivative coincide, thus

Uα′Uµ′

;α′ = 0 . (5.61)
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This is a tensorial equation, and the covariance principle establishes that it holds in any
coordinate frame; therefore, in a generic frame we can write

UαUµ
;α = 0 . (5.62)

Equations (5.62) and (5.59) coincide; indeed

UαUµ
;α = UαUµ

,α + UαΓµ αβU
β , (5.63)

and by substituting Uµ = dxµ/dτ this equation becomes

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , (5.64)

which is eq. (5.59).

The parameter along a geodesic need not to be the proper time. Be s the new parameter
chosen to parametrize the geodesic. Since

d

dτ
=

d

ds

ds

dτ
, (5.65)

equation (5.64) becomes

d2xα

ds2
+ Γαµν

[
dxµ

ds

dxν

ds

]
= −

d2s

dτ 2

/(ds
dτ

)2
 dxα
ds

; (5.66)

From this equation we see that the new curve is a geodesic, i.e. has the form of equation
(5.64), only if the new parameter is related to the proper time τ by a linear transformations

s = aλ+ b, a, b = const; (5.67)

in which case the right hand side of equation (5.66) vanishes. τ and s are called affine
parameters.

Equation (5.62) was derived assuming that the geodesic was the worldline of a massive
particle, i.e a timelike curve. However, this equation has a more general validity, since a
geodesic can be either timelike, spacelike or null. If a geodesic is timelike, i.e. ~U · ~U < 0,
it can represent the wordline of a massive particle; in this case, by performing the linear
transformation (5.67) it is possible to change the affine parameter in such a way that ~U · ~U =
−1, so that the new parameter is the particle proper time.

If, instead, a geodesic is a null curve, i.e. ~U · ~U = 0, it can represent the wordline of a
massless particle; in this case the affine parameter is a generic parameter, since proper time
is not defined for massless particles.

If the geodesic is spacelike, i.e. U · ~U > 0, it does not represent the worldline of a particle
of any kind.

According to the equation of parallel transport (5.56), the geodesic equation written in

the form (5.62) is the equation of the parallel transport of the tangent vector ~U along the
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geodesic. This means that if we take the tangent vector at a point p, and parallely transport
it to a point p′ along the geodesic line, the transported vector is tangent to the curve at p′.
Thus, a curve C with tangent vector ~U is a geodesic if

∇~U
~U = 0. (5.68)

For this eason we say that: geodesics are those curves which parallel-transport their
own tangent vectors.



Chapter 6

The Curvature Tensor

We are now in a position to introduce the curvature tensor. We will do it in two different
ways.

6.1 a) A Formal Approach

Let us start writing the transformation rule for affine connections

Γλµν =
∂xλ

∂xα′
∂xρ′

∂xµ
∂xσ′

∂xν
Γα′ρ′σ′ +

∂xλ

∂xα′
∂2xα′

∂xµ∂xν
. (6.1)

As we already noticed (Chapter V sec. 5) if the last term on the right-hand side would be
zero Γλµν would transform as a tensor. Let us isolate the ‘bad term’, by multiplying eq.
(6.1) by ∂xτ ′

∂xλ
:

∂2xτ ′

∂xµ∂xν
=
∂xτ ′

∂xλ
Γλµν −

∂xρ′

∂xµ
∂xσ′

∂xν
Γτ ′ρ′σ′. (6.2)

We now differentiate this equation with respect to xκ

∂3xτ ′

∂xκ∂xµ∂xν
=

∂2xτ ′

∂xκ∂xλ
Γλµν +

∂xτ ′

∂xλ

(
∂

∂xκ
Γλµν

)
(6.3)

− ∂2xρ′

∂xκ∂xµ
∂xσ′

∂xν
Γτ ′ρ′σ′ −

∂xρ′

∂xµ
∂2xσ′

∂xκ∂xν
Γτ ′ρ′σ′ −

∂xρ′

∂xµ
∂xσ′

∂xν

(
∂

∂xκ
Γτ ′ρ′σ′

)
.

We now use eq. (6.2):

∂3xτ ′

∂xκ∂xµ∂xν
= (6.4)

+Γλµν

[
∂xτ ′

∂xα
Γακλ −

∂xβ′

∂xκ
∂xγ′

∂xλ
Γτ ′β′γ′

]
+
∂xτ ′

∂xλ

[
∂

∂xκ
Γλµµ

]

−∂x
σ′

∂xν
Γτ ′ρ′σ′

[
∂xρ′

∂xα
Γακµ −

∂xβ′

∂xκ
∂xγ′

∂xµ
Γρ′β′γ′

]

71
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−∂x
ρ′

∂xµ
Γτ ′ρ′σ′

[
∂xσ′

∂xα
Γακν −

∂xβ′

∂xκ
∂xγ′

∂xν
Γσ′β′γ′

]

−∂x
ρ′

∂xµ
∂xσ′

∂xν

(
∂

∂xκ
Γτ ′ρ′σ′

)
.

Let us rewrite the last term as

∂xρ′

∂xµ
∂xσ′

∂xν
∂xη′

∂xκ

(
∂

∂xη′
Γτ ′ρ′σ′

)
. (6.5)

(The reason is that the indices of Γ have a prime, thus the derivatives must be computed
with respect to the {xα′}). We now rewrite eq. (6.5) in the following way

∂3xτ ′

∂xκ∂xµ∂xν
= (6.6)[

∂xτ ′

∂xλ

(
∂

∂xκ
Γλµν

)
+

(
∂xτ ′

∂xα
ΓακλΓ

λ
µν

)]

−
[
∂xρ′

∂xµ
∂xσ′

∂xν
∂xη′

∂xκ

(
∂

∂xη′
Γτ ′ρ′σ′

)
− ∂xσ′

∂xν
∂xβ′

∂xκ
∂xγ′

∂xµ
Γτ ′ρ′σ′Γ

ρ′
β′γ′

]

−
[
∂xρ′

∂xµ
∂xβ′

∂xκ
∂xγ′

∂xν
Γτ ′ρ′σ′Γ

σ′
β′γ′

]

−
[
∂xσ′

∂xν
Γτ ′ρ′σ′

∂xρ′

∂xα
Γακµ +

∂xρ′

∂xµ
Γτ ′ρ′σ′

∂xσ′

∂xα
Γακν +

∂xβ′

∂xκ
∂xγ′

∂xλ
ΓλµµΓτ ′β′γ′

]
.

We now relabel the indices in the following way

∂xτ ′

∂xα
ΓακλΓ

λ
µν →

∂xτ ′

∂xλ
ΓλκηΓ

η
µν (6.7)

∂xσ′

∂xν
∂xβ′

∂xκ
∂xγ′

∂xµ
Γτ ′ρ′σ′Γ

ρ′
β′γ′ →

∂xσ′

∂xν
∂xη′

∂xκ
∂xρ′

∂xµ
Γτ ′λ′σ′Γ

λ′
η′ρ′

∂xρ′

∂xµ
∂xβ′

∂xκ
∂xγ′

∂xν
Γτ ′ρ′σ′Γ

σ′
β′γ′ →

∂xρ′

∂xµ
∂xη′

∂xκ
∂xσ′

∂xν
Γτ ′ρ′λ′Γ

λ′
η′σ′

∂xσ′

∂xν
Γτ ′ρ′σ′

∂xρ′

∂xα
Γακµ →

∂xρ′

∂xν
Γτ ′σ′ρ′

∂xσ′

∂xλ
Γλκµ

∂xρ′

∂xµ
Γτ ′ρ′σ′

∂xσ′

∂xα
Γακν →

∂xρ′

∂xµ
Γτ ′ρ′σ′

∂xσ′

∂xλ
Γλκν

∂xβ′

∂xκ
∂xγ′

∂xλ
ΓλµµΓτ ′β′γ′ →

∂xρ′

∂xκ
∂xσ′

∂xλ
ΓλµµΓτ ′ρ′σ′

With these changes the terms can be collected in the following way

∂3xτ ′

∂xκ∂xµ∂xν
=
∂xτ ′

∂xλ

[(
∂

∂xκ
Γλµν

)
+ ΓλκηΓ

η
µν

]
(6.8)

−∂x
ρ′

∂xµ
∂xσ′

∂xν
∂xη′

∂xκ

[(
∂

∂xη′
Γτ ′ρ′σ′

)
− Γτ ′λ′σ′Γ

λ′
η′ρ′ − Γτ ′ρ′λ′Γ

λ′
η′σ′

]

−∂x
σ′

∂xλ
Γτ ′ρ′σ′

[
Γλκµ

∂xρ′

∂xν
+ Γλκν

∂xρ′

∂xµ
+ Γλµν

∂xρ′

∂xκ

]
.
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We now subtract from this expression the same expression with κ and ν interchanged

∂3xτ ′

∂xκ∂xµ∂xν
− ∂3xτ ′

∂xν∂xµ∂xκ
= 0 = (6.9)

∂xτ ′

∂xλ

[(
∂

∂xκ
Γλµν

)
+ ΓλκηΓ

η
µν

]

−∂x
ρ′

∂xµ
∂xσ′

∂xν
∂xη′

∂xκ

[(
∂

∂xη′
Γτ ′ρ′σ′

)
− Γτ ′λ′σ′Γ

λ′
η′ρ′ − Γτ ′ρ′λ′Γ

λ′
η′σ′

]

−∂x
σ′

∂xλ
Γτ ′ρ′σ′

[
Γλκµ

∂xρ′

∂xν
+ Γλκν

∂xρ′

∂xµ
+ Γλµν

∂xρ′

∂xκ

]
−

∂xτ ′

∂xλ

[(
∂

∂xν
Γλµκ

)
+ ΓλνηΓ

η
µκ

]

+
∂xρ′

∂xµ
∂xσ′

∂xκ
∂xη′

∂xν

[(
∂

∂xη′
Γτ ′ρ′σ′

)
− Γτ ′λ′σ′Γ

λ′
η′ρ′ − Γτ ′ρ′λ′Γ

λ′
η′σ′

]

+
∂xσ′

∂xλ
Γτ ′ρ′σ′

[
Γλνµ

∂xρ′

∂xκ
+ Γλνκ

∂xρ′

∂xµ
+ Γλµκ

∂xρ′

∂xν

]

collecting all terms we find

∂xτ ′

∂xλ

[
∂

∂xκ
Γλµν −

∂

∂xν
Γλµκ + ΓλκηΓ

η
µν − ΓλνηΓ

η
µκ

]
(6.10)

−∂x
ρ′

∂xµ
∂xσ′

∂xν
∂xη′

∂xκ

[
∂

∂xη′
Γτ ′ρ′σ′ −

∂

∂xσ′
Γτ ′ρ′η′ + Γτ ′λ′η′Γ

λ′
σ′ρ′ − Γτ ′λ′σ′Γ

λ′
η′ρ′

]
= 0.

If we now define the following 1

Rλ
µνκ = −

[
∂

∂xκ
Γλµν −

∂

∂xν
Γλµκ + ΓλκηΓ

η
µν − ΓλνηΓ

η
µκ

]
, (6.11)

we can write eq. (6.10) as the transformation law for the tensor

Rσ′
α′β′γ′ =

∂xσ′

∂xλ
∂xµ

∂xα′
∂xν

∂xβ′
∂xκ

∂xγ′
Rλ

µνκ. (6.12)

The tensor (6.11) is The Curvature Tensor, also called The Riemann Tensor, and it
can be shown that it is the only tensor that can be constructed by using the metric, its first
and second derivatives, and which is linear in the second derivatives.

This way of defining the Riemann tensor is the “old-fashioned way”: it is based on the
transformation properties of the affine connections. The idea underlying this derivation is
that the information about the curvature of the space must be contained in the second
derivative of the metric, and therefore in the first derivative of the Γαµν . But since we
want to find a tensor out of them, we must eliminate in eq. (6.1) the part which does not
transform as a tensor, and we do this in eq. (6.9).

1The - sign does not agree with the definition given in Weinberg, but it does agree with the definition
given in many other textbooks. As we shall see in the next section it is irrelevant. What is important is to
write the Einstein equations with the right signs!



CHAPTER 6. THE CURVATURE TENSOR 74

6.2 b) The curvature tensor and the curvature of the

spacetime

We shall now rederive the curvature tensor in a different way that explicitely shows why
it espresses the curvature of a spacetime. This derivation, due to Levi Civita, will use the
notion of parallel transport of a vector along a closed loop.

Consider a closed loop whose four sides are the coordinates lines x1 = a, x1 = a + δa,
x2 = b, x2 = b+ δb

Take a generic vector ~V and parallely transport ~V along AB, i.e. consider ∇~e(1) ~V = 0.
From eq. (5.57) it follows that

eµ(1)V
α

;µ = 0. (6.13)

Since ~e(1) has only e1
(1) 6= 0 then

∂V α

∂x1
+ Γαβ1V

β = 0. (6.14)

This equation can be integrated along the line AB:

δV α
AB = −

∫ B

A(x2=b)
Γαβ1V

βdx1. (6.15)

In a similar way, if we go from B to C along the line x1 = a+ δa

∂V α

∂x2
= −Γαβ2V

β → δV α
BC = −

∫ C

B(x1=a+δa)
Γαβ2V

βdx2. (6.16)

From C to D

∂V α

∂x1
= −Γαβ1V

β → δV α
CD = −

∫ D

C(x2=b+δb)
Γαβ1V

βdx1, (6.17)

and from D back to A

∂V α

∂x2
= −Γαβ2V

β → δV α
DA = −

∫ A

D(x1=a)
Γαβ2V

βdx2. (6.18)
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The change in ~V due to this parallel transport will be a vector ~δV whose components can
be found by adding eqs. (6.15)-(6.18):

δV α = −
∫ A

D(x1=a)
Γαβ2V

βdx2 (6.19)

−
∫ C

B(x1=a+δa)
Γαβ2V

βdx2 −
∫ D

C(x2=b+δb)
Γαβ1V

βdx1

−
∫ B

A(x2=b)
Γαβ1V

βdx1.

If the spacetime is flat V α do not change when the vector is paralleley transported, i.e.
δV α = 0. But in curved spacetime δV α will in general be different from zero.

If we consider an infinitesimal loop, i.e. δa and δb tend to zero, we can take an
expansion of eq. (6.19) to first order in δa and δb:

δV α ' −
∫ B

A(x2=b)
Γαβ1V

βdx1 − (6.20)[∫ C

B(x1=a)
Γαβ2V

βdx2 +
∂

∂x1

(∫ C

B
Γαβ2V

βdx2

)
δa

]

−
[∫ D

C(x2=b)
Γαβ1V

βdx1 +
∂

∂x2

(∫ D

C
Γαβ1V

βdx1

)
δb

]

−
∫ A

D(x1=a)
Γαβ2V

βdx2 ,

Since

A = (a, b), C = (a+ δa, b+ δb), B = (a+ δa, b), and D = (a, b+ δb), (6.21)

the previous equation becomes

δV α ' −
∫ a+δa

a
Γαβ1V

βdx1 (6.22)

−
∫ b+δb

b
Γαβ2V

βdx2 −
[∫ b+δb

b

∂

∂x1

(
Γαβ2V

β
)
dx2

]
δa

+
∫ a+δa

a
Γαβ1V

βdx1 +

[∫ a+δa

a

∂

∂x2

(
Γαβ1V

β
)
dx1

]
δb

+
∫ b+δb

b
Γαβ2V

βdx2 ,

i.e.

δV α ' −δa
∫ b+δb

b

∂

∂x1

(
Γαβ2V

β
)
dx2 (6.23)

+δb
∫ a+δa

a

∂

∂x2

(
Γαβ1V

β
)
dx1 ' δaδb

[
− ∂

∂x1

(
Γαβ2V

β
)

+
∂

∂x2

(
Γαβ1V

β
)]
.
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Eq. (6.23) can be further developed by using eq. (6.14)

∂V κ

∂x1
= −Γκβ1V

β,
∂V κ

∂x2
= −Γκβ2V

β ; (6.24)

it becomes

δV α = δaδb

[
∂Γαβ1

∂x2
V β + Γακ1

∂V κ

∂x2
− ∂Γαβ2

∂x1
V β − Γακ2

∂V κ

∂x1

]
(6.25)

= δaδb

[
∂Γαβ1

∂x2
− ∂Γαβ2

∂x1
− Γακ1Γκβ2 + Γακ2Γκβ1

]
V β.

Note that:

• δa and δb are the non vanishing components of the displacement vectors ~δx(1) and ~δx(2)

along the direction of the basis vectors ~e(1) and ~e(2), i.e.

~δx(1) = δa~e(1) , ~δx(2) = δa~e(2) (6.26)

whose components in the basis {~e(α)} are

δxµ(1) = (0, δa, 0, 0) = δa δµ1 , (6.27)

δxµ(2) = (0, 0, δb, 0) = δb δµ2 .

Thus, we can write eq. (6.25) as follows

δV α = δxν(1) δx
µ
(2)

[
∂Γαβν
∂xµ

− ∂Γαβµ
∂xν

− ΓακνΓ
κ
βµ + ΓακµΓκβν

]
V β . (6.28)

• The term in square

Rα
βµν = Γαβν,µ − Γαβµ,ν − ΓακνΓ

κ
βµ + ΓακµΓκβν . (6.29)

Note that it is antisymmetric in ν and µ; indeed, it must be because, if we interchange
~δx(1) and ~δx(2), δV

α changes sign, because we would go around the loop in the opposite
direction. This shows that the sign of (6.29) can be chosen arbitrarily, and this is the
reason why the definitions of the Riemann tensor given in textbooks may differ for a
sign.

We have already shown that the object given in eq. (6.29) is a tensor, by looking at the way
it transforms under a coordinate transformation (eq. 6.12). However, we want to see if it
also agrees with the definition of tensors given in chapter 4. Let us contract eq. (6.28) with
Vα.

δV αVα = δxν(1) δx
µ
(2)

[
∂Γαβν
∂xµ

− ∂Γαβµ
∂xν

− ΓακνΓ
κ
βµ + ΓακµΓκβν

]
V βVα. (6.30)

The result of this contraction is, of course, a number. On the right-hand side there are the
components of 3 vectors i.e.: δxν(1), δx

µ
(2) and V β; moreover there are the components of the

one-form Vα. The four geometrical objects (three vectors and one one-form) are contracted



CHAPTER 6. THE CURVATURE TENSOR 77

with the quantity within brackets, and the result is a number. In addition, we note that
(6.30) is linear in V β, Vα, δx

ν
(1) δx

µ
(2). For instance, if we consider a displacement δxν(1a)+δx

ν
(1b)

along ~e(1) it is immediate to see that

δV αVα = δxν(1a)δx
µ
(2) [...]V βVα + δxν(1b)δx

µ
(2) [...]V βVα , (6.31)

and similarly for the other quantities. If we consider a generic

(
1
3

)
tensor, Tαβγδ , since

by definition it is a linear function of one one-form and three vectors, when supplied with
these arguments (for example the one-form Ṽ , and the three vectors ~V , ~δx(1) and ~δx(2) it
will produce the following number

T (Ṽ , ~V , ~δx(2), ~δx(1)) = TαβρδVαV
βδxρ(2) δx

δ
(1) . (6.32)

Eq. (6.32) has the same structure of eq. (6.30). Therefore we are entitled to define the
components of the Riemann tensor as in eq. (6.29).

It should now be clear why the Riemann tensor deserves its name of Curvature Tensor:
it tells us how does a vector change when it is parallely transported along a loop, due to the
curvature of the spacetime. If the spacetime is flat

δV α = 0 along any closed loop → Rα
βγδ = 0, (6.33)

in any reference frame. Indeed, if a tensor vanishes in a given frame, then it vanishes in
any other frame.

The components of the Riemann tensor assume a very nice form when computed in a
locally inertial frame:

Rα
βµν =

1

2
gασ [gσν,βµ − gσµ,βν + gβµ,σν − gβν,σµ] , (6.34)

or lowering the index α

Rαβµν = gαλR
λ
βµν =

1

2
[gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ] . (6.35)

It should be stressed that
1) The Riemann tensor is linear in the second derivatives of gµν , and non linear in the

first derivatives.
2) In a locally inertial frame the Γανσ vanish and therefore the non-linear part of the

Riemann tensor vanishes as well.

6.3 Symmetries

From eq. (6.35) it is easy to verify that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ, (6.36)

Rαβµν +Rανβµ +Rαµνβ = 0. (6.37)

Since Rαβµν is a tensor, these symmetry properties are valid in any reference frame. The
symmetries of the Riemann tensor reduce the number of independent components to 20.
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6.4 The Riemann tensor gives the commutator of co-

variant derivatives

Let us consider the second covariant derivatives of a vector field ~V

∇α∇βV
µ = ∇α(V µ

;β) = (V µ
;β),α + ΓµσαV

σ
;β − ΓσβαV

µ
;σ. (6.38)

In a locally inertial frame Γµσα = 0, and eq. (6.38) becomes

∇α∇βV
µ = (V µ

;β),α = V µ
,β,α + Γµνβ,αV

ν . (6.39)

By interchanging α and β

∇β∇αV
µ = (V µ

;α),β = V µ
,α,β + Γµνα,βV

ν . (6.40)

The commutator of the covariant derivatives then is

[∇α,∇β]V µ = ∇α∇βV
µ −∇β∇αV

µ = (Γµνβ,α − Γµνα,β)V ν . (6.41)

Since in a locally inertial frame

Rµ
ναβ = Γµνβ,α − Γµνα,β (6.42)

(equivalent to eq. 6.34), eq. (6.41) becomes

[∇α,∇β]V µ = Rµ
ναβV

ν . (6.43)

This is a tensor equation and since it is valid in a given reference frame, it will be valid
in any frame. Eq. (6.43) implies that in curved spacetime covariant derivatives do not
commute and therefore the order in which they appear is important.

6.5 The Bianchi identities

Let us differentiate eq. (6.35) with respect to xλ (and rememeber that it is valid in a locally
inertial frame)

Rαβµν,λ =
1

2
[gαν,βµλ − gαµ,βνλ + gβµ,ανλ − gβν,αµλ] . (6.44)

By using the fact that gαβ is symmetric and eq. (6.44) one can show that

Rαβµν,λ +Rαβλµ,ν +Rαβνλ,µ = 0. (6.45)

Since it is valid in a locally inertial frame and it is a tensor equation, it will be valid in any
frame:

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0, (6.46)

where we have replaced the ordinary derivative with the covariant derivative. These are the
Bianchi identities that, as we shall see, play an important role in the development
of the theory.



Chapter 7

The Geodesic deviation

The Principle of equivalence establishes that we can always choose a locally inertial frame
where the affine connections vanish and the metric becomes that of a flat spacetime. Con-
versely, if the spacetime is flat we can always define a coordinate system which “simulates”,
locally, the existence of any arbitrary gravitational field. In this frame we could measure
the “simulated” gravitational force by studying the motion of a single particle, but these
measurements would never allow us to know whether that force is simulated or real: this
can be understood only by comparing the motion of close particles, i.e. by comparing the
behaviour of close geodesics.

7.1 The equation of geodesic deviation

Consider two particles moving along the trajectories xµ(τ) and xµ(τ) + δxµ(τ), where δxµ

is the vector of separation between the two close geodesics, and τ is an affine parameter.
This is equivalent to say: consider a two-parameter family of geodesics xµ(τ, p), where the
parameter p labels different geodesics

Be

tα =
∂xα

∂τ
(7.1)
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the tangent vector to the geodesic line, and be

δxα =
∂xα

∂p
. (7.2)

Note that
∂tα

∂p
=
∂δxα

∂τ
. (7.3)

We now compute the covariant derivative of the vector ~t along the curve τ = const whose
tangent vector is δxµ, i.e. ∇ ~δx

~t. The components of this vector are

(
∇ ~δx

~t
)α

=
∂xµ

∂p

[
∂tα

∂xµ
+ Γαµνt

ν

]
=
∂tα

∂p
+ Γαµνt

νδxµ. (7.4)

Similarly, the covariant derivative of the vector ~δx along the curve p = const, i.e. along
the geodesic, has components(

∇~t ~δx
)α

= tµδxα;µ =
∂δxα

∂τ
+ Γαµνδx

νtµ. (7.5)

From eq. (7.3) and from the symmetry of Γαµν in the lower indices it follows that

∇~t ~δx = ∇ ~δx
~t. (7.6)

The quantities
(
∇~t ~δx

)α
or

(
∇ ~δx

~t
)α

involve only the affine connections, and therefore
they do not give significant information on the gravitational field. We then compute the
second covariant derivative of the vector ~δx along the curve p = const, i.e ∇~t

(
∇~t ~δx

)
.

We define the following operator:

D

dτ
δxα ≡

(
∇~t ~δx

)α
= tµδxα;µ . (7.7)

With this definition,
D2δxα

dτ 2
=
(
∇~t
(
∇~t ~δx

))α
. (7.8)

This quantity, called geodesic deviation, is a vector describing the relative acceleration of
two nearby geodesics.

In order to compute the geodesic deviation, let us consider the commutator[
∇~t,∇ ~δx

]
~t = ∇~t

(
∇ ~δx

~t
)
−∇ ~δx

(
∇~t ~t

)
. (7.9)

whose components are[
∇~t
(
∇ ~δx

~t
)]α

= tµ (δxν tα;ν);µ − δx
µ (tν tα;ν);µ (7.10)

= tµ δxν ;µt
α

;ν + tµ δxν tα;ν;µ − δxµ tν ;µ t
α

;ν − δxµ tνtα;ν;µ

= (tµ δxν ;µ − δxµ tν ;µ) tα;ν + (tα;ν;µ − tα;µ;ν) t
µ δxν .

From eq. (7.6) we find that
tµ δxν ;µ = δxµ tν ;µ,
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and eq. (7.11) becomes [
∇~t
(
∇ ~δx

~t
)]α

= (tα;ν:µ − tα;µ;ν) t
µδxν . (7.11)

We now remind that, according to eq. (6.43), the commutator of covariant derivatives is

(tα;ν:µ − tα;µ;ν) = Rα
βµνt

β, (7.12)

therefore eq. (7.11) becomes [
∇~t
(
∇ ~δx

~t
)]α

= Rα
βµνt

βtµδxν . (7.13)

Moreover, since tµ is the geodesic tangent vector, when it is parallel-transported along the
geodesic it gives (see Section 5.9)

∇~t ~t = 0; (7.14)

as a consequence ∇ ~δx

(
∇~t ~t

)
= 0 and the commutator (7.9) can be rewritten as

([
∇~t,∇ ~δx

]
~t
)α

=
(
∇~t
(
∇~t ~δx

))α
= Rα

βµνt
βtµδxν . (7.15)

By direct substitution of this expression in eq. (7.8) we finally find

D2δxα

dτ 2
= Rα

βµν t
β tµ δxν . (7.16)

This is the equation of geodesic deviation, which shows that the relative acceleration of
nearby particles moving along geodesics depends on the curvature tensor. Since the Riemann
tensor is zero if and only if the gravitational field is either zero or constant and uniform, the
equation of the geodesic deviation really contains the information on the gravitational field
in a given spacetime.



Chapter 8

The stress-energy tensor

Now we know that there exists a tensor which allows to understand if the spacetime is curved
or flat, i.e. if we are in the presence of a non-constant, non-uniform gravitational field. But
in order to derive Einstein’s equations, we still need to answer the following question: how
do we describe matter and fields in general relativity? This question is relevant
because we want to find what to put on the right-hand-side of the equations as a source of
the gravitational field.

We shall first define the stress-energy tensor in flat spacetime, and then generalize this
notion to a generic spacetime.

In Special Relativity, we define the energy-momentum four-vector of a particle of mass

m and velocity v = dξξξ
dt

in the following way

pα = mcuα, α = 0, 3, (8.1)

where uα = dξα

dτ
is the four-velocity (uαuα = −1); τ , which has the dimensions of a length,

is related to the particle proper time by the equation:
[
proper time = 1

c
τττ
]
. In what

follows, we shall indicate in boldface tri-vectors, for instance v, whereas four-vectors will be
indicated with an arrow, i.e. ~A. Also remember that {ξα} are Minkowskian coordinates of
flat spacetime, or of a locally inertial frame.

Note that ξ0 = ct and, defining

γ =
dξ0

dτ
, (8.2)

we have:

u0 = γ

ui =
dξi

dτ
=
dξi

dt

dt

dτ
= vi

γ

c

uαuβηαβ = −γ2

(
1− v2

c2

)
= −1 ⇒ γ =

(
1− v2

c2

)−1/2

. (8.3)

We have then
pµ = m(cγ, γv) . (8.4)
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The time-component of the energy-momentum vector does represent the energy of the par-
ticle

p0 =
E

c
, and E = mc2γ. (8.5)

The space-components are the components of the three-dimensional momentum

p = mγv. (8.6)

What does it change if we are dealing with a continuous or discrete distribution of matter and
energy? In that case we should be able to measure some other quantities, as the mass and
the energy which are contained in a unitary volume, or the flux of energy and momentum
that flows across the different faces of this volume. This information is contained in the
stress-energy tensor we are now going to define.

Let us consider the simple case of a system of n non-interacting particles located at some
points ξn(t), each with an energy-momentum vector pαn.
We define the density of energy as

T 00 ≡
∑
n

cp0
n(t)δ3(ξξξ − ξξξn(t)) =

∑
n

Enδ
3(ξξξ − ξξξn(t)), (8.7)

the density of momentum 1
c
T 0i, where T 0i is defined as

T 0i ≡
∑
n

cpin(t)δ3(ξξξ − ξξξn(t)), i = 1, 3 (8.8)

and the current of momentum as

T ki ≡
∑
n

pkn(t)
dξin(t)

dt
δ3(ξξξ − ξξξn(t)), k = 1, 3 i = 1, 3. (8.9)

δ3(ξξξ−ξξξn) is the Dirac delta-function defined by the statement that for any smooth function
f(ξξξ) ∫

d3ξ f(ξξξ)δ3(ξξξ − ξξξn) = f(ξξξn), (8.10)

and if ξξξn = (x0, y0, z0)

δ3(ξξξ − ξξξn) = δ(x− x0)δ(y − y0)δ(z − z0), (8.11)

or, in polar coordinates

δ3(ξξξ − ξξξn) =
1

r2 sin2 θ
δ(r − r0)δ(θ − θ0)δ(ϕ− ϕ0). (8.12)

Thus, according to the definition (8.10) the three-dimensional δ-function has the dimensions
of the inverse of a cubic lenght l−3. For this reason, for example, T 00 is, dimensionally, an
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energy ([cp0]) divided by a volume ([δ3]) and therefore it is the energy density of the system1

The definitions (8.7),(8.8) and (8.9) can be unified into a single formula

Tαβ =
∑
n

pαn
dξβn(t)

dt
δ3(ξξξ − ξξξn(t)), α, β = 0, 3, (8.13)

or, since

pαn =
En
c2

dξαn (t)

dt
, (8.14)

eq. (8.13) can also be written as

Tαβ = c2
∑
n

pαnp
β
n

En
δ3(ξξξ − ξξξn(t)), (8.15)

which clearly shows that Tαβ is symmetric

Tαβ = T βα. (8.16)

Finally, an alternative way of writing eq. (8.13) is

Tαβ = c
∑
n

∫
pαn
dξβn
dτn

δ4(~ξ − ~ξn(τn))dτn, (8.17)

where
δ4(~ξ − ~ξn) = δ(ξ0 − ξ0n)δ(ξ1 − ξ1n)δ(ξ2 − ξ2n)δ(ξ3 − ξ3n); (8.18)

indeed, using the property (8.10) of the δ-function it is easy to see that

Tαβ = c
∑
n

∫
pαn

dξβn
dτn

δ4(~ξ − ~ξn(τn)) dτn

= c
∑
n

∫ [
pαn

dξβn
dτn

δ3(ξξξ − ξξξn(τn))

]
δ(ξ0 − ξ0

n(τn))
dτn
dξ0

n

dξ0
n

= c
∑
n

[
pαn

dξβn
dξ0

n

δ3(ξξξ − ξξξn(τn))

]
ξ0(τn)=ξ0

= c
∑
n

pαn
dξβn
dξ0

δ3(ξξξ − ξξξn(ξ0)) =
∑
n

pαn
dξβn
dt

δ3(ξξξ − ξξξn(ξ0)) (8.19)

which coincides with (8.15)

1Properties of the δ-function

δ(x) = δ(−x), δ(cx) =
1

|c|
δ(x)

δ[g(x)] =
∑
j

1

|g′(xj)|
δ(x− xj) xδ(x) = 0∫

dxf(x)δ′(x− x0) = −f ′(x0).
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Summarizing, the meaning of the different components is the following
T 00 = energy-density. In the non-relativistic case v << c, p0

n ∼ mnc and T 00 ∼∑
nmnc

2δ3(ξξξ − ξξξn(t)) reduces to the density of matter ρc2 where

ρ =
∑
n

mnδ
3(ξξξ − ξξξn(t)) (8.20)

(remember the dimensions of the δ-function) .
1
c
T 0i = density of momentum. Since the dimensions of the momentum ~p are those of an

energy divided by a velocity, [p0] = [E/c], it follows that cT 0i has the dimensions of [ E
tS

], i.e.
it is the energy which flows across the unit surface orthogonal to the axis ξi per unit time
(i=1,3) (see eq. (8.8)).

Similar dimensional considerations allow us the interpret T ik as the flux of the i-th
component of the three-momentum p across the unit surface orthogonal to the axis ξk

(i,k=1,3) (see eq. (8.9)).
Now we must check several things:

1) is Tαβ a tensor?
2) does it satisfy any conservation law? (remember that the energy-momentum four

vector does satisfy a conservation law).
3) if it does, how to write this law in a curved spacetime, i.e. in the presence of a

gravitational field?

1) is T αβ a tensor?
Let us consider a generic coordinate transformation

{ξα} −→ {xα′} −→ ξα = Λα
γ′ x

γ′, (8.21)

The four-momentum and the four-velocity transform as

pα = Λα
γ′ p

γ′, uα ≡ dξα

dτ
= Λα

γ′ u
γ′. (8.22)

In order to see how Tαβ transforms we need a brief digression to show how to transform
δ4(x).

—————————————————-

In a four dimensional spacetime the volume element which is invariant under a generic
coordinate transformation is

√
−g d4x, i.e.

√
−g d4x =

√
−g′ d4x′. (8.23)

Indeed,
d4x = |J | d4x′, (8.24)

where J = det
(
∂xα

∂xβ′

)
is the Jacobian associated to the coordinate transformation. Since

gα′β′ =
∂xµ

∂xα′
∂xν

∂xβ′
gµν , (8.25)
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taking the determinant of both member we get

g′ = J2g and therefore
√
−g =

1

|J |

√
−g′. (8.26)

Thus, if {ξα} is a Minkowskian frame, and {xα} is a generic frame,

d4ξ =
√
−g d4x. (8.27)

Let us now consider a delta-function in Minkowski’s spacetime; by definition, for every
function f(~ξ), ∫

d4ξ f(~ξ)δ4(~ξ − ~ξn) = f(~ξn) , (8.28)

and, in a generic frame, ∫
d4x f(~x)δ4(~x− ~xn) = f(~xn) . (8.29)

Let us now perform a coordinate transformation ξα → xα, with xα = xα(ξµ), and define

f̃(~ξ) = f(~x(~ξ)); multiplying and dividing Eq. (8.29) by
√
−g, it gives∫ √

−g d4x f(~x)
δ4(~x− ~xn)√
−g

=
∫

f̃(~ξ)
δ4(~x− ~xn)√
−g

d4ξ = f̃(~ξn) (8.30)

which is valid for every function f . Comparing eqs. (8.28) and (8.30) it follows

δ4(~ξ − ~ξn) =
δ4(~x− ~xn)√
−g

. (8.31)

—————————————————-

Using eqs. (8.17), (8.22) and (8.31) it is now easy to find the transformation rule for
Tαβ :

Tαβ = c
∑
n

∫
Λα

γ′ Λβ
δ′ p

γ′
n

dxδ′n
dτn

δ4(~x− ~xn)√
−g

dτn. (8.32)

Therefore if we define

Tαβ = c
∑
n

∫ 1√
−g

pαn
dxβn
dτn

δ4(~x− ~xn) dτn , (8.33)

under a generic coordinate transformation it will transform like

Tαβ = Λα
γ′ Λβ

δ′ T
γ′ δ′. (8.34)

and therefore it is a tensor. In flat spacetime, and in a locally inertial frame
√
−g = 1 and we

recover the definition (8.17). In conclusion, eq. (8.33) is the stress-energy tensor appropriate
to describe a cloud of non interacting particles both in flat and in curved spacetime. Of
course we may have different kind of matter and/or energy: a fluid, an electromagnetic field,
etc. In that case it is possible to show that the corresponding stress-energy tensor can be
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derived by writing the action of the considered field, and by varying this action with respect
to gµν . However, the physical meaning of the different components of Tαβ will be the same.

We shall now use the tensor we have derived to answer the second important question
we raised. The answer will be valid for the stress-energy tensor of any sort of matter-energy.

2) Does Tαβ satisfy a conservation law?
Let us assume that we are in flat spacetime. Let us differentiate the (αi)-components of

the stress-energy tensor given in eq. (8.13):

∂Tαi

∂ξi
=
∑
n

pαn(t)
dξin(t)

dt

∂

∂ξi
δ3(ξξξ − ξξξn(t)), (8.35)

where α = 0, 3 and i = 1, 32. Since

∂

∂ξi
δ3(ξξξ − ξξξn(t)) = − ∂

∂ξin
δ3(ξξξ − ξξξn(t)), (8.36)

eq. (8.35) becomes

∂Tαi

∂ξi
= −

∑
n

pαn(t)
dξin(t)

dt

∂

∂ξin
δ3(ξξξ − ξξξn(t)) (8.37)

= −
∑
n

pαn(t)
∂

∂t
δ3(ξξξ − ξξξn(t)).

Let us now differentiate the Tα0-component with respect to ξ0 = ct:

∂Tα0

∂ξ0
=
∑
n

dpαn(t)

dt
δ3(ξξξ − ξξξn(t)) +

∑
n

pαn(t)
∂

∂t
δ3(ξξξ − ξξξn(t)) (8.38)

Since
dpαn(t)

dt
=
dpαn(τ)

dτ

dτ

dt
=
dτ

dt
fαn , (8.39)

where fαn is the relativistic force, the first term in eq. (8.38) can be considered as a density
of force Gα defined as

Gα(ξξξ, t) =
∑
n

dpαn(t)

dt
δ3(ξξξ − ξξξn(t)) =

∑
n

δ3(ξξξ − ξξξn(t))
dτ

dt
fαn . (8.40)

It is a density because the δ-function is [l−3]. If the particles are free, fαn = 0 and adding
eq. (8.37) and eq. (8.38) we find

∂

∂ξ0
Tα0 +

∂

∂ξi
Tαi = 0 → ∂Tαβ

∂ξβ
= 0, (8.41)

or
Tαβ,β = 0, (8.42)

2Remind: ∂Tαi

∂ξi = ∂Tα1

∂ξ1 + ∂Tα2

∂ξ2 + ∂Tα3

∂ξ3 .
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which is the conservation law we were looking for.
Why is Tαβ,β = 0 a conservation law? To answer this question, let us derive a con-

servation law of classical electrodynamics. Consider, as an example, a collection of charged
particles of density ρ = dq/dV , enclosed in a volume V .

∂

∂t

∫
V
ρdV (8.43)

will be the variation of charge inside the volume V . Be S the surface enclosing the volume,
and n the normal vector, which is assumed to be positive if pointing outward.

ρv · ndS (8.44)

will be the charge which flows across dS per unit time. It is positive if the charge goes out,
negative if it flows in. Thus ∫

S
ρv · ndS (8.45)

is the total charge per unit time which flows across the surface S enclosing the volume V .
The continuity equation then says that

∂

∂t

∫
V
ρ dV = −

∫
S
ρv · n dS. (8.46)

The minus sign is because the right-hand side is positive if the charge contained in V
increases. If we now introduce the three-dimensional current

J = ρv, (8.47)

eq. (8.46) becomes
∂

∂t

∫
V
ρ dV = −

∫
S

J · n dS. (8.48)

Since
J · n dS = ηikn

iJk dS = JknkdS,

by putting dSk = nkdS, and using Gauss’ theorem∫
S
JkdSk =

∫
V
div J dV, (8.49)

eq. (8.48) becomes
∂

∂t

∫
V
ρ dV = −

∫
V
div J dV. (8.50)

Since the volume V is arbitrary, we can write

div J = −∂ρ
∂t
, (8.51)

or
∂J1

∂ξ1
+
∂J2

∂ξ2
+
∂J3

∂ξ3
= −∂ρ

∂t
, (8.52)
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which is the continuity equation in a differential form. Let us now transform eq. (8.51)
in a four-dimensional form. We define a four-current

Jα = ρ
dξα

dt
= (ρc,J), (8.53)

and eq. (8.51) becomes
∂Jα

∂ξα
= 0, α = 0, 3. (8.54)

We are now going to show that any current Jα(x) which satisfies the conservation law
(8.54) is associated to a total charge Q defined as

Q =
∫
V
J0dV, (8.55)

which is conserved. The integral in eq. (8.55) is evaluated at some fixed time, thus
we say that the integration is performed on a hypersurface ξ0 = const over the
whole three-dimensional space. The total charge Q is a conserved quantity for the
following reason. By virtue of eq. (8.54)

1

c

dQ

dt
=
∫
allspace

1

c

∂

∂t
J0 dV = −

∫
allspace

div J dV = −
∫
surface

JkdSk. (8.56)

The last equality follows from Gauss’ theorem, and the subscript ‘surface’ means that we
are considering the flux of J across the surface which encloses the whole space. If J goes
to zero at infinity, the last term in eq. (8.56) vanishes, and therefore the total charge Q is
a conserved quantity.

Let us now go back to equation (8.42), and set, as an example, α = 0:

∂T 00

∂ξ0
= −

[
∂T 01

∂ξ1
+
∂T 02

∂ξ2
+
∂T 03

∂ξ3

]
. (8.57)

By integrating over a volume V which, as before, extends to all space, we get

∂

∂ξ0

∫
V
T 00dV = −

∫
V

∂T 0k

∂ξk
dV = −

∫
S
T 0kdSk. (8.58)

Since T 0k is the energy which flows across the unit surface orthogonal to ξk, if we assume
that this energy flow is zero at infinity we finally find

∂

∂ξ0

∫
V
T 00dV = 0 →

∫
V
T 00dV = constant. (8.59)

which expresses the conservation of energy. A similar procedure can be used to find the
conservation of momentum by putting α = i = 1, 2, 3. In this case we find

∂

∂ξ0

∫
V
T i0dV = −

∫
V

∂T ik

∂ξk
dV = −

∫
S
T ikdSk. (8.60)
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Assuming that the momentum currents vanish at infinity, we find

∂

∂ξ0

∫
V
T i0dV = 0 →

∫
V
T i0dV = constant. (8.61)

In conclusion, we can define a vector

Pα =
∫
V
Tα0dV, α = 0, 3, (8.62)

which can be identified as the conserved energy-momentum vector of the system. It should
be reminded that this derivation has been carried out in the framework of Special Relativity.

3) How do we write this conservation law in curved spacetime?
In order to answer this question we need to state The Principle of General Covariance

which will be the foundation of the theory of General Relativity:

8.1 The Principle of General Covariance

A physical law is true if:
1) it is true in the absence of gravity, i.e. it reduces to the laws of special relativity when

gµν → ηµν and Γαµν vanish. It is clear that this first proposition includes the Equivalence
Principle.

2) In order to preserve their form under an arbitrary coordinate transformation, all equa-
tions must be generally covariant. This means that all equations must be expressed in a tensor
form.

The physical content of the Principle of General Covariance is that if a tensor equation
is true in absence of gravity, then it is true in the presence of an arbitrary gravitational
field. It should also be stressed that the Principle of General Covariance can be applied only
on scales that are small compared with the typical distances associated to the gravitational
field, (for example to the curvature) , because only on these scales one can construct locally
inertial frames.

And now we can give an answer to the question 3). First we note that eq. (8.42) is valid
in special relativity, i.e. in the absence of gravity, therefore, according to the Principle of
Equivalence, it will hold in a locally inertial frame of a curved spacetime. In this frame,
the covariant and ordinary derivative coincide, therefore we can write eq. (8.42) in the
alternative form

Tαβ ;β = 0. (8.63)

Then we observe that in the light of the Principle of General Covariance, since the conser-
vation law (8.42) is a tensor equation, it will hold in any arbitrary frame. Thus in order to
transform a generic tensor equation valid in Special Relativity to a generally covariant form
it will suffice to replace the comma with a semi-colon. The general conservation law satisfied
by the stress-energy tensor therefore is eq. (8.63).

Is this a conservation law?
To answer this question we need to compute the covariant divergence of a tensor. From

the expression of the affine connections in terms of the metric we find that

Γµλµ =
1

2
gµρ

(
∂gρλ
∂xµ

+
∂gρµ
∂xλ

− ∂gλµ
∂xρ

)
. (8.64)
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The first and the third term give

gµρ
∂gρλ
∂xµ

− gµρ∂gλµ
∂xρ

= gµρ
∂gρλ
∂xµ

− gρµ∂gµλ
∂xρ

= 0, (8.65)

due to the symmetry of gαβ, therefore

Γµλµ =
1

2
gµρ

∂gρµ
∂xλ

. (8.66)

For any arbitrary matrix M

Tr

[
M−1(x)

∂

∂xλ
M(x)

]
=

∂

∂xλ
ln[|DetM(x)|]. (8.67)

But this is what we have on the right-hand side of eq. (8.66), therefore, if we call Det(g) = g,
eq. (8.66) becomes (since g < 0)

Γµλµ =
1

2

∂

∂xλ
ln[−g] =

1√
−g

∂

∂xλ
√
−g. (8.68)

Thus for example, if V µ is a vector

V λ
;λ = V λ

,λ + ΓλαλV
α =

1√
−g

∂

∂xλ

(√
−gV λ

)
, (8.69)

and for T µν

T µν ;µ =
1√
−g

∂

∂xµ
(
√
−gT µν) + ΓνλµT

µλ. (8.70)

In particular, if F µν is antisymmetric, the last term in eq. (8.70) is zero and

F µν
;µ =

1√
−g

∂

∂xµ
(
√
−gF µν). (8.71)

Now we go back to eq. (8.63). By using eq. (8.70) it becomes

∂

∂xµ
(
√
−gT µν) = −

√
−gΓνλµT

µλ, (8.72)

and this is not a conservation law. Thus we cannot define a conserved four-momentum as
we did in Special Relativity. We may be tempted to define

Pα =
∫
V

√
−gTα0dV, α = 0, 3, (8.73)

but this would not be a vector. The physical reason for this failure is that now we are
in General Relativity, and we must take into account not only the energy and momentum
associated to matter, but also the energy which is carried by the gravitational field itself,
and the momentum which may be carried by gravitational waves. However we shall see that
if the spacetime admits some symmetry (for example if it is spherically or plane-symmetric,
or it is invariant under time-translations etc.) conserved quantities can be defined.



Chapter 9

The Einstein equations

We now have all the elements needed to derive the equations of the gravitational field.
We expect they will be more complicated than the linear equations of the electromagnetic
field. For example electromagnetic waves are produced as a consequence of the motion of
charged particles, but the energy and the momentum they carry are not a source for the
electromagnetic field, and they do not appear on the right-hand side of the equations. In
gravity the situation is different. The equation

E = mc2, (9.1)

establishes that mass and energy can transform one into another: they are different man-
ifestation of the same physical quantity. It follows that if the mass is the source of the
gravitational field, so must be the energy, and consequently both mass and energy should
appear on the right-hand side of the field equations. This implies that the equations we are
looking for will be non linear. For example a system of arbitrarily moving masses will radi-
ate gravitational waves, which carry energy, which is in turn source of the gravitational field
and must appear on the right-hand-side of the equations. However, since newtonian gravity
works remarkably well when we are dealing with non relativistic particles, or in general when
the gravitational field is weak, in formulating the new theory we shall require that in the
weak field limit the new equations reduce to the Poisson equation

∇2Φ = 4πGρ, (9.2)

where ρ is the matter density, Φ is the newtonian potential and ∇2 is the Laplace
operator in cartesian coordinates

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (9.3)

Let us start by asking how the equations should look in the weak field limit.
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9.1 The geodesic equations in the weak field limit

Consider a non-relativistic particle which moves in a weak and stationary gravitational
field. Be τ/c the proper time. Since v << c , it follows that

dxi

dt
<< c → dxi

dτ
<<

cdt

dτ
=
dx0

dτ
. (9.4)

In an arbitrary coordinate system the geodesic equations are

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 → d2xµ

dτ 2
+ Γµ00

(
cdt

dτ

)2

= 0. (9.5)

From the expressions of the affine connections in terms of gµν we easily find that

Γµ00 =
1

2
gµσ (2g0σ,0 − g00,σ) . (9.6)

In addition, if the field is stationary g0σ,0 = 0 , and

Γµ00 = −1

2
gµσ

∂g00

∂xσ
. (9.7)

Since we have assumed that the gravitational field is weak, we can choose a coordinate
system such that

gµν = ηµν + hµν , |hµν | << 1, (9.8)

where hµν is a small perturbation of the flat metric. In other words, we are assuming that
the field is so weak that the metric is nearly flat. Since we are interested only in first order
terms, we shall raise and lower indices with the flat metric ηµν . For example

hλν = gλρhρν ∼ ηλρhρν +O(h2
µν).

If we substitute eq. (9.8) into eq. (9.7), and retain only the terms up to first order in hµν
we find

Γµ00 ∼ −
1

2
ηµσ

∂h00

∂xσ
, (9.9)

and the geodesic equation becomes

d2xµ

dτ 2
=

1

2
ηµα

∂h00

∂xα

(
cdt

dτ

)2

, (9.10)

or, splitting the time- and the space-components

d2x

dτ 2
=

1

2
∇∇∇h00

(
cdt

dτ

)2

, and
d2ct

dτ 2
= −1

2

∂h00

∂ct

(
cdt

dτ

)2

= 0, (9.11)

where

∇∇∇ →
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(9.12)
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is the gradient in cartesian coordinates. The second equation vanishes because we have
assumed that the field is stationary (∂h00

∂t
= 0). We can rescale the time coordinate in such

a way that cdt
dτ

= 1 and the first of eqs. (9.11) becomes

d2x

dτ 2
=

1

2
∇∇∇h00. (9.13)

We should remember that the corresponding newtonian equation is

d2x

dt2
= −∇∇∇Φ, (9.14)

where Φ is the gravitational potential given by the Poisson equation (9.2). By comparing
eqs. (9.14) and (9.13), and since τ = ct we see that it must be

h00 = −2
Φ

c2
+ const. (9.15)

For example if the field is stationary and spherically symmetric, the newtonian potential is

Φ = −GM
r
, (9.16)

and if we require that h00 vanishes at infinity, the constant must be zero and eq. (9.15)
gives

h00 = −2
Φ

c2
, and g00 = −(1 + 2

Φ

c2
). (9.17)

Thus we have shown that in the weak field limit the geodesic equations reduce
to the newtonian law of gravitation. This suggests the form that the field equations
should have. In fact if the field is weak, matter will behave non-relativistically, i.e. T 00 =
T00 ∼ ρc2 and therefore the generalization of Laplace’s equation (9.2) could be

∇2g00 = −8πG

c4
T00. (9.18)

But this equation is not even Lorentz-invariant! It doesn’t work. However it suggests that if
in place of a stationary field, we would have an arbitrary distribution of energy and matter,
we should construct a tensor starting from gµν and its derivatives such that the field
equations are

Gµν =
8πG

c4
Tµν , (9.19)

where Gµν is an operator acting on gµν which we shall now define. It should be stressed
that, by the Principle of General Covariance, if equation (9.19) holds in a given reference
frame, it will hold in any other frame.



CHAPTER 9. THE EINSTEIN EQUATIONS 95

9.2 Einstein’s field equations

Let us first see which derivatives and of which order do we expect in Gµν . A comparison
with the Laplace equation shows that Gµν must have the dimensions of a second derivative.
In fact, suppose that it contains terms of this type

∂3gµν
∂x3

µ

,
∂2gµν
∂x2

µ

· ∂gµν
∂xν

,
∂gµν
∂xν

, (9.20)

then, in order to be dimensionally homogeneous each term should be multiplied by a constant
having the dimensions of a suitable power of a lenght

∂3gµν
∂x3

µ

· l, ∂2gµν
∂x2

µ

∂gµν
∂xν

· l, ∂gµν
∂xν

· 1

l
. (9.21)

In this case, a gravitational field acting on small or on very large scale would be described by
equations where some of the terms would be negligible with respect to some others. This is
unacceptable, because we want a set of equations that are valid at any scale, and consequently
the only terms we can accept in Gµν are those containing the second derivatives of gµν in
a linear form and products of first derivatives. Let us summarize the assumptions that we
need to make on Gµν :

1) it must be a tensor
2) it must be linear in the second derivatives, and it must contain products of first

derivatives of gµν .
3) Since Tµν is symmetric, Gµν also must be symmetric.
4) Since Tµν satisfies the “conservation law” T µν ;µ = 0 , Gµν must satisfy the same

conservation law.
Gµν

;ν = 0. (9.22)

5) In the weak field limit it must reduce to (compare with eq. (9.18)

G00 ∼ −∇2g00. (9.23)

In this last assumption the Principle of Equivalence and the weak field limit explicitely
appear.

In the preceeding section we have shown that there exists a tensor which is linear in the
second derivatives of gµν and non linear in the first derivatives. It is the Riemann tensor,
given in eq. (6.34), and it contains the information on the gravitational field. However we
cannot use it directely in the field equations we are looking for, since it has four indices (it

is a

(
1
3

)
tensor) while we need a

(
2
0

)
(or

(
0
2

)
) tensor. In addition, the covariant

divergence of the stress-energy tensor vanishes, and so must be also for the tensor we shall
put on the left-hand side of eq. (9.19).

By contracting the Riemann tensor with the metric we can construct a

(
0
2

)
tensor,

i.e. the Ricci tensor:
Rµν = gκαRκµαν = Rα

µαν , (9.24)
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which is a symmetric tensor because of the symmetry property of the Riemann tensor

Rκµαν = Rανκµ, (9.25)

and a scalar, called the scalar curvature

R = Rα
α. (9.26)

The contraction in eq. (9.26) has the following meaning

Rα
α = R0

0 +R1
1 +R2

2 +R3
3. (9.27)

It can be shown, by using the symmetries of the Riemann tensor, that Rµν and R are the
only second rank tensor and scalar that can be constructed by contraction of Rκµαν with
the metric. Both in Rµν and R the second derivatives of gµν appear linearly. Therefore
the tensor we are looking for should have the following form

Gµν = C1Rµν + C2gµνR, (9.28)

where C1 and C2 are constants to be determined. The tensor Gµν satisfies the points
1,2 and 3. Condition 4 requires that

Gµν
;µ = C1R

µν
;µ + C2g

µνR;µ = 0. (9.29)

(remember that the covariant derivative of gµν vanishes). Now a very remarkable thing
happens: eq. (9.29) is satisfied because of the Bianchi identities

Rλµνκ;η +Rλµην;κ +Rλµκη;ν = 0. (9.30)

In fact by contracting these equations we find

gλν (Rλµνκ;η +Rλµην;κ +Rλµκη;ν) = gλν (Rλµνκ;η −Rλµνη;κ) + gλνRλµκη;ν (9.31)

= (Rµκ;η −Rµη;κ +Rν
µκη;ν) = 0.

Contracting again

gµκ (Rµκ;η −Rµη;κ +Rν
µκη;ν) = R;η −Rκ

η;κ −Rν
η;ν = 0. (9.32)

The last expression can be rewritten in the following form(
Rµν − 1

2
gµνR

)
;ν

= 0. (9.33)

Therefore, the Bianchi identities say that if

C2

C1

= −1

2
, (9.34)

eq. (9.33) will be satisfied. We still need C1.
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In the weak field limit 1

|Tij| << |T00|, i, j = 1, 3, (9.37)

and therefore
|Gij| << |G00|, i, j = 1, 3. (9.38)

From eqs. (9.28) and (9.34) it follows

|C1

(
Rij −

1

2
gijR

)
| << |G00|, (9.39)

hence

Rij '
1

2
gijR. (9.40)

Since gij ' ηij

Rkk '
1

2
R, k = 1, 3 (9.41)

consequently

R = gµνRµν ' ηµνRµν = −R00 +
∑
k

Rkk = −R00 +
3

2
R, (9.42)

and
R ' 2R00. (9.43)

Since

Gµν = C1

(
Rµν −

1

2
gµνR

)
, (9.44)

we find
G00 ' C12R00. (9.45)

If we now compute R00 in the weak field limit (assuming the field is stationary), we find
that the non linear part is second order. Retaining only the first order terms and imposing
stationarity we get

R00 ' −
1

2
ηij

∂2g00

∂xi∂xj
= −1

2
∇2g00, i, k = 1, 3 (9.46)

namely
G00 ' −C1∇2g00, (9.47)

1The fact that in the weak field limit |Tik| << T00 can be easily understood if we consider, as an
example, a system on non-interacting particles. If ρ is the mass density

ρ =
∑
n

mnδ
3(r− rn), (9.35)

where rn denotes the positions of the particles, the stress-energy tensor (8.15) can be also written as

Tµν = ρc2
dxµ

dτ

dxν

dτ
. (9.36)

It is clear that, if dxi

dτ << dx0

dτ i = 1, 3 the dominant term will be T 00 .
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A comparison of this equation with eq. (9.23) shows that if we require that the relativistic
field equations reduce to the newtonian equations in the weak field limit it must be

C1 = 1. (9.48)

In conclusion, the Einstein’s field equations are 2

Gµν =
8πG

c4
Tµν , (9.49)

where

Gµν =
(
Rµν −

1

2
gµνR

)
, (9.50)

and it is called The Einstein tensor. An alternative form is

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
. (9.51)

In vacuum Tµν = 0 and the Einstein equations reduce to

Rµν = 0. (9.52)

Therefore, in vacuum the Ricci tensor vanishes, but the Riemann tensor does not, unless the
gravitational field vanishes or is constant and uniform. We may still add to eqs. (9.49) the
following term (

Rµν −
1

2
gµνR + λgµν

)
=

8πG

c4
Tµν . (9.53)

where λ is a constant. This term satisfies the conditions 1,2,3 and 4, but not the condition
5. This means that it must be very small in such a way that in the weak field limit the
equations reduce to the newtonian equations.

9.3 Gauge invariance of the Einstein equations

Since there are 10 independent components of Gµν , Einstein’s equations provide 10 equations
for the 10 independent components of gµν . However these equations are not independent,
because, as we have seen, the Bianchi identities imply the “conservation law” Gµν

;ν =
0, which provides 4 relations that the Einstein tensor must satisfy. Thus the number of
independent equations reduces to six.

Do we have six equations and 10 unknown functions? Why do we have these four degrees
of freedom? The reason is the following. Be gµν a solution of the equations. If we make
a coordinate transformation xµ′ = xµ′(xα) the ‘transformed’ tensor g′µν = gµ′ν′ is again

2Although we call these equations the Einstein equations, they were derived independently (and in a more
elegant form) by D. Hilbert in the same year. However Einstein showed the implications of these equations
in the theory of the solar system, and in particular that the precession of the perihelion of Mercury has a
relativistic origin. This led to the theory’s acceptance and since then the equations have been called the
Einstein equations.
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a solution, as established by the Principle of General Covariance. This also means that
gµν and g′µν do represent the same physical solution (the same geometry) seen in different
reference frames.

The coordinate transformation involves 4 arbitrary functions xµ′(xα), therefore the four
degrees of freedom derive from the freedom of choosing the coordinate system, and disappear
when we choose it. For example, we may choose a frame where four of the ten gµν are zero.

Thus Einstein’s equations do not determine the solution gµν in a unique way, but only up
to an arbitrary coordinate transformation. A similar situation arises in the case of Maxwell’s
equations in Special Relativity. In that case the equations for the vector potential3 Aµ are

2Aα −
∂2Aβ

∂xα∂xβ
= −4π

c
Jα. (9.54)

(where 2 = − ∂2

c2∂t2
+∇2 = ηαβ ∂

∂xα
∂
∂xβ

). These are four equations for the four components
of the vector potential. However they do not determine Aµ uniquely, because of the
conservation law

Jµ,µ = 0, i.e.
∂

∂xµ

(
2Aµ − ηµα ∂2Aβ

∂xα∂xβ

)
= 0. (9.55)

Equation (9.55) plays the same role as the Bianchi identities do in our context. It provides
one condition which must be satisfied by the components of Aµ, therefore the number of
independent Maxwell equations is three. The extra degree of freedom corresponds to a gauge
invariance, which means the following.
If Aα is a solution,

A′α = Aα +
∂Φ

∂xα
, (9.56)

will also be a solution. In fact, by direct substitution we find

2A′α −
∂

∂xα
2Φ− ∂2A′β

∂xα∂xβ
+ ηβδ

∂2

∂xα∂xβ
∂Φ

∂xδ
= −4π

c
Jα, (9.57)

and since the second and the last term on the left hand-side cancel, it becomes

2A′α −
∂2A′β

∂xα∂xβ
= −4π

c
Jα, (9.58)

q.e.d.
Since Φ is arbitrary, we can chose it in such a way that

∂

∂xβ
A′β = 0 (9.59)

3Eq. (9.54) is the four-dimensional version of the wave equation for the vector potential

2A = grad(divA) = −4π

c
J.
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and eq. (9.58) becomes

2A′α = −4π

c
Jα, (9.60)

This is the Lorenz gauge.
Summaryzing: in the electromagnetic case the extra degree of freedom on Aµ is due to

the fact that the vector potential is defined up to a function Φ defined in eq. (9.56). In
our case the four extra degrees of freedom are due to the fact that gµν is defined up to
a coordinate transformation. This gauge freedom is particularly useful when one is looking
for exact solutions of Einstein’s equations.
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*******************************************************************

9.4 Example: The armonic gauge.

*******************************************************************
The armonic gauge is defined by the condition

Γλ = gµνΓλµν = 0. (9.61)

As we shall see in a next lecture, this gauge is of particular interest when we study the
propagation of gravitational waves, because it simplifies the equations in a way similar to
that of Maxwell’s equations when written in the Lorenz gauge. It is always possible to
choose this gauge indeed, given a generic coordinate transformation, the affine connections
Γαβγ transform as (see eq. (5.36))

Γλ′µ′ν′ =
∂xλ′

∂xρ
∂xτ

∂xµ′
∂xσ

∂xν′
Γρτσ +

∂xλ′

∂xσ
∂2xσ

∂xµ′∂xν′
. (9.62)

When contracted with gµ′ν′ this equation gives

Γλ′ =
∂xλ′

∂xρ
Γρ + gµ′ν′

∂xλ′

∂xσ
∂2xσ

∂xµ′∂xν′
.

The last term can be written in the following form

gµ′ν′
∂xλ′

∂xσ
∂

∂xµ′

{
∂xσ

∂xν′

}
= gµ′ν′

{
∂

∂xµ′

[
∂xλ′

∂xσ
∂xσ

∂xν′

]
− ∂xσ

∂xν′
∂2xλ′

∂xµ′∂xσ

}

= gµ′ν′
{

∂

∂xµ′
δλ′ν′ −

∂xσ

∂xν′
∂xρ

∂xµ′
∂2xλ′

∂xρ∂xσ

}
,

from which we find

Γλ′ =
∂xλ′

∂xρ
Γρ − gρσ ∂2xλ′

∂xρ∂xσ
. (9.63)

Therefore, if Γλ is non zero, we can always find a frame where Γρ′ = 0 and reduce to the
armonic gauge. The condition Γλ = 0 can be rewritten in a more elegant form remembering
the expression of the affine connections in terms of the metric tensor

Γλ =
1

2
gµνgλκ

{
∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

}
= 0. (9.64)

Since

gλκ
∂gκµ
∂xν

= −gκµ
∂gλκ

∂xν
, (9.65)

1

2
gµν

∂gµν
∂xκ

=
1√
−g

∂

∂xκ
√
−g ,
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it follows that

Γλ =
1

2
gµν

{
−gκµ

[
∂gλκ

∂xν

]
− gκν

[
∂gλκ

∂xµ

]}
− gλκ√
−g

∂

∂xκ
√
−g = 0. (9.66)

The term in brackets is symmetric in µ and ν, therefore

Γλ = −1

2

{
2gµσgκµ

∂gλκ

∂xσ

}
− gλκ√
−g

∂

∂xκ
√
−g = 0, (9.67)

and, since gµσgκµ = δσκ

Γλ = −∂g
λκ

∂xκ
− gλκ√
−g

∂

∂xκ
√
−g = 0, (9.68)

from which we find

− 1√
−g

∂

∂xκ

(√
−ggλκ

)
= 0. (9.69)

This means that

Γλ = 0 implies
∂

∂xκ

(√
−ggλκ

)
= 0. (9.70)

The reason why this gauge is called ‘armonic’ is the following. A function Φ is armonic if

2Φ = 0, (9.71)

where the operator 2 is the covariant d’Alambertian operator defined as

2Φ = gλκ∇λ∇κΦ, (9.72)

and ∇λ is the covariant derivative. Since

gλκ∇λ∇κΦ = gλκ
(
∂Φ;λ

∂xκ
− ΓαλκΦ;α

)
= (9.73)

gλκ
[

∂2Φ

∂xκ∂xλ
− Γαλκ

∂Φ

∂xα

]
= gλκ

∂2Φ

∂xκ∂xλ
− Γα

∂Φ

∂xα
.

If Γλ = 0 the armonic gauge condition becomes

2Φ = gλκ
∂2Φ

∂xκ∂xλ
= 0. (9.74)

If Γλ = 0 then the coordinates itself are armonic functions, in fact putting Φ = xµ

in eq. (9.74) one finds

2xµ = gλκ
∂2xµ

∂xκ∂xλ
= gλκ

∂

∂xκ
δµλ = 0, (9.75)

q.e.d. If the spacetime is flat, armonic coordinates coincide with minkowskian coordinates.



Chapter 10

Symmetries

H. Weyl: “Symmetry, as wide or as narrow as you may define its meaning, is one idea by
which man through the ages has tried to comprehend and create order, beauty, and perfection.”

The solution of a physical problem can be considerably simplified if it allows some sym-
metries. Let us consider for example the equations of Newtonian gravity. It is easy to find a
solution which is spherically symmetric, but it may be difficult to find the analytic solution
for an arbitrary mass distribution.

In euclidean space a symmetry is related to an invariance with respect to some opera-
tion. For example plane symmetry implies invariance of the physical variables with respect
to translations on a plane, spherically symmetric solutions are invariant with respect to
translation on a sphere, and the equations of Newtonian gravity are symmetric with respect
to time translations

t′ → t+ τ.

Thus, a symmetry corresponds to invariance under translations along certain lines or over
certain surfaces. This definition can be applied and extended to Riemannian geometry. A
solution of Einstein’s equations has a symmetry if there exists an n-dimensional manifold,
with 1 ≤ n ≤ 4, such that the solution is invariant under translations which bring a point
of this manifold into another point of the same manifold. For example, for spherically
symmetric solutions the manifold is the 2-sphere, and n=2. This is a simple example, but
there exhist more complicated four-dimensional symmetries. These definitions can be made
more precise by introducing the notion of Killing vectors.

10.1 The Killing vectors

Consider a vector field ~ξ(xµ) defined at every point xα of a spacetime region. ~ξ identifies

a symmetry if an infinitesimal translation along ~ξ leaves the line-element unchanged, i.e.

δ(ds2) = δ(gαβdx
adxb) = 0. (10.1)

This implies that
δgαβdx

adxb + gαβ
[
δ(dxa)dxb + dxaδ(dxb)

]
= 0. (10.2)

103
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~ξ is the tangent vector to some curve xα(λ) , i.e. ξα = δxα

dλ
, therefore an infinitesimal

translation in the direction of ~ξ is an infinitesimal translation along the curve from a point
P (λ) to the point P ′(λ+ dλ). Putting

δxα = xα(λ+ dλ)− xα(λ) =
dxα

dλ
dλ = ξαdλ ,

the coordinates of P (λ) and P ′(λ+ dλ) are, respectively,

P = (xα) and P ′ = (xα + δxα).

P
2xδ

δ x1

x2

1x

x
µ

x
µ

λ( )=

P

ξ
P = (x1, x2)

P ′ = (x1 + δx1, x2 + δx2)

When we move from P to P ′ the metric components change as follows

gαβ(P ′) ' gαβ(P ) +
∂gαβ
∂λ

dλ+ ... (10.3)

= gαβ(P ) +
∂gαβ
∂xµ

dxµ

dλ
dλ+ ...

= gαβ(P ) + gαβ,µξ
µdλ,

hence
δgαβ = gαβ,µξ

µdλ. (10.4)

Moreover, since the operators δ and d commute, we find

δ(dxa) = d(δxα) = d(ξαdλ) = dξαdλ (10.5)

=
∂ξα

∂xµ
dxµdλ = ξα,µdx

µdλ .

Thus, using eqs. (10.5) and (10.4), eq. (10.2) becomes

gαβ,µξ
µdλdxαdxβ + gαβ

[
ξα,µdx

µdλdxβ + ξβ,γdx
γdλdxα

]
= 0, (10.6)

and, after relabelling the indices,[
gαβ,µξ

µ + gδβξ
δ
,α + gαδξ

δ
,β

]
dxαdxβdλ = 0. (10.7)

In conclusion, a solution of Einstein’s equations is invariant under translations along ~ξ, if
and only if

gαβ,µξ
µ + gδβξ

δ
,α + gαδξ

δ
,β = 0. (10.8)
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In order to find the Killing vectors of a given a metric gαβ we need to solve eq. (10.8),

which is a system of differential equations for the components of ~ξ . If eq. (10.8) does
not admit a solution, the spacetime has no symmetries. It may look like eq. (10.8) is not
covariant, since it contains partial derivatives, but it is easy to show that it is equivalent to
the following covariant equation (see appendix A)

ξα;β + ξβ;α = 0. (10.9)

This is the Killing equation.

10.1.1 Lie-derivative

The variation of a tensor under an infinitesimal translation along the direction of a vector
field ~ξ is the Lie-derivative ( ~ξ must not necessarily be a Killing vector), and it is

indicated as L~ξ. For a

(
0
2

)
tensor

L~ξTαβ = Tαβ,µξ
µ + Tδβξ

δ
,α + Tαδξ

δ
,β . (10.10)

For the metric tensor

L~ξgαβ = gαβ,µξ
µ + gδβξ

δ
,α + gαδξ

δ
,β = ξα;β + ξβ;α ; (10.11)

if ~ξ is a Killing vector the Lie-derivative of gαβ vanishes.

10.1.2 Killing vectors and the choice of coordinate systems

The existence of Killing vectors remarkably simplifies the problem of choosing a coordinate
system appropriate to solve Einstein’s equations. For instance, if we are looking for a solution
which admits a timelike Killing vector ~ξ, it is convenient to choose, at each point of the
manifold, the timelike basis vector ~e(0) aligned with ~ξ; with this choice, the time coordinate

lines coincide with the worldlines to which ~ξ is tangent, i.e. with the congruence of
worldlines of ~ξ, and the components of ~ξ are

ξα = (ξ0, 0, 0, 0) . (10.12)

If we parametrize the coordinate curves associated to ~ξ in such a way that ξ0 is constant
or equal unity, then

ξα = (1, 0, 0, 0) , (10.13)

and from eq. (10.8) it follows that
∂gαβ
∂x0

= 0 . (10.14)

This means that if the metric admits a timelike Killing vector, with an appropriate
choice of the coordinate system it can be made independent of time.

A similar procedure can be used if the metric admits a spacelike Killing vector. In this
case, by choosing one of the spacelike basis vectors, say the vector ~e(1), parallel to ~ξ, and
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by a suitable reparametrization of the corresponding conguence of coordinate lines, one can
write

ξα = (0, 1, 0, 0) , (10.15)

and with this choice the metric is independent of x1, i.e. ∂gαβ/∂x
1 = 0.

If the Killing vector is null, starting from the coordinate basis vectors ~e(0), ~e(1), ~e(2), ~e(3),
it is convenient to construct a set of new basis vectors

~e(α′) = Λβ
α′~e(β) , (10.16)

such that the vector ~e(0′) is a null vector. Then, the vector ~e(0′) can be chosen to be parallel

to ~ξ at each point of the manifold, and by a suitable reparametrization of the corresponding
coordinate lines

ξα = (1, 0, 0, 0) , (10.17)

and the metric is independent of x0′ , i.e. ∂gαβ/∂x
0′ = 0.

The map
ft : M→M

under which the metric is unchanged is called an isometry, and the Killing vector field is the
generator of the isometry.

The congruence of worldlines of the vector ~ξ can be found by integrating the equations

δxµ

dλ
= ξµ(xα). (10.18)

10.2 Examples

1) Killing vectors of flat spacetime
The Killing vectors of Minkowski’s spacetime can be obtained very easily using cartesian

coordinates. Since all Christoffel symbols vanish, the Killing equation becomes

ξα,β + ξβ,α = 0 . (10.19)

By combining the following equations

ξα,βγ + ξβ,αγ = 0 , ξβ,γα + ξγ,βα = 0 , ξγ,αβ + ξα,γβ = 0 , (10.20)

and by using eq. (10.19) we find
ξα,βγ = 0 , (10.21)

whose general solution is
ξα = cα + εαγx

γ , (10.22)

where cα, εαβ are constants. By substituting this expression into eq. (10.19) we find

εαγx
γ
,β + εβγx

γ
,α = εαγδ

γ
β + εβγδ

γ
α = εαβ + εβα = 0

Therefore eq. (10.22) is the solution of eq. (10.19) only if

εαβ = −εβα . (10.23)
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The general Killing vector field of the form (10.22) can be written as the linear combination of
ten Killing vector fields ξ(A)

α = {ξ(1)
α , ξ(2)

α , . . . , ξ(10)
α } corresponding to ten independent choices

of the constants cα, εαβ:

ξ(A)
α = c(A)

α + ε(A)
αγ x

γ A = 1, . . . , 10 . (10.24)

For instance, we can choose

c(1)
α = (1, 0, 0, 0) ε

(1)
αβ = 0

c(2)
α = (0, 1, 0, 0) ε

(2)
αβ = 0

c(3)
α = (0, 0, 1, 0) ε

(3)
αβ = 0

c(4)
α = (0, 0, 0, 1) ε

(4)
αβ = 0

c(5)
α = 0 ε

(5)
αβ =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



c(6)
α = 0 ε

(6)
αβ =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



c(7)
α = 0 ε

(7)
αβ =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0



c(8)
α = 0 ε

(8)
αβ =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



c(9)
α = 0 ε

(9)
αβ =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0



c(10)
α = 0 ε

(10)
αβ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (10.25)

Therefore, flat spacetime admits ten linearly independent Killing vectors.
The symmetries generated by the Killing vectors with A = 1, . . . , 4 are spacetime transla-

tions; the symmetries generated by the Killing vectors with A = 5, 6, 7 are Lorentz’s boosts;
the symmetries generated by the Killing vectors with A = 8, 9, 10 are space rotations.

2) Killing vectors of a spherical surface
Let us consider a sphere of unit radius

ds2 = dθ2 + sin2θdϕ2 = (dx1)2 + sin2x1(dx2)2 . (10.26)
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Eq. (10.8)
gαβ,µξ

µ + gδβξ
δ
,α + gαδξ

δ
,β = 0

gives

1) α = β = 1 2gδ1ξ
δ
,1 = 0→ ξ1

,1 = 0 (10.27)

2) α = 1, β = 2 gδ2ξ
δ
,1 + g1δξ

δ
,2 = 0→ ξ1

,2 + sin2 θξ2
,1 = 0

3) α = β = 2 g22,µξ
µ + 2gδ2ξ

δ
,2 = 0→ cos θξ1 + sin θξ2

,2 = 0.

The general solution is

ξ1 = Asin(ϕ+ a), ξ2 = Acos(ϕ+ a)cotθ + b. (10.28)

Therefore a spherical surface admits three linearly independent Killing vectors, associated
to the choice of the integration constants (A, a, b).

10.3 Conserved quantities in geodesic motion

Killing vectors are important because they are associated to conserved quantities, which may
be hidden by an unsuitable coordinate choice.

Let us consider a massive particle moving along a geodesic of a spacetime which admits
a Killing vector ~ξ. The geodesic equations written in terms of the particle four-velocity
~U = δxα

dτ
read

dUα

dτ
+ ΓαβνU

βUν = 0. (10.29)

By contracting eq. (10.29) with ~ξ we find

ξα

[
dUα

dτ
+ ΓαβνU

βUν

]
=
d(ξαU

α)

dτ
− Uαdξα

dτ
+ ΓαβνU

βUνξα . (10.30)

Since

Uαdξα
dτ

= Uβ dξβ
dτ

= Uβ ∂ξβ
∂xν

δxν

dτ
= UβUν ∂ξβ

∂xν
, (10.31)

eq. (10.30) becomes
d(ξαU

α)

dτ
− UβUν

[
∂ξβ
∂xν
− Γαβνξα

]
= 0 , (10.32)

i.e.
d(ξαU

α)

dτ
− UβUνξβ;ν = 0 . (10.33)

Since ξβ;ν is antisymmetric in β and ν, while UβUν is symmetric, the term UβUνξβ;ν vanishes,
and eq. (10.33) finally becomes

d(ξαU
α)

dτ
= 0 → ξαU

α = const , (10.34)
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i.e. the quantity (ξαU
α) is a constant of the particle motion. Thus, for every Killing vector

there exists an associated conserved quantity.
Eq. (10.34) can be written as follows:

gαµξ
µUα = const . (10.35)

Let us now assume that ~ξ is a timelike Killing vector. In section 10.1.2 we have shown that
the coordinate system can be chosen in such a way that ξµ = {1, 0, 0, 0}, in which case eq.
(10.35) becomes

gα0ξ
0Uα = const → gα0U

α = const . (10.36)

If the metric is asymptotically flat, as it is for instance when the gravitational field is gener-
ated by a distribution of matter confined in a finite region of space, at infinity gαβ reduces
to the Minkowski metric ηαβ, and eq. (10.36) becomes

η00U
0 = const → U0 = const . (10.37)

Since in flat spacetime the energy-momentum vector of a massive particle is pα = mcUα =
{E/c,mviγ}, the previous equation becomes

E

c
= const , (10.38)

i.e. at infinity the conservation law associated to a timelike Killing vector reduces to the
energy conservation for the particle motion. For this reason we say that, when the metric
admits a timelike Killing vector, eq. (10.34) expresses the energy conservation for the particle
motion along the geodesic.

If the Killing vector is spacelike, by choosing the coordinate system such that, say, ξµ =
{0, 1, 0, 0}, eq. (10.34) reduces to

gα1ξ
1Uα = const → gα1U

α = const .

At infinity this equation becomes

η11U
1 = const → p1

mc
= const ,

showing that the component of the energy-momentum vector along the x1 direction is con-
stant; thus, when the metric admit a spacelike Killing vector eq. (10.34) expresses momentum
conservation along the geodesic motion.

If the particle is massless, the geodesic equation cannot be parametrized with the proper
time. In this case the particle worldline has to be parametrized using an affine parameter
λ such that the geodesic equation takes the form (10.29), and the particle four-velocity is
Uα = dxα

dλ
. The derivation of the constants of motion associated to a spacetime symmetry,

i.e. to a Killing vector, is similar as for massive particles, reminding that by a suitable choice
of the parameter along the geodesic pα = {E, pi}.

It should be mentioned that in Riemannian spaces there may exist conservation laws
which cannot be traced back to the presence of a symmetry, and therefore to the existence
of a Killing vector field.
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10.4 Killing vectors and conservation laws

In Chapter 7 we have shown that the stress-energy tensor satisfies the “conservation law”

T µν ;ν = 0, (10.39)

and we have shown that in general this is not a genuine conservation law. If the spacetime
admits a Killing vector, then

(ξµT
µν);ν = ξµ;νT

µν + ξµT
µν

;ν = 0. (10.40)

Indeed, the second term vanishes because of eq. (10.39) and the first vanishes because ξµ;ν

is antisymmetric in µ an ν, whereas T µν is symmetric.
Since there is a contraction on the index µ, the quantity (ξµT

µν) is a vector, and according
to eq. (8.69)

V ν
;ν =

1√
−g

∂

∂xν

(√
−gV ν

)
, (10.41)

therefore eq. (10.40) is equivalent to

1√
−g

∂

∂xν

[√
−g (ξµT

µν)
]

= 0 , (10.42)

which expresses the conservation of the following quantity and accordingly, a conserved
quantity can be defined as

T =
∫

(x0=const)

√
−g

(
ξµT

µ0
)
dx1dx2dx3 , (10.43)

as shown in Chapter 7.
In classical mechanics energy is conserved when the hamiltonian is independent of time;

thus, conservation of energy is associated to a symmetry with respect to time translations.
In section 10.1.2 we have shown that if a metric admits a timelike Killing vector, with a
suitable choice of coordinates it can me made time independent (where now “time” indicates
more generally the x0-coordinate). Thus, in this case it is natural to interpret the quantity
defined in eq. (10.43) as a conserved energy.

In a similar way, when the metric addmits a spacelike Killing vector, the associated
conserved quantities are indicated as “momentum” or “angular momentum”, although this
is more a matter of definition.

It should be stressed that the energy of a gravitational system can be defined in a non
ambiguous way only if there exists a timelike Killing vector field.

10.5 Hypersurface orthogonal vector fields

Given a vector field ~V it identifies a congruence of worldlines, i.e. the set of curves to
which the vector is tangent at any point of the considered region. If there exists a family
of surfaces f(xµ) = const such that, at each point, the worldlines of the congruence
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are perpendicular to that surface, ~V is said to be hypersurface orthogonal. This is
equivalent to require that ~V is orthogonal to all vectors ~t tangent to the hypersurface, i.e.

~t · ~V = 0 → tαV βgαβ = 0 . (10.44)

We shall now show that, as consequence, ~V is parallel to the gradient of f . As described
in Chapter 3, section 5, the gradient of a function f(xµ) is a one-form

d̃f → (
∂f

∂x0
,
∂f

∂x1
, ...

∂f

∂xn
) = {f,α}. (10.45)

When we say that ~V is parallel to d̃f we mean that the one-form dual to ~V , i.e. Ṽ →
{gαβV β ≡ Vα} satisfies the equation

Vα = λf,α , (10.46)

where λ is a function of the coordinates {xµ}. This equation is equivalent to eq. (10.44).
Indeed, given any curve xα(s) lying on the hypersurface, and being tα = dxα/ds its tangent
vector, since f(xµ) = const the directional derivative of f(xµ) along the curve vanishes, i.e.

df

ds
=

∂f

∂xα
dxα

ds
= f,αt

α = λ−1Vαt
α = 0 , (10.47)

i.e. eq. (10.44).
If (10.46) is satisfied, it follows that

Vα;β − Vβ;α = (λf,α);β − (λf,β);α (10.48)

= λ (f,α;β − f,β;α) + f,αλ;β − f,βλ;α =

= λ (f,α,β − f,β,α − Γµβαf,µ + Γµαβf,µ) + f,αλ,β − f,βλ,α

= Vα
λ,β
λ
− Vβ

λ,α
λ

,

i.e.

Vα;β − Vβ;α = Vα
λ,β
λ
− Vβ

λ,α
λ

. (10.49)

If we now define the following quantity, which is said rotation

ωδ =
1

2
εδαβµV[α;β]Vµ , (10.50)

using the definition of the antisymmetric unit pseudotensor εδαβµ given in Appendix B, it
follows that

ωδ = 0. (10.51)

Then, if the vector field ~V is hypersurface horthogonal, (10.51) is satisfied. Actually,

(10.51) is a necessary and sufficient condition for ~V to be hypersurface horthogonal; this
result is the Frobenius theorem.



CHAPTER 10. SYMMETRIES 112

10.5.1 Hypersurface-orthogonal vector fields and the choice of co-
ordinate systems

The existence of a hypersurface-orthogonal vector field allows to choose a coordinate frame
such that the metric has a much simpler form. Let us consider, for the sake of simplicity, a
three-dimensional spacetime (x0, x1, x2).

Be S1 and S2 two surfaces of the family f(xµ) = cost, to which the vector field ~V is orthog-

onal. As an example, we shall assume that ~V is timelike, but a similar procedure can be
used if ~V is spacelike. If ~V is timelike, it is convenient to choose the basis vector ~e(0) parallel

to ~V , and the remaining basis vectors as the tangent vectors to some curves lying on the
surface, so that

g00 = g(~e(0), ~e(0)) = ~e(0) · ~e(0) 6= 0 (10.52)

g0i = g(~e(0), ~e(i)) = 0, i = 1, 2.

Thus, with this choice, the metric becomes

ds2 = g00(dx0)2 + gik(dx
i)(dxk), i, k = 1, 2 . (10.53)

The generalization of this example to the four-dimensional spacetime, in which case the
surface S is a hypersurface, is straightforward.

In general, given a timelike vector field ~V , we can always choose a coordinate frame such
that ~e(0) is parallel to ~V , so that in this frame

V α(xµ) = (V 0(xµ), 0, 0, 0) . (10.54)

Such coordinate system is said comoving. If, in addition, ~V is hypersurface-horthogonal,
then g0i = 0 and, as a consequence, the one-form associated to ~V also has the form

Vα(xµ) = (V0(xµ), 0, 0, 0) , (10.55)

since Vi = giµV
µ = gi0V

0 + gikV
k = 0.
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10.6 Appendix A

We want to show that eq. (10.8) is equivalent to eq. (10.9).

ξα;β = (gαµξ
µ);β (10.56)

= gαµξ
µ
;β = gαµ

(
ξµ,β + Γµδβξ

δ
)
,

hence

ξα;β + ξβ;α = gαµ
(
ξµ,β + Γµδβξ

δ
)

(10.57)

+ gβµ
(
ξµ,α + Γµαδξ

δ
)

= gαµξ
µ
,β + gβµξ

µ
,α + (gαµΓµδβ + gβµΓµαδ) ξ

δ.

The term in parenthesis can be written as

1

2
[gαµg

µσ (gδσ,β + gσβ,δ − gδβ,σ) + gβµg
µσ (gασ,δ + gσδ,α − gαδ,σ)]

=
1

2

[
δσα (gδσ,β + gσβ,δ − gδβ,σ) + δσβ (gασ,δ + gσδ,α − gαδ,σ)

]
(10.58)

=
1

2
[gδα,β + gαβ,δ − gδβ,α + gαβ,δ + gβδ,α − gαδ,β]

= gαβ,δ,

and eq. (10.57) becomes

ξα;β + ξβ;α = gαµξ
µ
,β + gβµξ

µ
,α + gαβ,δξ

δ (10.59)

which coincides with eq. (10.8).

10.7 Appendix B: The Levi-Civita completely antisym-

metric pseudotensor

We define the Levi-Civita symbol (also said Levi-Civita tensor density), eαβγδ, as an object
whose components change sign under interchange of any pair of indices, and whose non-zero
components are ±1. Since it is completely antisymmetric, all the components with two
equal indices are zero, and the only non-vanishing components are those for which all four
indices are different. We set

e0123 = 1. (10.60)

Under general coordinate transformations, eαβγδ does not transform as a tensor; indeed,
under the transformation xα → xα′,

∂xα

∂xα′
∂xβ

∂xβ′
∂xγ

∂xγ′
∂xδ

∂xδ′
eαβγδ = J eα′β′γ′δ′ (10.61)

where J is defined (see Chapter 7) as

J ≡ det

(
∂xα

∂xα′

)
(10.62)
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and we have used the definiton of determinant.
We now define the Levi-Civita pseudo-tensor as

εαβγδ ≡
√
−g eαβγδ . (10.63)

Since, from (8.26), for a coordinate transformation xα → xα′

|J | =
√
−g′√
−g

, (10.64)

then

εαβγδ → εα′β′γ′δ′ = sign(J)
∂xα

∂xα′
∂xβ

∂xβ′
∂xγ

∂xγ′
∂xδ

∂xδ′
εαβγδ . (10.65)

Thus, εαβγδ is not a tensor but a pseudo-tensor, because it transforms as a tensor times the
sign of the Jacobian of the transformation. It transforms as a tensor only under a subset of
the general coordinate transformations, i.e. that with sign(J) = +1.

Warning: do not confuse the Levi-Civita symbol, eαβγδ, with the Levi-Civita pseudo-
tensor, εαβγδ .



Chapter 11

The Schwarzschild solution

The Schwarzschild solution was first derived by Karl Schwarzschild in 1916, although a
complete understanding of the Schwarzschild spacetime was achieved much recently. The
paper was communicated to the Berlin Academy by Einstein on 13 January 1916, just about
two months after he had published the seminal papers on the theory of General Relativity.
In those years Schwarzschild was very ill. He had contracted a fatal desease in 1915 while
serving the German army at the eastern front. He died on 11 May 1916, and during his illness
he wrote two papers in General Relativity, one describing the solution for the gravitational
field exterior to a spherically symmetric non rotating body, which we are going to derive,
and the second describing the interior solution for a star of constant density which we shall
discuss later.

We now want to find an exact solution of Einstein’s equations in vacuum, which is
spherically symmetric and static. This will be the relativistic generalization of the newtonian
solution for a pointlike mass

V = −GM
r
, (11.1)

and it will describe the gravitational field in the exterior of a non rotating body. Let us first
discuss the symmetries of the problem.

11.1 The symmetries of the problem

a) Symmetry with respect to time.
Time-symmetric spacetimes can be stationary or static. A spacetime is said to be sta-

tionary if it admits a timelike Killing vector ~ξ. It follows from the Killing equations
that the metric of a stationary spacetime does not depend on time

∂gαβ
∂x0

= 0. (11.2)

A spacetime is static if it admits a hypersurface-orthogonal, timelike Killing vector.
In this case, as shown in Chapter 12, we can choose the coordinates in such a way that

115
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~ξ → (1, 0, 0, 0), and the line-element takes the simple form

ds2 = g00(xi)(dx0)2 + gkn(xi)dxkdxn, i, k, n = 1, 3, (11.3)

where g00 = g(~ξ, ~ξ) = ~ξ · ~ξ.

From this equation we see that the metric is not only independent of time, but also invariant
under time reversal t→ −t. (If terms like dx0dxi were present this would not be true).
b) Spatial symmetry.

We now take care of the spatial part of the metric. The basic idea is that we want to
“fill” the space with concentric spherical surfaces. We start with the 2-sphere of radius a
in flat space

ds2
(2) = g22(dx2)2 + g33(dx3)2 = a2(dθ2 + sin2 θdϕ2). (11.4)

The surface of this sphere is

A =
∫ √

gdθdϕ =
∫ π

0
a2 sin θdθ

∫ 2π

0
dϕ = 4πa2, (11.5)

and the lenght of the circumference

θ =
π

2
, dl = adϕ, C = 2πa. (11.6)

These results continue to hold if a is an arbitrary function of the remaining coordinates
x0, x1

ds2
(2) = a2(x0, x1)(dθ2 + sin2 θdϕ2). (11.7)

But since we have already established that the metric does not depend on time, we put
a = a(x1). We are now free to make a coordinate transformation and put

r = a(x1). (11.8)

Thus we define the radial coordinate as being half the ratio between the surface and the
circumference of the 2-sphere. However, it should be noted that in principle the coordinate
r has nothing to do with the distance between the center of the sphere and the surface , as
we shall later show.

Then we go to the next sphere at r+ dr. We may label the points of the second sphere
with different (θ′, ϕ′) as indicated in the figure

If the poles of the two sferes are not aligned, the vector ~η which maps the point
P = (θ0, ϕ0) on the internal sphere ( θ0, ϕ0 constants), to the point P ′ = (θ′0, ϕ

′
0) on

the external sphere (with θ′0 = θ0 and ϕ′0 = ϕ0), is directed as indicated in the figure.
Conversely, if the poles are aligned ~η is orthogonal to the two spheres, and therefore it is

orthogonal to
~∂
∂θ

= ~e(θ) and
~∂
∂ϕ

= ~e(ϕ), which are the basis vectors on the sphere. Thus
in this case ~η is hypersurface-orthogonal.

Since we want angular coordinates (θ, ϕ) defined in a unique way on the whole set of
spheres filling the space, we require that ~η is indeed orthogonal to the spheres. In this
case ~η is the vector tangent to the coordinate line (θ = const, ϕ = const), therefore

~η =
~∂
∂r

= ~e(r). The orthogonality condition then gives

~e(r) · ~e(θ) = grθ = 0, ~e(r) · ~e(ϕ) = grϕ = 0. (11.9)
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Under these assumptions, the metric of the three-space becomes

ds2
(3) = grrdr

2 + r2(dθ2 + sin2 θdϕ2), (11.10)

and that of the four-dimensional spacetime finally is

ds2 = g00(dx0)2 + grrdr
2 + r2(dθ2 + sin2 θdϕ2). (11.11)

At this point the two metric components g00 and grr should, in principle, depend on (r, θ, φ).
However, this is not the case. Indeed, if we consider a set of new polar coordinates (θ′, φ′)
to label the points on the two sferes that fill the space, neither the vector ~e0, nor the vector
~er will change and therefore they cannot depend on the angular coordinates we choose. As
a consequence g00 and grr do not depend on (θ, φ) either, and we can write

g00 = g00(r), and grr = grr(r).

It is convenient to rewrite the metric in the following form

ds2 = −e2ν(dx0)2 + e2λdr2 + r2(dθ2 + sin2 θdϕ2), (11.12)

where ν = ν(r) and λ = λ(r). Let us now compute the distance between two points
P1 = (x0

∗, r1, θ∗, ϕ∗), and P2 = (x0
∗, r2, θ∗, ϕ∗)

l =
∫ r2

r1
eλdr . (11.13)

This distance does not coincide with (r2 − r1).
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We now write the components of the Einstein tensor in terms of the metric (11.13). They
are

a) G00 =
1

r2
e2ν d

dr

[
r(1− e−2λ)

]
(11.14)

b) Grr = − 1

r2
e2λ

[
(1− e−2λ)

]
+

2

r
ν,r

c) Gθθ = r2e−2λ

[
ν,rr + ν2

,r +
ν,r
r
− ν,rλ,r −

λ,r
r

]
d) Gϕϕ = sin2 θGθθ

The remaining components identically vanish. Since we are looking for a vacuum solution,
the equations to solve are

Gµν = 0, (11.15)

and eq. (11.14a) gives
r(1− e−2λ) = K, (11.16)

where K is an integration constant. Hence

e2λ =
1

1− K
r

. (11.17)

From eq. (11.14b) we find

ν,r =
1

2

K

r(r −K)
, (11.18)

and therefore

ν =
1

2
log (1− K

r
) + ν0, → e2ν =

(
1− K

r

)
e2ν0 , (11.19)

where ν0 is a constant. We can rescale the time coordinate

t→ eν0t,

in such a way that e2ν becomes

e2ν = 1− K

r
. (11.20)

The final form of the solution is

ds2 = −
(

1− K

r

)
c2dt2 +

1

1− K
r

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (11.21)

This is the Schwarzschild solution. When r → ∞ the metric reduces to that of a flat
spacetime, therefore we say that the metric is asymptotically flat.

Now we want to understand what is the meaning of the integration constant K. In
Chapter 8 section 1, we showed that in the weak-field limit, the geodesic equations reduce
to the newtonian equations of motion, and consequently

g00 ∼ −
(

1 +
2Φ

c2

)
= −

(
1− 2GM

c2r

)
, where (11.22)
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Φ = −GM
r

is the newtonian potential generated by a spherical distribution of matter. From
eq. (11.20) we see that when r →∞ g00 tends to unity as

−g00 = e2ν = 1− K

r
. (11.23)

By comparing eq. (11.22) and (11.23) we find

K =
2GM

c2
. (11.24)

Therefore the constant K is the physical mass multiplied by 2G
c2
. It is easy to check that

the solution (11.21) satisfies eq. (11.14c).

11.2 The Birkhoff theorem

The solution (11.21) has been found by imposing that the spacetime is static and spherically
symmetric, therefore it represents the gravitational field external to a non-rotating, sperically
symmetric body whose structure is time-independent. However, it is more general than
that. In fact Birkhoff’s theorem establishes that it is the only spherically symmetric and
asymptotically flat solution of the vacuum Einstein field equations. Let us assume that the
functions (ν, λ) in the metric (11.12) depend both on the radial coordinate and on time.
To prove Birkhoff’s theorem we only need the components R0r and Rθθ of the Ricci
tensor:

a) R0r =
2

r

∂λ

∂x0
= 0, (11.25)

b) Rθθ = 1− e−2λ

[
1 + r

∂(ν − λ)

∂r

]
= 0.

From eq. (11.25a) it follows that λ must depend only upon the radial coordinate r. Then
from eq. (11.25b) it follows that also ∂ν

∂r
must be independent of x0 and consequently

ν = ν(r) + f(x0). (11.26)

This means that the coefficient of (dx0)2 in the line element is e2ν(r)e2f(x0). But the term
e2f(x0) can be ‘reabsorbed’ by a coordinate transformation

dt′ = ef(x0)dt, (11.27)

so that the new metric coefficients are

ν = ν(r), λ = λ(r), (11.28)

and the metric is time independent. This means that even if we impose that the central
object evolves in time, as it would be for example in the case of a star radially pulsating,
or in a spherical collapse, we would find, in the exterior, the same Schwarzschild metric,
and since the spacetime remains static even in these cases, gravitational waves could not be
emitted. The conclusion is that spherically symmetric systems can never emit gravitational
waves. A similar situation occurs in electrodynamics: a spherically symmetric distribution
of charges and currents does not radiate.
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11.3 Geometrized units

From eq. (11.23) and (11.24) is easy to see that K = 2GM
c2

must have the dimension of a
lenght. Remembering that

G = 6.67× 10−8 cm
3

gs2
, c = 2.998× 1010 cm/s,

the ratio G
c2

is
G

c2
= 0.7425× 10−28cm · g−1. (11.29)

It is often convenient to put
G = c = 1, (11.30)

which means that we measure the mass, as the lenghts, in cm. We shall often adopt this
convention, and we will indicate the geometrical mass (i.e. the mass in cm) as m.

In these unities the Schwarzschild solution becomes

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (11.31)

11.4 The singularities of Schwarzschild solution

Let us examine the metric (11.31) in some more detail. We immediately see that there is a
problem when r → 2m : g00 → 0, and grr →∞. Moreover, when r → 0, g00 →∞,
and grr → 0. In both cases we say that there is a singularity, but of a different nature. In
order to check wheter a singularity is a genuine curvature singularity, we should compute the
scalars which we can construct from the Riemann tensor and see if they diverge. To check
whether the Riemann tensor is well-behaved is not enough, in fact for the Schwarzschild
metric the components of Rα

βγδ are

Rt
rtr = −2

m

r3

(
1− 2m

r

)−1

(11.32)

Rt
θtθ =

1

sin2 θ
Rt

ϕtϕ =
m

r5

Rθ
ϕθϕ = 2

m

r5
sin2 θ

Rr
θrθ =

1

sin2 θ
Rr

ϕrϕ = −m
r5

and they diverge both at r = 0, and at r = 2m. However, if we compute the scalar
invariants, like RabcdRabcd, we find that they diverge only at r = 0. We conclude that
r = 0 is a true curvature singularity, while r = 2m is only a coordinate singularity, due
to an unappropriate choice of the coordinates.

We shall now analyse the properties of the surface r = 2m.
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11.5 Spacelike, Timelike and Null Surfaces

In a curved background hypersurfaces are classified in the following way. Consider a generic
hypersurface Σ

Σ(xµ) = 0, (11.33)

Be ~n the normal vector dual to the gradient one-form

nα = Σ,α (11.34)

If tα is a tangent vector to the surface, then tαnα = 0. Indeed, tα = dxα

dλ
with xα(λ) curve

on Σ; therefore,

tαnα =
dxα

dλ

∂Σ

∂xα
=
dΣ

dλ
= 0 . (11.35)

At any point of the hypersurface we can introduce a locally inertial frame, and rotate it in
such a way that the components of ~n are

nα = (n0, n1, 0, 0) and nαn
α = (n1)2 − (n0)2. (11.36)

Consider a vector tα tangent to Σ at the same point. tα must be orthogonal to ~n

nαt
α = −n0t0 + n1t1 = 0 → t0

t1
=
n1

n0
. (11.37)

From eq. (11.37) it follows that

tα = Λ(n1, n0, a, b) with a, b e Λ costant and arbitrary. (11.38)

Consequently the norm of ~t is

tαt
α = Λ2[−(n1)2 + (n0)2 + (a2 + b2)] = Λ2[−nαnα + (a2 + b2)]. (11.39)

There are three possibilities:

1) nαn
α < 0, → nα is a timelike vector → Σ is spacelike

2) nαn
α > 0, → nα is a spacelike vector → Σ is timelike

3) nαn
α = 0, → nα is a null vector → Σ is null

We shall now see how the normal and the tangent vectors are directed in order to understand
the disposition of the light-cones with respect to the hypersurface.

1) If nαn
α < 0 , then tαt

α > 0 and ~t is spacelike. Consequently no tangent vector
to Σ in P lies inside, or on the light-cone through P. Since a massive particle which starts
at P must move inside the light-cone (or on the light-cone if it is massless), this means that
a spacelike hypersurface can be crossed only in one direction.
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2) If nαn
α > 0 , then tαt

α can be positive, negative or null depending on the value
of a2 + b2 . Therefore there will be some tangent vectors which lie inside the light-cone .
Consequently a timelike hypersurface can be crossed inward and outward.

3) If nαn
α = 0 , then tαt

α is positive (tα is spacelike), or null if a = b = 0 . In this
case there will be only one tangent vector (and all its multiples) at P which lies on Σ and
on the light-cone
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For example, in Minkowski spacetime t = const is a spacelike surface, and any physical
object can pass it in only one direction without violating causality. x = const is a timelike
surface, and physical objects can pass it in either direction, x − ct = 0 is a null surface.
Let us now try to understand what kind of surface r = 2m is.

Consider a generic hypersurface r = const in the Schwarzschild geometry

Σ = r − cost = 0. (11.40)

The norm of the normal vector is

nαn
α = gαβnαnβ = gαβΣ,αΣ,β = (11.41)

g00Σ2
,0 + grrΣ2

,r + gθθΣ2
,θ + gϕϕΣ2

,ϕ = grrΣ2
,r =

(
1− 2m

r

)
.

From eq. (11.41) it follows that

r > 2m → nαn
α > 0, Σ is timelike

r = 2m → nαn
α = 0, Σ is null

r < 2m → nαn
α < 0, Σ is spacelike

Consider for example S1 and S2 as shown in the following figure
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Any signal which starts at some point of S1 can be sent both toward the origin and
outward, since S1 is timelike. Conversely, a signal which starts at a point of S2 in the
interior of r = 2m must necessarily go inward, and be captured by the sigularity at r = 0,
since S2 is spacelike. The surface r = 2m is a null surface, which is basically the transition
from a spacelike to a timelike hypersurface. On the surface r = 2m the timelike Killing
vector ~ξ(t) becomes null and it is spacelike for r < 2m.

The Schwarzschild solution is said to represent the gravitational field of a black hole,
and the hypersurface r = 2m is called the event horizon. The reason for these names is
that if we are outside r = 2m we can send a signal both inward and outward, but as soon as
we cross the horizon any signal will inevitably bend toward the singularity: there is no way
to know what happens inside the horizon.

As we mentioned before, r = 0 is a genuine curvature singularity. Thus General Relativity
predicts the existence of singularities hidden by a horizon.
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11.6 How to remove a coordinate singularity

In general, it is not a simple problem to understand whether a singularity is a genuine
curvature singularity or it is only a coordinate singularity. The first thing to do is to compute
the Riemann tensor and the scalars which can be computed from it, like RabcdRabcd and
check whether they diverge somewhere. If this is not the case, the singularity is due to
a bad choice of the coordinate system, and a suitable choice of a new set of coordinates
should remove it. If this can be done, we say that we are extending our original spacetime
(M, gαβ) to a larger spacetime (M̃, g̃αβ) which includes the original one. Before analyzing
the Schwarzschild case, let us consider two examples.

Consider the two-dimensional spacetime

ds2 = − 1

t4
dt2 + dx2, 0 < t <∞, −∞ < x <∞. (11.42)

(c = G = 1.) The metric is singular at t = 0. The coordinate transformation

t′ =
1

t
→ dt′ = − 1

t2
dt, (11.43)

gives
ds2 = −(dt′)2 + dx2, (11.44)

Thus the metric (11.42) represents a flat spacetime. The metric (11.44) is defined for any
t′ , i.e. −∞ < t′ < ∞, therefore it describes regions of the spacetime which where
“unaccessible” to the coordinates (11.42). In fact in that case 0 < t <∞, which corresponds
only to the section 0 < t′ <∞, of our new spacetime. This is the reason why we say that
the new coordinates provide an extension of the spacetime. The coordinate singularity t = 0
is mapped onto the line t′ →∞. The new spacetime is said to be geodesically complete
because any geodesic which starts at any given point of the spacetime, can be extended for
arbitrarily large values of the affine parameter. Conversely, the original spacetime (11.42) was
geodesically incomplete for the following reason. We have established that the spacetime
is flat, and it extends from −∞ to +∞ in both coordinates (t′, x′). In eq. (11.42)
we were trying to cover our infinite spacetime with coordinates which vary in a semi-infinite
range (0 < t < ∞). This is the reason why the singularity t = 0 appears. With those
coordinates we were able to cover only the region (0 < t′ <∞) of the complete spacetime,
but not the region (−∞ < t′ < 0). Consequently, geodesics which start in the region
t′ < 0, cross the axis and continue in the region t′ > 0, cannot be completely represented
in the spacetime described by (t, x) : they will terminate for a finite value of the proper
time.

Another example is the Rindler spacetime, which has interesting similarities with the
Schwarzschild geometry. The line-element is

ds2 = −x2dt2 + dx2, −∞ < t <∞, 0 < x <∞. (11.45)

The metric is singular at x = 0. The determinant g vanishes at x = 0, therefore gµν

is also singular. Let us consider goedesics in this spacetime. Since the metric is independent
of time, it admits a timelike Killing vector ~ξ(t) → (1, 0). According to eq. (10.35)

ξ(t)αU
α = gαβξ

α
(t)U

β = const = −E, → U0 =
E

x2
, (11.46)
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where Uβ = dxβ

dλ
and λ is an affine parameter (not necessarily the proper time). Therefore,

dt

dλ
=
E

x2
. (11.47)

Since the norm of the vector tangent to the worldline of a massive particle is −1, then

UµUνgµν = −x2

(
dt

dλ

)2

+

(
dx

dλ

)2

= −1, (11.48)

thus (
dx

dλ

)2

= x2

(
dt

dλ

)2

− 1 =
E2

x2
− 1 . (11.49)

Hence

dx

dλ
= ±

√
E2

x2
− 1, → λ =

∫ x xdx√
E2 − x2

= −
√
E2 − x2 + const. (11.50)

Thus a particle starting at some point x reaches x = 0 in a finite interval of the affine
parameter: Rindler spacetime is geodesically incomplete. However, since the Riemann
tensor and the curvature scalars do not diverge at x = 0, there must exist a coordinate
transformation which brings the metric into a non-singular form. Unfortunately a systematic
approach to the problem of finding the “right” coordinates to extend the metric does not
exist. We shall describe a procedure which is based on the behaviour of null geodesics. In two
dimension the situation is easier, since null geodesics belong, at least locally to two classes:
ingoing and outgoing. Two geodesics belonging to the same class cannot cross, because the
two tangent vectors should coincide at that point, and consequently the two geodesic should
coincide everywhere (remember that geodesics parallel-transport their own tangent vector).
If

~K → {δx
µ

dλ
}, (11.51)

is the vector tangent to the null geodesic whose affine parameter is λ, we must have that

gµνK
µKν = 0. (11.52)

In the case we are considering it becomes

0 = gµνK
µKν = −x2

(
dt

dλ

)2

+

(
dx

dλ

)2

, (11.53)

from which we find (
dt

dx

)2

=
1

x2
. (11.54)

Therefore along the null geodesic

t = ± log x+ const, (11.55)
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where the + identifies the outgoing geodesics and the - the ingoing geodesics. Accordingly,
we define the null ingoing and outgoing coordinates as

u = t− log x and v = t+ log x (11.56)

and the metric in the new coordinates becomes

ds2 = −ev−ududv. (11.57)

The coordinates u and v vary in the range ( −∞,+∞), and they cover the original
region x > 0, (they do not extend the spacetime yet!), thus we haven’t solved the problem
of eliminating the singularity. An extension of the spacetime can be accomplished if we
reparametrize the null geodesics with new coordinates

U = U(u) (11.58)

V = V (v).

The form of the metric is so simple that we may define U and V immediately. But to
have a feeling on what one should do in general we proceed in a more systematic way. From
eqs. (11.46) and (11.51) it follows that for a massless particle

ξ(t)αK
α = gαβξ

α
(t)K

β = const = −E, → dλ =
x2

E
dt. (11.59)

Since dt = 1
2
d(u + v), if we put u = const and move along a null direction parallel to

the v−axis, i.e. along an outgoing null geodesic, eq. (11.59) becomes

dλ =
x2

2E
dv, or, since 2 log x = v − u→ x = e

v−u
2 ,

λ =
1

2E

∫
e(v−u)dv = C +

(
e−u

2E

)
ev, (11.60)

where C is a constant. If we shift λ → λ−C
e−u
2E

, then the affine parameter along outgoing

null geodesics becomes
λout = ev. (11.61)

Proceeding in a similar way we find that the affine parameter along ingoing null geodesics is

λin = −e−u. (11.62)

If we now choose

U = −e−u (11.63)

V = ev,

the metric becomes

ds2 = −dUdV, or if we put T =
(U + V )

2
, X =

(V − U)

2
ds2 = −dT 2 + dX2, (11.64)
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which is again a flat spacetime.
Summaryzing: 1) we find the equations for the ingoing and outgoing null geodesics, 2)

we choose the affine parameters along these geodesics as coordinates, then we introduce X
and T.

U and V range between −∞ and +∞. The original spacetime (x, t) coincides
with the quadrant [U < 0, V > 0], but since everything is regular at [U = 0, V = 0], the
metric is extended to the regions U > 0, and V < 0, which were not included before. The
relation bewtween the old and the new coordinates is

x = (X2 − T 2)
1
2 (11.65)

t = tanh−1(
T

X
) =

1

2
log

(
X + T

X − T

)
A picture of the spacetime is given in the following figure

The singularity x = 0 corresponds to the lines X = ±T, where the metric in the new
coordinates is perfectly well behaved. From the second of eqs. (11.65)

X = −T corresponds to t→ −∞ (11.66)

X = T corresponds to t→ +∞.

The curves x = const are now mapped onto the hyperbolae X2− T 2 = const, while the
curves t = const are mapped onto T = constX. The original Rindler space corresponds
to the dashed region in the figure. Therefore we have finally extended the spacetime across
the barrier x = 0.

If we now go back to Rindler’s metric and consider the following coordinate transforma-
tion

y =
1

4
x2, (11.67)
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the metric becomes

ds2 = −4ydt2 +
1

y
dy2, (11.68)

and rescaling the time coordinate t→ 2t

ds2 = −ydt2 +
1

y
dy2. (11.69)

This is similar to the form of the two-dimensional (t, r) part of the Schwarzschild metric.

11.7 The Kruskal extension

First we compute the null geodesics of the two-dimensional Schwarzschild metric

ds2 =
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 (11.70)

by imposing

0 = gµνK
µKν = −

(
1− 2m

r

)(
dt

dλ

)2

+
(

1− 2m

r

)−1
(
dr

dλ

)2

. (11.71)

Hence (
dr

dt

)2

=
(

1− 2m

r

)2

→ dt

dr
= ± r

r − 2m
, (11.72)

whose solution is
t = ±r∗ + const (11.73)

where

r∗ = r + 2m log
(
r

2m
− 1

)
, and

dr

dr∗
=
(

1− 2m

r

)
. (11.74)

The coordinate r∗ is called the “tortoise” coordinate, since if r → +∞ then r∗ ∼ r,
but if r → 2m then r → −∞, thus as r → 2m r∗ pushes the horizon to −∞. We
now define the null ingoing and outgoing coordinates

u = t− r∗ −∞ < u < +∞, (11.75)

v = t+ r∗ → r∗ = v−u
2
−∞ < v < +∞

and the two-dimensional metric becomes

ds2 = −
(

1− 2m

r

)dt2 − dr2(
1− 2m

r

)2

 = (11.76)

−
(

1− 2m

r

) [
dt2 − dr2

∗

]
= −

(
1− 2m

r

)
dudv.
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hence 1

ds2 = −
(

1− 2m

r

)
dudv = −2m

r
e−

r
2m e

v−u
4m dudv. (11.80)

Since r = 2m corresponds to u → ∞ and v → −∞, the metric (11.80) is regular
everywhere. A comparison with the Rindler case shows that a convenient choice for U and
V is

U = −e−
u
4m , → −∞ < U < 0 (11.81)

V = e
v

4m , → 0 < V < +∞

The metric becomes

ds2 = −32m3e−
r

2m

r
dUdV. (11.82)

The surface r = 2m now corresponds to U = 0 or V = 0 where the metric (11.82)
is non-singular. Therefore it can be extended across these two hypersurfaces to cover the
whole two-dimensional spacetime. By introducing the coordinates T and X

T =
V + U

2
X =

V − U
2

(11.83)

the four-dimensional metric finally becomes

ds2 =
32m3e−

r
2m

r
[−dT 2 + dX2] + r2

(
dθ2 + sin2 θdϕ2

)
. (11.84)

This extension was independently found by Kruskal and Szekeres in 1960. The relation
between the old and the new coordinates is 2

1From the definition of r∗ we find

r∗ − r
2m

= log

(
r − 2m

2m

)
→ e

r∗
2m e−

r
2m =

r − 2m

2m
. (11.77)

(1− 2m

r
) =

r − 2m

2m

2m

r
=

2m

r
e−

r
2m e

r∗
2m . (11.78)

Since r∗ = (v − u)/2, it follows

(1− 2m

r
) =

2m

r
e−

r
2m e

(v−u)
4m (11.79)

2The derivation of eqs. (11.85) and (11.86):

(X2 − T 2) =

(
V − U

2

)2

−
(
V + U

2

)2

= −UV = +e−
v−u
4m =

r

2m

(
1− 2m

r

)
e
r

2m ,

and

log

(
X + T

X − T

)
= log−

(
V

U

)
= log e

v−u
4m =

v + u

4m
=

t

2m
.
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(X2 − T 2) =
(
r

2m
− 1

)
e

r
2m (11.85)

t

2m
= log

(
X + T

X − T

)
= 2tanh−1

(
T

X

)
(11.86)

The extended two-dimensional spacetime is shown in the following figure

If r = const > 2m, from eq. (11.85) it follows that X2 − T 2 > 0 and constant,

and consequently X = ±
√
T 2 + k, where k =

[(
1− 2m

r

)
e

r
2m

]
r=const

. These curves are

indicated as continuous lines in the quadrants I and IV of the preceeding figure.

If r = const < 2m, X2 − T 2 < 0 and constant, and X = ±
√
T 2 − |k|. These

curves are the dashed lines in the quadrants II and III. The curvature singularity r = 0
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corresponds to the curves X2−T 2 = −1 and X = ±
√
T 2 − 1 also represented in regions

II and III. Radial null geodesics correspond to U = const (ingoing) or to V = const
(outgoing). This diagram has the remarkable property that null geodesics are 450-straight
lines. The curves t = const are straight lines passing through the origin.

The original spacetime ( r > 0), i.e.the Schwarzschild spacetime in the exterior of the
horizon, corresponds to the quadrant [−∞ < U < 0, 0 < V < ∞], labeled as region I.
What is the meaning of the other regions? Consider a physical observer which starts at some
point r in the exterior of the horizon, i.e. in region I, as indicated in the next figure

He can move only in the interior of the light-cones, which, at every point are 450-straight
lines. As one can see from the figure, as long as the observer is outside the horizon, he can
still invert its direction of motion and escape free at infinity. But as soon as he crosses the
surface U = 0 and enters in region II, this is no longer possible, and he gets captured by
the singularity r = 0, (compare with the discussion on the nature of the hypersurfaces
r = const in section 10.5. The singularity r = 0 is a spacelike singularity). Thus region
II represents the spacetime in the interior of the horizon. Regions III and IV have the same
characteristics as regions I and II, but they are time-reversed with respect to them: a particle
in region III must necessarily have been emitted by the singularity sitting in that region.
Then it will cross the surface r = 2m ( U = 0 or V = 0 ) and will escape free at
infinity either in region I, or in its mirrow image region IV. It should be noted that region
I and IV are causally unrelated, since a signal emitted by an observer in region I will never
reach region IV and viceversa. It is interesting to ask whether regions IV and III do exist
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or not. Suppose that a black hole has formed, and we really have a singularity concealed by
a horizon. We live in the exterior of the horizon (we can move inward and outward). We
can send signals to region II, but no signal emitted by us will reach regions III and IV for
the reasons explained above. On the other hand, no signal coming from region IV can reach
us. A signal emitted in region III (the white hole region) might, in principle, reach region
I. However it is reasonable to assume that the black hole has formed at some time as the
result of some physical process (the collapse of a massive star, as we shall soon see), and
since any signal emitted in region III would take an infinite time t to reach region I, region
III cannot communicate with us. If we want to take a pragmatical point of view, we can
conclude that since we cannot communicate with regions III and IV (and viceversa), they
do not exist for us. To speculate on the existence of ‘other universes’, although intriguing,
is outside the scope of this course.

The Kruskal extension is very useful to investigate the causal structure of the spacetime
in the vicinity of the horizon. However it is unappropriate to describe the spacetime at
infinity, due to the exponential behaviour of gTT and gXX .



Chapter 12

Experimental Tests of General
Relativity

12.1 Gravitational redsfhift of spectral lines

Time intervals are measured using clocks, which are instruments whose functioning is based
on the repetition of a periodic phenomenon, such as atomic oscillations or the oscillations of
a quartz crystal. We choose as time unit the interval of proper time between two successive
repetitions of the periodic phenomenon. The definition of proper time in general relativity
is

dT =
1

c

√
−ds2 ≡ 1

c

√
−gµν(xµ)dxµdxν . (12.1)

In this expression gµν must be evaluated at the (spacetime) position of the body to which it
refers; in the case under consideration it has to be evaluated at the clock position. Thus, if
the clock is at rest with respect to the reference frame, dxi = 0, i = 1, 3 and the proper time
interval between two ticks is

dT =
1

c

√
−g00(xµ)dx0 =

√
−g00(xµ)dt, (12.2)

were dt is the interval of coordinate time between two ticks. Note that we are assuming that
dT is very small, so that we can use the infinithesimal expression of the proper time without
integrating over the clock worldline.

By dividing the proper time interval by dt we find

dT

dt
=

1

c

√
−gνµ(xµ)

dxµ

dt

dxν

dt
. (12.3)

dT
dt is called time dilation factor; it gives the ratio between the interval of proper time

between two events and the corresponding interval of coordinate time, and depends both
on the metric and on the clock velocity. If the clock is at rest with respect to the reference
frame it becomes

dT

dt
=
√
−g00(xµ). (12.4)

134
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We shall now show that, in a gravitational field, the frequency of a signal detected at a point
different from the emission point is different from the emission frequency. Let us assume
that the gravitational field is stationary, which implies that there exists a timelike Killing
vector and that, by a suitable coordinates choice, the metric can be made independent of
time. In this case, the coordinate x0 will be referred to as the universal time. This choice is
not univocal, because we can always shift the origin of time, and rescale x0 by an arbitrary
constant. Be S a light source and O an observer, located at two different points.

O

Star

S

Observer

The source S emits a wave crest which reaches O after an interval of coordinate time ∆x0.
Since for a light signal ds2 = 0, we can compute ∆x0 by solving this equation with respect
to dx0, and by integrating over the light path as follows:

ds2 = g00(dx0)2 + 2g0idx
0dxi + gikdx

idxk = 0, i, k = 1, . . . , 3

∆x0 =
∫
light path

dx0 =
∫
light path

−g0idx
i ±

√
(g0idxi)2 − g00gikdxidxk

g00

.

The physical solution is that corresponding to the − sign. 1 Since the metric is independent
of time, if S and O are at rest the interval of coordinate time the light takes to go from S to
O is the same for all signals; therefore if two wave crests are emitted with a time separation
∆x0

em by S, they will reach O with a time separation ∆x0
obs = ∆x0

em.
The period of the emitted wave, ∆Tem, is the interval of proper time of the source S,

which elapses between the emission of two successive wave crests, i.e.

∆Tem =
√
−g00(xµem)∆tem,

and the emission frequency is

νem =
1

∆Tem
=

1√
−g00(xµem)∆tem

.

1Why do we have two solutions for ∆x0 corresponding to the ± sign? Firstly note that since g00 is
negative and gik are positive

√
(g0idxi)2 − g00gikdxidxk > g0idx

i; consequently the solution with the + sign
is negative and that with the − is positive, i.e. (∆x0)+ < 0 and (∆x0)− > 0. Clearly the physical solution
is (∆x0)− > 0, whereas (∆x0)+ < 0 would correspond to a signal that being emitted by O would reach S at
x0 = 0.
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Similarly, the period measured by the observer is the interval of its own proper time, which
elapses between the detection of two wave crests, i.e.

∆Tobs =
√
−g00(xµobs)∆tobs,

and the observed frequency is

νobs =
1

∆Tobs
=

1√
−g00(xµobs)∆tobs

.

Using the fact that ∆tem = ∆tobs we finally find

νobs
νem

=
λem
λobs

=

√√√√g00(xµem)

g00(xµobs)
. (12.5)

Thus, in general the frequency of a signal emitted in a gravitational field at a given point,
is different from that detected at a different point, since the metric in the two points is
different.

12.1.1 Some useful numbers

We now want to establish when a gravitational field can be considered as weak. Let us
consider the Sun first. Its mass and radius are

M� = 1.989 · 1033 g, R� = 6.9599 · 105 km; (12.6)

moreover, being G = 6.67× 10−8 cm3

gs2
and c = 2.998× 1010 cm/s,

GM�
c2

=
1.989 · 1033 × 6.673 · 10−8

(2.998 · 1010)2
∼ 1.4768 km, and

GM�
R�c2

∼ 0.21 · 10−5. (12.7)

The quantity
GM

Rc2
is said surface gravity, and it is a measure of how strong are the effects

of general relativity. The surface gravity of the Sun is much smaller than unity, therefore we
can say that its gravitational field is weak.

The Earth has mass M⊕ = 5.98 ·1027 g and equatorial radius R⊕ = 6.378 ·103 Km. Since

M�/M⊕ ' 3 · 105, and R�/R⊕ ' 102,

GM�
R�c2

/
GM⊕
R⊕c2

∼ 3 · 103 (12.8)

i.e. the surface gravity of the Sun is about 3000 times larger than that of the Earth.
Conversly, if we consider a neutron star with typical mass and radius

MNS ∼ 1.4 M�, RNS ∼ 10 km, (12.9)

the surface gravity is
GMNS

RNSc2
∼ 0.21, (12.10)

which is close to unity and much larger than that of the Sun. Thus, the effects of general
relativity will be much more important for a neutron star than for the Sun.
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12.1.2 Redshift of spectral lines in the weak field limit

Let us now consider eq. (12.5) in the weak field limit. In section 9.1 we have seen that if we
assume that the gravitational field is stationary and weak, the geodesic equations show that
the 00-component of the metric tensor is related to the Newtonian potential Φ, solution of
the equation ∇2Φ = 4πGρ, by the equation

g00 ' −
(

1 +
2Φ

c2

)
.

Consequently, if the gravitational field is weak and stationary eq. (12.5) becomes

νobs − νem
νem

=
λem − λobs

λobs
=

√√√√√√√1 +
2Φem

c2

1 +
2Φobs

c2

− 1 '

√(
1 +

2Φem

c2

)(
1− 2Φobs

c2

)
− 1 '

√
1 +

2

c2
(Φem − Φobs)− 1

' 1

c2
(Φem − Φobs)

and finally
∆ν

ν
' 1

c2
(Φem − Φobs) . (12.11)

Let us suppose that the source of light is on the Sun, whose gravitational field is weak, and
that the observer is on the Earth. We shall neglect the gravitational field of the Earth since
it is much smaller than that of the Sun. In this case, Φ = −GM�

r
, where r is the distance

from the Sun center, rem = R� and robs = rSun−Earth. Thus eq. (12.11) becomes

∆ν

ν
' GM�

c2

(
− 1

R�
+

1

rSun−Earth

)
;

Since the average distance between the Sun and the Earth is rSun−Earth = 149.6 · 106 km,
which is about 210 times the Sun radius, we can assume rSun−Earth � R�, so that

∆ν

ν
' −GM�

R�c2
' −0.21 · 10−5. (12.12)

Note the following:

• ∆ν < 0, i.e. the observed spectral lines are shifted toward lower frequencies, i.e. the
light reddened.

• The redshift of spectral lines produced by the Sun is of the order of its surface gravity.
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12.1.3 Redshift of spectral lines in a strong gravitational field

Let us now consider the case when the source emitting light and the observer are located
in the gravitational field of a neutron star or of a black hole. The metric appropriate to
describe the exterior of a neutron star, from r = RNS up to radial infinity, and a black hole
is the Schwarzschild metric

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m

r

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
,

where m = GM/c2 is the mass, either of the star or of the black hole, in geometric units. If
we assume that the observer is located very far from the source emitting light, i.e. robs � rem,
eq. (12.5) gives

νobs
νem

=

√√√√−g00(xµem)

−g00(xµobs)
=

√√√√√√√√
1− 2m

rem

1− 2m

robs

∼
√

1− 2m

rem
. (12.13)

If the light source is located on a neutron star surface, i.e. rem = RNS, this equation gives

νobs
νem
∼
√

1− 2GMNS

RNSc2
∼
√

1− 2× 0.21 ∼ 0.76 → ∆ν

ν
=
νobs − νem

νem
∼ −0.24,

where we have used eq. (12.10). This means that an observer located at infinity with respect
to the neutron star will see the emitted ligth reddened (∆ν < 0) by quite a large amount,
much larger than that produced by the Sun which we computed in eq. (12.12).

Let us now suppose that the source of the gravitational field is a black hole, and that the
source emitting light is on a spacecraft orbiting around it. From eq. (12.13) we see that as
the light source approaches the horizon r = 2m,

νobs ∼
√

1− 2m

rem
νem → 0,

i.e. the observed signal will fade away since the observed frequency tends to zero. Thus, the
signal emitted by a source falling into a black hole has a distinctive feature, i.e. its frequency
will progressively decrease tending to zero near the horizon.

NOTE THAT: to derive the gravitational redshift, we have used only the fact that the
effects of the gravitational field are described by the metric tensor, i.e. we have used basi-
cally only the Equivalence Principle.
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12.2 The geodesic equations in the Schwarzschild back-

ground

The geodesic equations can be derived not only from the Equivalence Principle as shown in
previous chapters, but also from a variational principle, as we shall now show.

12.2.1 A variational principle for geodesic motion

Let us define the Lagrangian of a free particle as

L
(
xα,

dxα

dλ

)
=

1

2
gµν(x

α)
dxµ

dλ

dxν

dλ
≡ 1

2
gµν(x

α)ẋµẋν , (12.14)

in the space of the curves {xµ(λ), λ ∈ [λ0, λ1]}, and the action

S =
∫
L (xα, ẋα) dλ =

1

2

∫
gµν(x

α)ẋµẋνdλ,

where we have set

ẋµ =
dxµ

dλ
. (12.15)

λ can be the proper time if we consider massive particles, or an affine parameter which
parametrizes the geodesic, if we consider massless particles. The Euler-Lagrange equations
are obtained, as usual, by varying the action with respect to the coordinates, and by setting
the variation equal to zero. By varying a curve xµ(λ)

xµ(λ) −→ xµ(λ) + δxµ(λ)

with δxµ(λ0) = δxµ(λ1) = 0, the action variation is

δS =
∫ (

∂L
∂xσ

δxσ +
∂L
∂ẋσ

δ(ẋσ)

)
dλ. (12.16)

Since

δ(ẋσ) = δ

(
dxσ

dλ

)
=
dδxσ

dλ
,

the last term in eq. (12.16) can be written as

∂L
∂ẋσ

δ(ẋσ) =
∂L
∂ẋσ

dδxσ

dλ
=

d

dλ

(
∂L
∂ẋσ

δxσ
)
− d

dλ

(
∂L
∂ẋσ

)
δxσ.

When integrated between λ0 and λ1 the first term on the RHS vanishes because δxµ(λ0) =
δxµ(λ1) = 0, therefore eq. (12.16) becomes

δS =
∫ [

∂L
∂xσ

δxσ − d

dλ

(
∂L
∂ẋσ

)
δxσ

]
dλ , (12.17)
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which vanishes for all δxσ if and only if

∂L
∂xσ
− d

dλ

∂L
∂(ẋσ)

= 0. (12.18)

These are the Euler–Lagrange equations. We shall now show that these equations, when
written for the action (12.14), are the geodesic equations

ẍγ + Γγµν ẋ
µẋν = 0. (12.19)

By substituting the Lagrangian (12.14) in the Euler–Lagrange equations (12.18), and re-
membering that gµν = gµν(x

α) and ẋµ = ẋµ(λ), we find

1

2
gµν,αẋ

µẋν − d

dλ

[
1

2
gµν(δ

µ
αẋ

ν + ẋµδνα)
]

(12.20)

= gµν,αẋ
µẋν − d

dλ
[gαν ẋ

ν + gαµẋ
µ]

= gµν,αẋ
µẋν − d

dλ
[2gαν ẋ

ν ]

= gµν,αẋ
µẋν − 2gαν,βẋ

βẋν − 2gαν ẍ
ν

≡ gµν,αẋ
µẋν − gαµ,ν ẋν ẋµ − gαν,µẋµẋν − 2gαν ẍ

ν = 0

By contracting this equation with gαγ we find

δγν ẍ
ν +

1

2
gαγ [−gµν,α + gαµ,ν + gαν,µ] ẋµẋν = 0

i.e.

ẍγ +
1

2
gαγ [gαµ,νgαν,µ − gµν,α] ẋµẋν = 0 (12.21)

which coincides with eq. (12.19).

12.2.2 Geodesics in the Schwarzschild metric

For the Schwarzschild metric, the Lagrangian of a free particle is

L =
1

2

−(1− 2m

r

)
ṫ2 +

ṙ2(
1− 2m

r

) + r2θ̇2 + r2 sin2 θφ̇2

 ,
(we put G = c = 1), and a dot indicates differentiation with respect to λ. The equations of
motion for ṫ, φ̇ and θ̇ are:

1) Equation for ṫ:

∂L
∂t
− d

dλ

∂L
∂(ṫ)

= 0 → d

dλ

[(
1− 2m

r

)
2ṫ
]

= 0
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i.e.

ṫ =
const(

1− 2m

r

) . (12.22)

It should be reminded that, since the Schwarzschild metric admits a timelike Killing vector
~∂
∂t
→ ξα(t) = (1, 0, 0, 0), there exists an associated conserved quantity for the geodesic motion

gαβξ
α
(t)u

β = const → g00u
0 = const →

(
1− 2m

r

)
ṫ = const (12.23)

where u0 = ṫ =
dx0

dλ
. Note that this equation coincides with eq. (12.22). As discussed in

section 10.3, at radial infinity, where the Schwarzschild metric tends to Minkowski’s metric in
spherical coordinates, g00 becomes η00 and the equation g00u

0 = const reduces to u0 = const.
In flat spacetime (putting G = c = 1) the energy-momentum vector of a massive particle is
pα = muα = {E ,mviγ}; therefore u0 = const means E/m = const. Therefore we are entitled
to interpret the constant in eqs. (12.22) and (12.23) as the energy per unit mass of the
particle at infinity. In this case the parameter λ is the particle proper time. If the particle
is massless λ must be an affine parameter which parametrizes the null geodesic, ad it can be
chosen in such a way that the constant is the particle energy at infinity. In the following we
shall put const = E and write eq. (12.22) as

ṫ =
E(

1− 2m
r

) . (12.24)

2) Equation for φ̇:
since the Lagrangian does not depend on φ it is easy to show that

d

dλ

∂L
∂(φ̇)

= 0 → φ̇ =
const

r2 sin2 θ
. (12.25)

Due to its spherical symmetry, the Schwarzschild metric admits the spacelike Killing vector
~∂
∂φ
→ ξα(φ) = (0, 0, 0, 1), which is associate to the conserved quantity

gαβξ
α
(φ)u

β = const → r2 sin2 θφ̇ = const; (12.26)

again eqs. (12.25) and (12.26) coincide. To understand the meaning of the constant, let us
consider the simple case of a particle in circular orbit on the equatorial plane; in this case
the conservation equation becomes

r2φ̇ = const;

from Newtonian mechanics we know that the particle angular momentum ~̀ = ~r ∧ m~v is
conserved so that, being v = rφ̇, it follows that |`| = mr2φ̇ = const. Thus we can interpret
the constant as the particle angular momentum per unit mass (or as the particle angular
momentum if it is a massless particle) at infinity. In the following we shall put const = L
and write eq. (12.25) as

φ̇ =
L

r2 sin2 θ
. (12.27)
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3) Equation for θ̇:

∂L
∂θ
− d

dλ

∂L
∂(θ̇)

= 0 → d

dλ
(r2θ̇) = r2 sin θ cos θφ̇2.

Therefore the equation for θ is

θ̈ = −2

r
ṙθ̇ + sin θ cos θφ̇2 . (12.28)

We will prove that this equations implies that, as in Newtonian theory, orbits are planar.
Due to the spherical symmetry, the metric is invariant under rotations of the polar axes.

Using this freedom, we choose them such that, for a given value of the affine parameter, say
λ = 0, the particle is on the equatorial plane θ = π

2
and its three-velocity (ṙ, θ̇, φ̇) lays on

the same plane, i.e. θ(λ = 0) = π
2

and θ̇(λ = 0) = 0. Thus, we have to solve the following
Cauchy problem

θ̈ = −2

r
ṙθ̇ + sin θ cos θφ̇2 (12.29)

θ(λ = 0) =
π

2

θ̇(λ = 0) = 0

which admits a unique solution. Since

θ(λ) ≡ π

2
(12.30)

satisfies the differential equation and the initial conditions, it must be the solution. Thus,
the orbit is plane and to hereafter we shall assume θ = π

2
and θ̇ = 0.

4) Equation for ṙ:
it is convenient to derive this equation from the condition uαu

α = −1, or uαu
α = 0, respec-

tively valid for massive and massless particles.
A) massive particles:

gαβu
αuβ = −

(
1− 2m

r

)
ṫ2 +

ṙ2(
1− 2m

r

) + r2θ̇2 + r2 sin2 θφ̇2 = −1 (12.31)

which becomes, by substituting the equations for ṫ and Φ̇

ṙ2 +
(

1− 2m

r

)(
1 +

L2

r2

)
= E2 (12.32)

B) massless particles:

gαβu
αuβ = −

(
1− 2m

r

)
ṫ2 +

ṙ2(
1− 2m

r

) + r2θ̇2 + r2 sin2 θφ̇2 = 0 (12.33)
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which becomes

ṙ2 +
L2

r2

(
1− 2m

r

)
= E2 . (12.34)

Finally, the geodesic equations are:
A) For massive particles:

θ = π
2 , ṫ =

E(
1− 2m

r

) (12.35)

φ̇ = L
r2 , ṙ2 = E2 −

(
1− 2m

r

)(
1 +

L2

r2

)

B) For massless particles:

θ = π
2 , ṫ =

E(
1− 2m

r

) (12.36)

φ̇ = L
r2 , ṙ2 = E2 − L2

r2

(
1− 2m

r

)

12.3 The orbits of a massless particle

Let us write the radial equation (12.34) in the following form

ṙ2 = E2 − V (r) (12.37)

where

V (r) =
L2

r2

(
1− 2m

r

)
. (12.38)
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E   <  Vmax

V(r)

r

Vmax

2

   0r3m

Note that:
- For massless particles the angular momentum L acts as a scale factor for the potential
- V (r) tends to −∞ as r → 0, and approaches zero at r →∞
- V (r) has only one maximum at rmax = 3m, where it takes the value

Vmax =
L2

27m2
(12.39)

It is useful to consider also the radial acceleration, obtained by differentiating eq. (12.37)
with respect to λ

2ṙr̈ = −dV (r)

dr
ṙ → r̈ = −1

2

dV (r)

dr
. (12.40)

Let us assume that the particle, say a photon, starts its path from +∞ with ṙ < 0. The
energy of the particle can be:
1) E2 > Vmax

according to eq. (12.37) ṙ2 > 0 always, and the particle falls into the central body with
increasing radial velocity, possibly making several revolutions around the central body before
falling in.
2) E2 = Vmax

as the particle approaches rmax, |ṙ| decreases and tends to zero as r = rmax. Since at r = rmax
the radial acceleration is zero (see eq. 12.40), if a particle, at a given time, has r = rmax and
ṙ = 0 (i.e. E = Vmax), it remains at the same r at later times, i.e. its orbit is circular. This
is, however, an unstable orbit; indeed if the position is perturbed, the particle will
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• either fall into the central body; this happens when the radial coordinate of the particle
is displaced to r < rmax, since there the radial acceleration is negative

• or escape toward infinity; this happens when the radial coordinate is displaced to
r > rmax, since there the radial acceleration is positive.

Thus, for massless particles, there exists only one circular, unstable orbit, and for this orbit

E2 =
L2

27m2
. (12.41)

3) E2 < Vmax

be r0 the abscissa of the point where E2 = V (r) (see figure); for r > r0, ṙ
2 is always positive

and becomes zero at r = r0. This is a turning point: the particle cannot penetrate the
potential barrier and reach values of r < r0 because ṙ would become imaginary; since at
r = r0 the radial acceleration is positive, the particle is forced to invert its radial velocity,
and it escapes toward infinity on an open trajectory.
Thus, according to General relativity a light ray is deflected by the gravitational field of a
massive body, provided its energy satisfies the following condition

E2 <
L2

27m2
. (12.42)

12.3.1 The deflection of light

We shall now compute the deflection angle that a massive body induces on the trajectory
of a massless particle, say a photon. Referring to the figure 12.1, we shall use the following
notation:
r is the radial coordinate of the particle in a frame centered in the center of attraction; r
forms an angle φ with the y-axis.
b is the impact parameter, i.e. the distance between the direction of the incoming particle
(dashed vertical line) and the center of attraction.
δ is the deflection angle which we are going to evaluate: it is the angle between the incoming
direction and the outgoing direction (dashed, green line)
Note that, since the Schwarzschild metric is invariant under time reflection, the particle can
go through the red trajectory on the figure either in the direction indicated by the red arrow,
or in the opposite one. Thus, the trajectory must be simmetric. The periastron is indicated
in the figure as r0.

We choose the orientation of the frame axes such that the initial value of φ when the
particle starts its motion at radial infinity be

φin = 0 . (12.43)

The outgoing particle will escape to r →∞ at

φout = π + δ . (12.44)

Our only assumption will be that, for all values of r reached by the particle,

m

r
� 1 . (12.45)
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This condition is satisfied, for instance, in the case of a photon deflected by the Sun; indeed,
if Rs is the radius of the Sun, then r ≥ Rs, and

m

r
≤ m

Rs

∼ 10−6 . (12.46)

x

y

b

b

r0

r

φ

δ

incoming
direction

outgoing
direction

Figure 12.1:

From the figure we see that
b = lim

φ→0
r sinφ . (12.47)

We shall now express the impact parameter b in terms of the energy and the angular mo-
mentum of the particle.
When the particle arrives from infinity, r is large, φ ' 0 and

b ' rφ → dφ

dr
' − b

r2
. (12.48)

dφ
dr

can also be derived combining toghether the third and the fourth eqs. (12.36)

dφ

dr
= ± L

r2
√
E2 − V (r)

; (12.49)
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taking the limit for r →∞ it gives

dφ

dr
∼ ± L

r2E
, (12.50)

thus, combining together eqs. (12.48) and (12.50), we find that b can be written as

b =
L

E
. (12.51)

In order the particle being deflected its energy must satisfy eq. (12.42), and this imposes a
constraint on b, i.e.

b ≥
√

27m ≡ bcrit; (12.52)

if b is smaller than this critical value, the particle is captured by the central body. Note
that if the central body is not a black hole but a star, its radius R is in general larger than√

27m, so the critical value of the impact parameter is R: if the particle reaches the stellar
surface, it is not deflected.

To find the deflection angle, let us consider the third and the fourth eqs. (12.36); we
introduce a new variable

u ≡ 1

r
; (12.53)

by construction, it must be
u(φ = 0) = 0 . (12.54)

Furthermore, u must also vanish when φ = π+ δ, because this value of φ corresponds to the
particle escaping to infinity.

In terms of the variable u, the third equation (12.36) for φ̇ becomes

φ̇ = Lu2 .

By indicating with a prime differentiation with respect to φ we find that

ṙ = r′φ̇ = − 1

u2
u′φ̇ = −Lu′.

By substituting this expression in the fourth eq. (12.36), it becomes

L2(u′)2 + u2L2 − 2mL2u3 = E2 ,

and differentiating with respect to φ,

2L2u′′u′ + 2uu′L2 − 6ML2u′u2 = 0 .

Dividing by 2L2u′, we finally find the equation u must satisfy

u′′ + u− 3mu2 = 0 , (12.55)

to which we associate the boundary condition

u(φ = 0) = 0 (12.56)

u′(φ = 0) =
1

b
.
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The second condition is obtained by the relation

u(φ ' 0) =
1

b
sinφ

which derives from eq. (12.47).
If the mass of the central body vanishes, equations (12.55) becomes

u′′ + u = 0 (12.57)

the solution of which

u(φ) =
1

b
sinφ → b = r sinφ (12.58)

describes the trajectory of a particle which is not deflected.
If there is a central body with a finite mass m, the solution of (12.55) is different from

(12.58), and the light ray is deflected. We note that equations (12.55) and (12.57) differ by
a term, 3mu2, which is much smaller than, say, the term u by a factor

3mu2

u
=

3m

r
� 1 . (12.59)

Consequently, it is appropriate to solve eq. (12.55) using a perturbative approach; we shall
proceed as follows. We put

u = u(0) + u(1) (12.60)

where u(0) is the solution of equation (12.57),

u(0) ≡ 1

b
sinφ (12.61)

and we assume that
u(1) � u(0) . (12.62)

By substituting (12.60) in eq. (12.55) we find

(u(0))
′′

+ u(0) − 3m(u(0))2 + (u(1))
′′

+ u(1) − 3m(u(1))2 − 6mu(0)u(1) = 0 . (12.63)

Since u(0) satisfies (12.57), eq. (12.63) becomes

(u(1))
′′

+ u(1) − 3m(u(0))2 − 3m(u(1))2 − 6mu(0)u(1) = 0 . (12.64)

The terms 3m(u(1))2 and 6mu(0)u(1) are of higher order with respect to 3m(u(0))2, therefore
the leading terms in equation (12.55) are

(u(1))
′′

+ u(1) − 3m(u(0))2 = 0 . (12.65)

Consequently,

(u(1))
′′

+ u(1) =
3m

b2
sin2 φ =

3m

2b2
(1− cos 2φ) . (12.66)

The solution of (12.66) which satisfies the boundary conditions (12.57) is

u(1) =
3m

2b2

(
1 +

1

3
cos 2φ− 4

3
cosφ

)
, (12.67)
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as can be checked by direct substitution. It should be noticed that the boundary conditions
(12.57) must be satisfied by the complete solution u = u(0) + u(1). Therefore,

u =
1

b
sinφ+

3m

2b2

(
1 +

1

3
cos 2φ− 4

3
cosφ

)
. (12.68)

We now want to find the deflection angle, i.e., the small angle δ such that u(π + δ) = 0. By
substituting φ = π + δ in (12.68) we finally find

u(π + δ) ' −δ
b

+
3m

2b2
· 8

3
(12.69)

which vanishes for

δ =
4m

b
. (12.70)

For a light ray which passes close to the surface of the Sun

δ ∼ 1.75 seconds of arc (12.71)

The first measurement of the deflection of light was done by Eddington, Dayson and David-
son during the solar eclypse in 1919. What was measured was the apparent position of a
star behind the Sun (see figure) during the eclypse, when some light coming from the star
was able to reach the Earth because the luminosity of the Sun was obscured by the eclypse.
Comparing this apparent position with the position of the star as measured when the Earth
is on the opposite side of its orbit around the Sun, one finds δφ. The deflection was measured
with an accuracy of about 10% at that time. Today, the bending of radio waves by quasars
has been measured with an accuracy of 1%.

star apparent position true position

Earth

Earth

Sun Sun

moon
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12.4 The orbits of a massive particle

Let us first discuss the orbits that a massive particle is allowed to move on. The equations
of motion are

θ = π
2 , ṫ =

E(
1− 2m

r

) (12.72)

φ̇ = L
r2 , ṙ2 = E2 −

(
1− 2m

r

)(
1 +

L2

r2

)
.

Let us study the radial equation
ṙ2 = E2 − V (r), (12.73)

where

V (r) =
(

1− 2m

r

)(
1 +

L2

r2

)
. (12.74)

First of all we note that, contrary to the massless case, the potential does not scale with the
angular momentum and that V (r) → 1 when r → ∞. To plot the potential, let us first see
if it admits a minimum or a maximum by solving

∂V

∂r
= 2

mr2 − L2r + 3mL2

r4
= 0;

this equation has two roots

r± =
L2 ±

√
L4 − 12m2L2

2m
. (12.75)

If L2 < 12m2 the roots are complex and there are no extrema; the potential will have the
shape shown in the figure
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from which is clear that a particle arriving from infinity with ṙ ≤ 0 and having L2 < 12m2

will be captured by the black hole.
If L2 > 12m2 the potential has the following form
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r- r+ 

V (r) has a maximum in r = r− followed by a minimum in r = r+; thus, a particle with
energy E2 = V (r−) ≡ Vmax will move on an unstable circular orbit at r = r−, whereas if
E2 = V (r+) ≡ Vmin it will move on a stable circular orbit at r = r+. (See the discussion
for E2 = Vmax in section 12.3 )
Depending on the value of L the maximum of the potential can be greater or smaller than
1, i.e.

a) L2 > 16m2 Vmax > 1,

b) 12m2 < L2 < 16m2 Vmax < 1.

Case b) is shown in the following figure
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Therefore:
in case a) a particle with Vmin < E2 < 1 will move on an ellipse (actually, an approximate
ellipse as we will see below), if 1 < E2 < Vmax and ṙ ≤ 0 it will approach the black hole,
reach a turning point r0 where E2 = V (rp) and ṙ = 0 then, since it cannot penetrate the
barrier, it will invert its radial velocity and escape free at infinity. (See the discussion for
E2 < Vmax in section 12.3 ).
Conversely, if E2 > Vmax and ṙ ≤ 0 it will fall in the black hole.

In case b) a particle with Vmin < E2 < Vmax will move on an elliptic orbit, whereas if
E2 > 1 and ṙ ≤ 0, since ṙ2 = E2 − V (r), it will approach the black hole horizon with
increasing velocity and finally fall in.

From the expression of r± given in eq. (12.75) we see that if L2 = 12m2 the two roots
coincide and

r− = r+ = 6m ;

furthermore, r+ is an increasing function of L and, as L → ∞, r+ → ∞. This means that
there cannot exist stable circular orbits with radius smaller than 6m. In addition, it is easy
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to show that r− is a decreasing function of L and, as L→∞,

r− =
L2

2m

1−
√

1− 12m2

L2

→ L2

2m

(
1− (1− 6m2

L2
+ ...)

)
= 3m+O(

m

L
) ;

therefore, unstable circular orbits exist only bewteen

3m < r− < 6m.

12.4.1 The radial fall of a massive particle

Let us consider a massive particle falling radially into a Schwarzschild black hole.
In this case dφ/dτ = 0, therefore L = 0; moreover, since the particle is moving inwards,

ṙ < 0. Equations (12.72) become

dt

dτ
=

E

1− 2m
r

dr

dτ
= −

√
E2 − 1 +

2m

r
(12.76)

dθ

dτ
= 0

dφ

dτ
= 0 . (12.77)

If we consider a particle which is at rest at infinity, i.e. such that

lim
r→∞

dr

dτ
= 0 (12.78)

from (12.76) it follows that
E = 1 (12.79)

and the equations for t and r reduce to

dt

dτ
=

1

1− 2m
r

(12.80)

dr

dτ
= −

√
2m

r
. (12.81)

We shall now integrate these equations.

• Putting r0 ≡ r(τ = 0), eq. (12.81) gives

τ(r) = −
∫ r

r0
dr′
√
r′

2m
= − 1√

2m

∫ r

r0
dr′(r′)1/2

=
2

3

1√
2m

(
r

3/2
0 − r3/2

)
. (12.82)

• To find t(r), we combine equations (12.80) and (12.81):

dt

dr
= − 1

1− 2m
r

√
r

2m
. (12.83)



CHAPTER 12. EXPERIMENTAL TESTS OF GENERAL RELATIVITY 155

If we set t = 0 when τ = 0 we find

t(r) =
∫ t

0
dt′ = −

∫ r

r0

1

1− 2m
r′

√
r′

2m
; (12.84)

by solving the integral in (12.84) we get (we omit the explicit computation and give
only the result):

t(r) =
2

3

1√
2m

[
r

3/2
0 − r3/2 + 6mr

1/2
0 − 6mr1/2

]
+2m ln

[√
r0 −

√
2m

√
r0 +

√
2m

√
r +
√

2m
√
r −
√

2m

]
; (12.85)

r(t) is the inverse function of t(r) and, as r(τ), is not known analytically.

In figure 12.2 we plot t(r) and τ(r).

τ

2M

r

ro

t

Figure 12.2:

Assuming for simplicity r0 � 2m, the behaviour of t(r) for r → 2m and r � 2m is:

• for r ' 2m
t ' −2m ln(

√
r −
√

2m) + const.→∞ (12.86)

• for r � 2m

t ' 2

3

1√
2m

(r
3/2
0 − r3/2) ≡ τ . (12.87)

From eq. (12.86) we see that for r → 2m , t(r) diverges2 while eq. (12.82) shows that τ(r) is
regular at r = 2m. The inverse functions r(τ) and r(t) are plotted in figure 12.3. From figure
12.3 we also see that r(τ), which is the radial trajectory as a function of the proper time,
i.e. as seen by an observer moving with the particle, for r = 2m has a regular behaviour:
this observer does not feel anything strange in crossing the horizon, and after crossing it he
reaches the singularity in a finite amount of proper time.

2We also note that even if the coordinate frame {t, r, θ, φ} is defined in {0 < r < 2m} ∪ {r > 2m},
namely, outside and inside the horizon, these coordinates are really meaningful (i.e., they are useful to
describe physical processes) only for r > 2m, i.e. outside the horizon.



CHAPTER 12. EXPERIMENTAL TESTS OF GENERAL RELATIVITY 156

τ

r

2M

0
r

t

r

2M

0
r

Figure 12.3:

The function r(t), instead, approaches r = 2m only asymptotically. In order to under-
stand what is the meaning of this behaviour, let us consider a spaceship which, while falling
radially into the black hole, sends an SOS in the form of a sequence of equally spaced elec-
tromagnetic pulses; these signals are received by an observer at radial infinity (the spaceship
and the observer have the same φ = const), located at r = robs. The SOS travels along null
geodesics t = t(λ), r = r(λ), with θ, φ constants and L = 0; λ is the affine parameter along
the geodesic. Therefore, from eqs. (12.36) we find

θ =
π

2
, φ = const,

dt

dλ
=

E

1− 2m
r

,
dr

dλ
= ±E (12.88)

hence
dt

dr
= ± r

r − 2m
, (12.89)

and the solution is
t = ±r∗ + const, (12.90)

where r∗ is the tortoise coordinate already introduced in eq. (11.74)

r∗ ≡ r + 2m log
(
r

2m
− 1

)
, (12.91)

so that
dr

dr∗
= 1− 2m

r
. (12.92)

As in (11.75) we define the outgoing coordinate

u ≡ t− r∗ (12.93)

so that a given outgoing null geodesic is characterized by a constant value of u.
Let us consider two electromagnetic pulses sent from the spaceship as it approaches the

horizon, the first at τ = τ1, the second at τ = τ2 (see figure 12.4.1). The two pulses
correspond to u = u1 and u = u2, respectively. The observer at infinity detects the pulses at
two values of its own proper time, which coincides with the coordinate time, i.e. at t = tobs1
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Figure 12.4: A spaceship radially falling into the black hole sends electromagnetic signals to
a distant observer

and t = tobs2 . Thus, while the person on the spaceship measures a proper time interval
between the pulses

∆τ = τ2 − τ1 , (12.94)

the observer at infinity measures a corresponding coordinate time interval

∆tobs = tobs2 − tobs1 = (u2 + robs∗ )− (u1 + robs∗ ) = u2 − u1 = ∆u . (12.95)

Since u is constant along the two null geodesics, u1 and u2 can also be evaluated in terms of
points along the spaceship geodesic:

u1 = t(τ1)− r∗(τ1)

u2 = t(τ2)− r∗(τ2) (12.96)

thus ∆u = ∆t(τ) −∆r∗(τ). Therefore, assuming that the pulses are emitted at very short
time intervals, we can write (12.93), we find

∆tobs

∆τ
=

∆u

∆τ
' dt

dτ
− dr∗
dτ

=
dt

dτ
− dr∗

dr

dr

dτ
=

1

1− 2m
r

1 +

√
2m

r

 . (12.97)

This equation shows that as r → 2m,
∆tobs

∆τ
→ ∞, which means that the time interval

between pulses as detected by the observer at infinity increases, and finally diverges, as the
spaceship approaches the horizon.

It is interesting to note that the right hand side of eq. (12.97) has two terms: the first is
the square of the gravitational redshift, the second is a Doppler contribution due to the fact
that, while sending the pulses, the ship is moving away from the observer.
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12.4.2 The motion of a planet around the Sun

Let us now use the geodesic equations (12.72) to study the motion of a planet around the
Sun. We can consider the limit

m

r
� 1 , (12.98)

indeed, if we consider Mercury, which is the closest planet to the Sun, since the Mercury-Sun
distance is r ∼ 5.8 · 107 km, we find

GM�
rc2

=
1.4768

5.8 · 107
∼ 2.5 · 10−8 .

In what follows, we shall indicate with a prime differentiation with respect to φ, and use the
variable u ≡ 1

r
, as we did in Section 12.3.1. In therms of u, the equation for φ̇ becomes

φ̇ = Lu2 ,

and

ṙ = r′φ̇ = − 1

u2
u′φ̇ = −Lu′.

By substituting in eq. (12.72), it becomes

L2(u′)2 + 1− 2mu+ u2L2 − 2mL2u3 = E ,

and differentiating with respect to φ,

2L2u′′u′ − 2mu′ + 2uu′L2 − 6mL2u′u2 = 0 .

Dividing by 2L2u′, we find the equation for u

u′′ + u− m

L2
− 3mu2 = 0 . (12.99)

The Newtonian equation

The Newtonian equation which corresponds to the third eq. (12.72) is derived from the
energy conservation law

1

2
mp

[
(ṙ)2 + r2(φ̇)2

]
− mp m

r
= const ⇒ (ṙ)2 − 2m

r
+
L2

r2
= const .

where mp is the particle mass and we have set G = 1. By expressing (12.4.2) in terms of u
and differentiating with respect to φ, we find

2L2u′′u′ − 2mu′ + 2uu′L2 = 0 ,

which becomes
u′′ + u− m

L2
= 0 . (12.100)

Equation (12.100) differs from equation (12.99) only by the term 3mu2, which is smaller
than, say, u by a factor

3mu =
3m

r
� 1 .
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Equation (12.100) can be written as(
u− m

L2

)′′
+
(
u− m

L2

)
= 0 ,

the solution of which is

u− m

L2
= A cos(φ− φ0) ⇒ u =

m

L2

[
1 +

L2A

m
cos(φ− φ0)

]
,

where φ0 and A are integration constants. In terms of r the solution is

r =
L2

m

1

1 + L2A
m

cos(φ− φ0)
.

If we set

e =
L2A

m
, (12.101)

the previous equation becomes

r =
L2

m

1

1 + e cos(φ− φ0)
, (12.102)

which describes an ellipse with eccentricity e in polar coordinates (r, φ). If we set for example

x

periastron

y

r

apastron

φ

φ0 = 0, we see that the periastron, i.e. the minimum distance the planet reaches in its motion
around the central body (perihelion if the central body is the Sun) occurs when φ = 0, i.e.

rperiastron =
L2

m

1

1 + e
. (12.103)
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The apastron (the maximum distance from the central body, aphelion in the case of the Sun)
is

rapastron =
L2

m

1

1− e
. (12.104)

It is worth noting that, since

m

L2
=

1

rperiastron(1 + e)
⇒ m2

L2
=

m

rperiastron(1 + e)
,

and since m/r � 1, it follows that
m2

L2
� 1 . (12.105)

The relativistic equations

In order to solve equation (12.99)

u′′ + u− m

L2
− 3mu2 = 0 (12.106)

we adopt the same perturbative approach used in Section 12.3.1 to study the deflection of
light by a massive body. We search for a solution in the form

u = u(0) + u(1)

where u(0) is the solution of the Newtonian equation, i.e.

u(0) =
m

L2
(1 + e cosφ) ,

and
u(1) � u(0) .

Proceeding as for eq. (12.55) we find

(u(0))
′′

+ u(0) − m

L2
− 3m(u(0))2 + (u(1))

′′
+ u(1) − 3m(u(1))2 − 6mu(0)u(1) = 0 . (12.107)

Since u(0) satisfies (12.100), eq. (12.107) becomes

(u(1))
′′

+ u(1) − 3m(u(0))2 − 3m(u(1))2 − 6mu(0)u(1) = 0 . (12.108)

The terms 3m(u(1))2 and 6mu(0)u(1) are of higher order with respect to 3m(u(0))2, therefore
the leading terms in equation (12.55) are

(u(1))
′′

+ u(1) = 3m(u(0))2 , (12.109)

i.e.

(u(1))
′′

+ u(1) = 3
m3

L4
(1 + e cosφ)2 . (12.110)
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Let us expand the right-hand side

(u(1))
′′

+ u(1) = 3
m3

L4

[
1 + e2 cos2 φ+ 2e cosφ

]
= 3

m3

L4

[
1 +

1

2
e2(1 + cos 2φ) + 2e cosφ

]
= 3

m3

L4

[
cost+

1

2
e2 cos 2φ+ 2e cosφ

]
.

This is the equation of a harmonic oscillator with three forcing terms. They are all very
small, because, as shown in eq. (12.105), m2

L2 � 1. However, the term

2e cos(φ) ,

is in resonance with the free oscillations of the harmonic oscillator, therefore, even if its
amplitude is comparable to that of the other terms, it determines a secular perturbation
of the planet motion which, after a long time, becomes relevant. For this reason, we will
neglect the constant term and the term 1

2
e2 cos 2φ and look for the solution of the resulting

equation

(u(1))
′′

+ u(1) = 6e
m3

L4
cos(φ) . (12.111)

As can be checked by direct substitution, the solution of this equation is

u(1) =
3em3

L4
φ sinφ ,

therefore, the complete solution is

u =
m

L2

[
1 + e

(
cosφ+ 3

m2

L2
φ sinφ

)]
.

At first order in m2/L2,

cos

(
3m2

L2
φ

)
' 1

sin

(
3m2

L2
φ

)
' 3m2

L2
φ

therefore we can write

u ∼ m

L2

[
1 + e cosφ

(
1− 3

m2

L2

)]
. (12.112)

A comparison with the corresponding newtonian equation shows that the term 3m2

L2 φ deter-
mines a secular precession of the periastron. When the argument of the sinusoidal function
in eq. (12.112) goes from zero to 2π, i.e. when the planet reaches again the radial distance
r = rperiastron, φ changes by

∆φ =
2π

1− 3m2

L2

' 2π

(
1 +

3m2

L2

)
.
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Consequently, in one period the periastron is shifted by

∆φP =
6πm2

L2
, (12.113)

as shown in the following figure.
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Thus, in general relativity the orbit of a planet around a central object is not an ellipse;
it is an open orbit, and the periastron shifts by ∆φP at each revolution.

For example, for Mercury equation (12.113) gives a precession of 42.98 arcsec/century.
The observed value, after all effects which can be explained with newtonian theory (precession
of the equinoxes, perturbations of other planets on Mercury’s orbit, etc) is 42.98 ± 0.04
arcsec/century.



Chapter 13

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity is the existence of
gravitational waves. The idea that a perturbation of the gravitational field should propagate
as a wave is, in some sense, intuitive. For example electromagnetic waves were introduced
when the Coulomb theory of electrostatics was replaced by the theory of electrodynamics,
and it was shown that they transport through space the information about the evolution
of charged systems. In a similar way when a mass-energy distribution changes in time, the
information about this change should propagate in the form of waves. However, gravitational
waves have a distinctive feature: due to the twofold nature of gµν , which is the metric tensor
and the gravitational potential, gravitational waves are metric waves. Thus when they
propagate the geometry, and consequently the proper distance between spacetime points,
change in time.

Gravitational waves can be studied by following two different approaches, one based on
perturbative methods, the second on the solution of the non linear Einstein equations.

The perturbative approach
Be g0

µν a known exact solution of Einstein’s equations; it can be, for instance, the metric
of flat spacetime ηµν , or the metric generated by a Schwarzschild black hole. Let us consider
a small perturbation of g0

µν caused by some source described by a stress-energy tensor T µνpert.
We shall write the metric tensor of the perturbed spacetime, gµν , as follows

gµν = g0
µν + hµν , (13.1)

where hµν is the small perturbation

|hµν | << |g0
µν |.

It is clear that this assumption is ambiguous, because we should specify in which reference
frame this is true; however we shall assume that this frame does exists.

The inverse metric can be written as

gµν = g0µν − hµν +O(h2) , (13.2)

where the indices of hµν have been raised with the unperturbed metric

hµν ≡ g0µαg0 νβhαβ . (13.3)

163
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Indeed, with this definition,(
g0µν − hµν)(g0

να + hνα
)

= δµα +O(h2) . (13.4)

In order to find the equations that describe hµν , we shall write Einstein’s equations for the
metric (13.1) in the form

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
, (13.5)

where Tµν is the sum of two terms, one associate to the source that generates the background
geometry g0

µν , say T 0
µν , and one associate to the source of the perturbation δTµν , which is of

order h. We remind that the Ricci tensor Rµν is

Rµν =
∂

∂xα
Γαµν −

∂

∂xν
Γαµα + ΓασαΓσµν − ΓασνΓ

σ
µα, (13.6)

and that the affine connections Γγβµ are

Γγβµ =
1

2
gγα [gαβ,µ + gαµ,β − gβµ,α] . (13.7)

The Γγβµ computed for the perturbed metric (13.1) are

Γγβµ (gµν) =
1

2

[
g0αγ − hαγ

] [(
g0
αβ,µ + g0

αµ,β − g0
βµ,α

)
+ (hαβ,µ + hαµ,β − hβµ,α)

]
=

1

2
g0αγ

[
g0
αβ,µ + g0

αµ,β − g0
βµ,α

]
+

1

2
g0αγ [hαβ,µ + hαµ,β − hβµ,α]

− 1

2
hαγ

[
g0
αβ,µ + g0

αµ,β − g0
βµ,α

]
+O(h2)

≡ Γγβµ
(
g0
)

+ δΓγβµ (h) +O(h2), (13.8)

where δΓγβµ (h) are of first order in hµν

δΓγβµ (h) =
1

2
g0αγ [hαβ,µ + hαµ,β − hβµ,α] − 1

2
hαγ

[
g0
αβ,µ + g0

αµ,β − g0
βµ,α

]
. (13.9)

When we substitute eq. (13.9) in the Ricci tensor we get

Rµν (gµν) = R0
µν

(
g0
)

(13.10)

+
∂

∂xα
δΓαµν (h)− ∂

∂xν
δΓαµα (h)

+ Γασα
(
g0
)
δΓσµν (h) + δΓασα (h) Γσµν

(
g0
)

− Γασν
(
g0
)
δΓσµα (h)− δΓασν (h) Γσµα

(
g0
)

+O(h2) ≡ R0
µν

(
g0
)

+ δRµν (h) +O(h2)

We now have to work out the right-hand side of the Einstein equations (13.5), i.e.
(
Tµν − 1

2
gµνT

)
,

and separate the terms which are of order h. Since Tµν = T 0
µν + δTµν

T = gµνTµν =
(
g0µν − hµν

) (
T 0
µν + δTµν

)
(13.11)

= g0µνT 0
µν − hµνT 0

µν − g0µνδTµν +O(h2) ≡ T 0 + δT +O(h2).
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Consequently(
Tµν −

1

2
gµνT

)
= T 0

µν + δTµν −
1

2

(
g0
µν + hµν

) (
T 0 + δT

)
+O(h2) (13.12)

=
(
T 0
µν −

1

2
g0
µνT

0
)

+
[
δTµν −

1

2

(
g0
µνδT + hµνT

0
)]

+O(h2).

Combining eqs. (13.10) and (13.11), and reminding that g0
µν is, by assumption, the exact so-

lution of Einstein’s equations in vacuum Rµν (g0) = 8πG
c4

(
T 0
µν − 1

2
g0
µνT

0
)
, Einstein’s equations

for the perturbations hµν reduce to

∂

∂xα
Γαµν (h)− ∂

∂xν
Γαµα (h) (13.13)

+ Γασα
(
g0
)

Γσµν (h) + Γασα (h) Γσµν
(
g0
)

− Γασν
(
g0
)

Γσµα (h)− Γασν (h) Γσµα
(
g0
)

=
8πG

c4

[
δTµν −

1

2

(
g0
µνδT + hµνT

0
)]

+O(h2),

that are linear in hµν . Their solution describes the propagation of gravitational waves in the
considered background.1 This approximation works sufficiently well in a variety of physical
situations because gravitational waves are very weak. This point will be better understood
in the next chapter, when we will discuss the generation of gravitational waves.

The ”exact” approach
The second approach to the study of gravitational waves seeks for exact solutions of

Einstein’s equations which describe both the source and the emitted wave, but no solution
of this kind has been found so far. Of course the non-linearity of the equations makes
the problem very difficult; however, it may be noted that also in electrodynamics an exact
solution of Maxwell’s equations appropriate to describe the electromagnetic field produced
by a current which decreases in an electric oscillator due to the emission of electromagnetic
waves has never been found, although Maxwell’s equations are linear.

Exact solutions of Einstein’s equations describing gravitational waves can be found only
if one imposes some particular symmetry as for example plane, spherical, or cylindrical sym-
metry. The interaction of plane waves can also be described in terms of exact solutions, and
due to the non-linearity of the equations of gravity it is very different from the interaction
of electromagnetic waves.

In the following we shall use the perturbative approach to show that a weak perturbation
of the flat spacetime satisfies the wave equation.

1Notice that the right-hand side of eq.(13.13) is a particular case of the Palatini identity.
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13.1 A perturbation of the flat spacetime propagates

as a wave

Let us consider the flat spacetime described by the metric tensor ηµν and a small pertur-
bation hµν , such that the resulting metric can be written as

gµν = ηµν + hµν , |hµν | << 1. (13.14)

The affine connections (13.8) computed for the metric (13.14) give

Γλµν =
1

2
ηλρ

[
∂

∂xµ
hρν +

∂

∂xν
hρµ −

∂

∂xρ
hµν

]
+O(h2). (13.15)

Since the metric g0
µν ≡ ηµν is constant, Γλµν(g

0) = 0 and the right-hand side of eq. (13.13)
simply reduces to

∂Γαµν
∂xα

− ∂Γαµα
∂xν

+O(h2) (13.16)

=
1

2

{
−2Fhµν +

[
∂2

∂xλ∂xµ
hλν +

∂2

∂xλ∂xν
hλµ −

∂2

∂xµ∂xν
hλλ

]}
+O(h2).

The operator 2F is the D’Alambertian in flat spacetime

2F = ηαβ
∂

∂xα
∂

∂xβ
= − ∂2

c2∂t2
+∇2. (13.17)

Einstein’s equations (13.5) for hµν finally become{
2Fhµν −

[
∂2

∂xλ∂xµ
hλν +

∂2

∂xλ∂xν
hλµ −

∂2

∂xµ∂xν
hλλ

]}
= −16πG

c4

(
δTµν −

1

2
ηµνδT

)
. (13.18)

As already discussed in chapter 8, the solution of eqs. (13.18) is not uniquely determined.
If we make a coordinate transformation, the transformed metric tensor is still a solution: it
describes the same physical situation seen from a different frame. But since we are working
in the weak field limit, we are entitled to make only those transformations which preserve
the condition |h′µν | << 1 (note that in this Section we denote the transformed tensor
as h′µν rather than as hµ′ν′, since this simplifies the discussion of infinitesimal coordinate
transformations).

If we make an infinitesimal coordinate transformation

xµ′ = xµ + εµ(x), (13.19)

(the prime refers to the coordinate xµ, not to the index µ) where εµ is an arbitrary vector
such that ∂εµ

∂xν
is of the same order of hµν , then

∂xα′

∂xµ
= δαµ +

∂εα

∂xµ
. (13.20)
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Since

gµν = g′αβ
∂xα′

∂xµ
∂xβ′

∂xν
=
(
ηαβ + h′αβ

)(
δαµ +

∂εα

∂xµ

)(
δβν +

∂εβ

∂xν

)
= ηµν + h′µν + εν,µ + εµ,ν +O(h2) , (13.21)

and gµν = ηµν + hµν , then (up to O(h2))

h′µν = hµν −
∂εµ
∂xν
− ∂εν
∂xµ

. (13.22)

In order to simplify eq. (13.18) it appears convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied, i.e.

gµνΓλµν = 0. (13.23)

Let us see why. This condition is equivalent to say that, up to terms that are first order in
hµν , the following equation is satisfied 2

∂

∂xµ
hµν =

1

2

∂

∂xν
hµµ. (13.24)

Using this condition the term in square brackets in eq. (13.18) vanishes, and Einstein’s
equations reduce to a simple wave equation supplemented by the condition (13.24)2Fhµν = −16πG

c4

(
δTµν − 1

2
ηµνδT

)
∂
∂xµ

hµν = 1
2

∂
∂xν

hµµ,
(13.25)

(to hereafter, we omit the superscript ’pert’ to indicate the stress-energy tensor associated
to the source of the perturbation). If we introduce the tensor

h̄µν ≡ hµν −
1

2
ηµνh , (13.26)

where h = ηµνhµν ≡ hµµ, eqs. (13.25) become{
2F h̄µν = −16πG

c4
δTµν

∂
∂xµ

h̄µν = 0 ,
(13.27)

and outside the source where δTµν = 0{
2F h̄µν = 0
∂
∂xµ

h̄µν = 0 .
(13.28)

2

gµνΓλµν =
1

2
ηµνηλκ

{
∂hκµ
∂xν

+
∂hκν
∂xµ

− ∂hµν
∂xκ

}
=

1

2
ηλκ {hνκ,ν + hµκ,µ − hνν,κ}

Since the first two terms are equal we find

gµνΓλµν = ηλκ
{
hµκ,µ −

1

2
hνν,κ

}
q.e.d.
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Thus, we have shown that a perturbation of a flat spacetime propagates as
a wave travelling at the speed of light, and that Einstein’s theory of gravity
predicts the existence of gravitational waves.

As in electrodynamics, the solution of eqs. (13.27) can be written in terms of retarded
potentials

h̄µν(t,x) =
4G

c4

∫ Tµν(t− |x-x′|
c

,x′ )

|x-x′ |
d3x′, (13.29)

and the integral extends over the past light-cone of the event (t,x). In eq. (13.29) we have
removed the ‘δ’ in front of the stress energy tensor which, to hereafter, will be considered as
a quantity of order h. Equation (13.29) describes the gravitational waves generated by the
source Tµν .

We may now ask how eqs. (13.28) and (13.27) should be modified if, instead of consid-
ering the perturbation of a flat spacetime, we would consider the perturbation of a curved
background. For example, suppose g0

µν is the Schwarzshild solution for a non rotating
black hole. In this case, it is possible to show that, by a suitable choice of the gauge, the
Einstein equations written for certain combinations of the components of the metric tensor,
can be reduced to a form similar to eqs. (13.27). However, since the background spacetime is
now curved, the propagation of the waves will be modified with respect to the flat case. The
curvature will act as a potential barrier by which waves are scattered and the final equation
will have the form

2FΦ− V (xµ)Φ = −16πG

c4
T (13.30)

where Φ is the appropriate combination of metric functions, T is a combination of the stress-
energy tensor components, 2F is the d’Alambertian of the flat spacetime and V is the
potential barrier generated by the spacetime curvature. In other words, the perturbations of
a sperically symmetric, stationary gravitational field would be described by a Schroedinger-
like equation! A complete account on the theory of perturbations of black holes can be
found in the book The Mathematical Theory of Black Holes by S. Chandrasekhar, Oxford:
Claredon Press, (1984).

13.2 How to choose the harmonic gauge

We shall now show that if the harmonic-gauge condition is not satisfied in a reference frame,
we can always find a new frame where it is, by making an infinitesimal coordinate transfor-
mation

xλ
′
= xλ + ελ, (13.31)

provided

2F ερ =
∂hβρ
∂xβ
− 1

2

∂hββ
∂xρ

. (13.32)



CHAPTER 13. GRAVITATIONAL WAVES 169

Indeed, when we change the coordinate system Γλ = gµνΓλµν transforms according to
equation (9.63), i.e.

Γλ
′
=
∂xλ

′

∂xρ
Γρ − gρσ ∂2xλ

′

∂xρ∂xσ
, (13.33)

where, from eq. (13.31)
∂xλ

′

∂xρ
= δλρ +

∂ελ

∂xρ
.

If gµν = ηµν + hµν (see footnote after eq. (13.23))

Γρ = ηρκ
{
hµκ,µ −

1

2
hνν,κ

}
; (13.34)

moreover

gρσ
∂2xλ

′

∂xρ∂xσ
= gρσ

[
∂

∂xρ

(
∂xλ

∂xσ
+
∂ελ

∂xσ

)]
= (13.35)

gρσ
[
∂

∂xρ

(
δλσ +

∂ελ

∂xσ

)]
' ηρσ

[
∂2ελ

∂xρ∂xσ

]
= 2F ε

λ,

therefore in the new gauge the condition Γλ′ = 0 becomes

Γλ
′
=

[
δλρ +

∂ελ

∂xρ

]
ηρκ

[
∂hµκ
∂xµ
− 1

2

∂hνν
∂xκ

]
−2F ε

λ = 0. (13.36)

If we neglect second order terms in h eq.(13.36) becomes

Γλ
′
= ηλκ

[
∂hµκ
∂xµ
− 1

2

∂hνν
∂xκ

]
−2F ε

λ = 0.

Contracting with ηλα and remembering that ηλαη
λκ = δκα we finally find

2F εα =

(
∂hµα
∂xµ

− 1

2

∂hνν
∂xα

)
.

This equation can in principle be solved to find the components of εα, which identify the
coordinate system in which the harmonic gauge condition is satisfied.

13.3 Plane gravitational waves

The simplest solution of the wave equation in vacuum (13.28) is a monocromatic plane wave

h̄µν = <
{
Aµνe

ikαxα
}
, (13.37)

where Aµν is the polarization tensor, i.e. the wave amplitude and ~k is the wave vector.
By direct substitution of (13.37) into the first equation we find

2F h̄µν = ηαβ
∂

∂xα
∂

∂xβ

(
eikγx

γ
)

= ηαβ
∂

∂xα

[
ikγ

∂xγ

∂xβ
eikγx

γ

]
= (13.38)

ηαβ
∂

∂xα

[
ikγδ

γ
βe

ikγxγ
]

= ηαβ
∂

∂xα

[
ikβe

ikγxγ
]

=

= −ηαβkαkβ eikγx
γ

= 0, → ηαβkαkβ = 0,
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thus, (13.37) is a solution of (13.28) if ~k is a null vector. In addition the harmonic gauge
condition requires that

∂

∂xµ
h̄µν = 0 , (13.39)

which can be written as

ηµα
∂

∂xµ
h̄αν = 0 . (13.40)

Using eq. (13.37) it gives

ηµα
∂

∂xµ
Aανe

ikγxγ = 0 → ηµαAανkµ = 0 → kµA
µ
ν = 0 . (13.41)

This further condition expresses the orthogonality of the wave vector and of the polarization
tensor.

Since h̄µν is constant on those surfaces where

kαx
α = const, (13.42)

these are the equations of the wavefront. It is conventional to refer to k0 as ω
c
, where ω

is the frequency of the waves. Consequently

~k = (
ω

c
,k). (13.43)

Since ~k is a null vector

−(k0)2 + (kx)
2 + (ky)

2 + (kz)
2 = 0, i.e. (13.44)

ω = ck0 = c
√

(kx)2 + (ky)2 + (kz)2, (13.45)

where (kx, ky, kz) are the components of the unit 3-vector k.

13.4 The TT -gauge

We now want to see how many of the ten components of hµν have a real physical meaning,
i.e. what are the degrees of freedom of a gravitational plane wave. Let us consider a wave
propagating in flat spacetime along the x1 = x-direction. Since hµν is independent of y
and z, eqs. (13.28) become (as before we raise and lower indices with ηµν )(

− ∂2

c2∂t2
+

∂2

∂x2

)
h̄µν = 0, (13.46)

i.e. h̄µν is an arbitrary function of t± x
c
, and

∂

∂xµ
h̄µν = 0 . (13.47)
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Let us consider, for example, a progressive wave h̄µν = h̄µν [χ(t, x)], where χ(t, x) =
t− x

c
. Being 

∂
∂t
h̄µν = ∂h̄µν

∂χ
∂χ
∂t

= ∂h̄µν
∂χ

,
∂
∂x
h̄µν = ∂h̄µν

∂χ
∂χ
∂x

= −1
c
∂h̄µν
∂χ

,
(13.48)

eq. (13.47) gives
∂

∂xµ
h̄µν =

1

c

∂h̄tν
∂t

+
∂h̄xν
∂x

=
1

c

∂

∂χ

[
h̄tν − h̄xν

]
= 0. (13.49)

This equation can be integrated, and the constants of integration can be set equal to zero
because we are interested only in the time-dependent part of the solution. The result is

h̄tt = h̄xt, h̄ty = h̄xy, (13.50)

h̄tx = h̄xx, h̄tz = h̄xz.

We now observe that the harmonic gauge condition does not determine the gauge uniquely.
Indeed, if we make an infinitesimal coordinate transformation

xµ′ = xµ + εµ, (13.51)

from eq. (13.33) we find that, if in the old frame Γρ = 0, in the new frame Γλ′ = 0, provided

ηρσ
∂2xλ′

∂xρ∂xσ
= 0, (13.52)

namely, if εµ satisfies the wave equation

2F ε
µ = 0. (13.53)

If we have a solution of the wave equation,

2F h̄µν = 0 (13.54)

and we perform a gauge transformation, the perturbations in the new gauge

h′µν = hµν − ∂µεν − ∂νεµ (13.55)

give
h̄′µν = h̄µν − ∂µεν − ∂νεµ + ηµν∂

αεα (13.56)

and, due to (13.53), the new tensor is solution of the wave equation,

2F h̄
′
µν = 0 . (13.57)

It can be shown that the converse is also true: it is always possible to find a vector εµ
satisfying (13.53) to set to zero four components of h̄µν solution of (13.54).

Thus, we can use the four functions εµ to set to zero the following four quantities

h̄tx = h̄ty = h̄tz = h̄yy + h̄zz = 0. (13.58)
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From eq. (13.50) it then follows that

h̄xx = h̄xy = h̄xz = h̄tt = 0. (13.59)

The remaining non-vanishing components are h̄zy and h̄yy− h̄zz. These components cannot
be set equal to zero, because we have exhausted our gauge freedom.

From eqs. (13.58) and (13.59) it follows that

h̄µµ = h̄tt + h̄xx + h̄yy + h̄zz = 0, (13.60)

and since
h̄µµ = hµµ − 2hµµ = −hµµ, (13.61)

it follows that
hµµ = 0, → h̄µν ≡ hµν , (13.62)

i.e. in this gauge hµν and h̄µν coincide and are traceless. Thus, a plane gravitational
wave propagating along the x-axis is characterized by two functions hxy and hyy = −hzz,
while the remaining components can be set to zero by choosing the gauge as we have shown:

hµν =


0 0 0 0
0 0 0 0
0 0 hyy hyz
0 0 hyz −hyy

 . (13.63)

In conclusion, a gravitational wave has only two physical degrees of freedom
which correspond to the two possible polarization states. The gauge in which this
is clearly manifested is called the TT -gauge, where ‘TT -’ indicates that the components of
the metric tensor hµν are different from zero only on the plane orthogonal to the direction
of propagation (transverse), and that hµν is traceless.

13.5 How does a gravitational wave affect the motion

of a single particle

Consider a particle at rest in flat spacetime before the passage of the wave. We set an
inertial frame attached to this particle, and take the x-axis coincident with the direction of
propagation of an incoming TT -gravitational wave. The particle will follow a geodesic of the
curved spacetime generated by the wave

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
≡ dUα

dτ
+ ΓαµνU

µUν = 0. (13.64)

At t = 0 the particle is at rest (Uα = (1, 0, 0, 0)) and the acceleration impressed by the
wave will be (

dUα

dτ

)
(t=0)

= −Γα00 = −1

2
ηαβ [hβ0,0 + h0β,0 − h00,β] , (13.65)
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but since we are in the TT -gauge it follows that(
dUα

dτ

)
(t=0)

= 0. (13.66)

Thus, Uα remains constant also at later times, which means that the particle is not acceler-
ated neither at t = 0 nor later! It remains at a constant coordinate position, regardeless
of the wave. We conclude that the study of the motion of a single particle is not
sufficient to detect a gravitational wave.

13.6 Geodesic deviation induced by a gravitational wave

We shall now study the relative motion of particles induced by a gravitational wave. Consider
two neighbouring particles A and B, with coordinates xµA, xµB. We shall assume that the two
particles are initially at rest, and that a plane-fronted gravitational wave reaches them at
some time t = 0, propagating along the x-axis. We shall also assume that we are in the TT -
gauge, so that the only non-vanishing components of the wave are those on the (y, z)-plane.
In this frame, the metric is

ds2 = gµνdx
µdxν = (ηµν + hTTµν )dxµdxν . (13.67)

Since g00 = η00 = −1, we can assume that both particles have proper time τ = ct. Since the
two particles are initially at rest, they will remain at a constant coordinate position even
later, when the wave arrives, and their coordinate separation

δxµ = xµB − x
µ
A (13.68)

remains constant. However, since the metric changes, the proper distance between them will
change. For example if the particles are on the y-axis,

∆l =
∫
ds =

∫ yB

yA
|gyy|

1
2dy =

∫ yB

yA
|1 + hTT yy(t− x/c)|

1
2dy 6= constant. (13.69)

We now want to study the effect of the wave by using the equation of geodesic deviation.
To this purpose, it is convenient to change coordinate system and use a locally inertial
frame {xα′} centered on the geodesic of one of the two particles, say the particle A; in the
neighborhood of A the metric is

ds2 = ηα′β′dx
α′dxβ′ +O(|δx|2) . (13.70)

i.e. it differs from Minkowski’s metric by terms of order |δx|2. It may be reminded that, as
discussed in Chapter 1, it is always possible to define such a frame.

In this frame the particle A has space coordinates xi
′
A = 0 (i = 1, 2, 3), and

tA = τ/c ,
dxµ

′

dτ |A
= (1, 0, 0, 0) , gµ′ν′ |A = ηµ′ν′ , gµ′ν′,α′ |A = 0 (i.e.Γα

′

µ′ν′ |A = 0) ,

(13.71)
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where the subscript |A means that the quantity is computed along the geodesic of the particle
A. Moreover, the space components of the vector δxµ

′
which separates A and B are the

coordinates of the particle B:
xi
′

B = δxi
′
. (13.72)

To simplify the notation, in the following we will rename the coordinates of this locally
inertial frame attached to A as {xµ}, and we will drop all the primes.

The separation vector δxµ satisfies the equation of geodesic deviation (see Chapter 7):

D2δxµ

dτ 2
= Rµ

αβγ

dxα

dτ

dxβ

dτ
δxγ . (13.73)

If we evaluate this equation along the geodesic of the particle A, using eqs. (13.71) (removing
the primes) we find

1

c2

d2δxi

dt2
= Ri

00jδx
j . (13.74)

If the gravitational wave is due to a perturbation of the flat metric, as discussed in this
chapter, the metric can be written as gµν = ηµν + hµν , and the Riemann tensor

Rακλµ =
1

2

(
∂2gαµ
∂xκ∂xλ

+
∂2gκλ
∂xα∂xµ

− ∂2gαλ
∂xκ∂xµ

− ∂2gκµ
∂xα∂xλ

)
+ (13.75)

+ gνσ (ΓνκλΓ
σ
αµ − ΓνκµΓσαλ) ,

after neglecting terms which are second order in hµν , becomes

Rακλµ =
1

2

(
∂2hαµ
∂xκ∂xλ

+
∂2hκλ
∂xα∂xµ

− ∂2hαλ
∂xκ∂xµ

− ∂2hκµ
∂xα∂xλ

)
+O(h2); (13.76)

consequently

Ri00m =
1

2

(
∂2him
∂x0∂x0

+
∂2h00

∂xi∂xm
− ∂2hi0
∂x0∂xm

− ∂2h0m

∂xi∂x0

)
=

1

2
hTTim,00, (13.77)

because in the TT -gauge hi0 = h00 = 0. i and m can assume only the values 2 and 3,
i.e. they refer to the y and z components. It follows that

Rλ
00m = ηλiRi00m =

1

2
ηλi

∂2hTT im
c2∂t2

, (13.78)

and the equation of geodesic deviation (13.74) becomes

d2

dt2
δxλ =

1

2
ηλi

∂2hTT im
∂t2

δxm. (13.79)

For t ≤ 0 the two particles are at rest relative to each other, and consequently

δxj = δxj0, with δxj0 = const, t ≤ 0. (13.80)
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Since hµν is a small perturbation, when the wave arrives the relative position of the particles
will change only by infinitesimal quantities, and therefore we put

δxj(t) = δxj0 + δxj1(t), t > 0, (13.81)

where δxj1(t) has to be considered as a small perturbation with respect to the initial position
δxj0 . Substituting (13.81) in (13.79), remembering that δxj0 is a constant and retaining
only terms of order O(h), eq. (13.79) becomes

d2

dt2
δxj1 =

1

2
ηji
∂2hTT ik
∂t2

δxk0. (13.82)

This equation can be integrated and the solution is

δxj = δxj0 +
1

2
ηji hTT ik δx

k
0, (13.83)

which clearly shows the tranverse nature of the gravitational wave; indeed, using the fact
that if the wave propagates along x only the components h22 = −h33, h23 = h32 are different
from zero, from eqs. (13.83) we find

δx1 = δx1
0 +

1

2
η11hTT 1k δx

k
0 = δx1

0 (13.84)

δx2 = δx2
0 +

1

2
η22hTT 2k δx

k
0 = δx2

0 +
1

2

(
hTT 22 δx

2
0 + hTT 23 δx

3
0

)
δx3 = δx3

0 +
1

2
η33hTT 3k δx

k
0 = δx3

0 +
1

2

(
hTT 32 δx

2
0 + hTT 33 δx

3
0

)
.

Thus, the particles will be accelerated only in the plane orthogonal to the direction of
propagation.

Let us now study the effect of the polarization of the wave. Consider a plane wave whose
nonvanishing components are (we omit in the following the superscript TT )

hyy = −hzz = 2<
{
A+e

iω(t−x
c

)
}
, (13.85)

hyz = hzy = 2<
{
A×e

iω(t−x
c

)
}
.

Consider two particles located, as indicated in figure (13.1) at (0, y0, 0) and (0, 0, z0). Let us
consider the polarization ’+’ first, i.e. let us assume

A+ 6= 0 and A× = 0. (13.86)

Assuming A+ real eqs. (13.85) give

hyy = −hzz = 2A+ cosω(t− x

c
), hyz = hzy = 0. (13.87)

If at t = 0 ω(t− x
c
) = π

2
, eqs. (13.84) written for the two particles for t > 0 give

1) z = 0, y = y0 +
1

2
hyy y0 = y0 [1 + A+ cosω(t− x

c
)], (13.88)

2) y = 0, z = z0 +
1

2
hzz z0 = z0[1− A+ cosω(t− x

c
)].
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After a quarter of a period ( cosω(t− x
c
) = −1)

1) z = 0, y = y0[1− A+], (13.89)

2) y = 0, z = z0[1 + A+].

After half a period ( cosω(t− x
c
) = 0)

1) z = 0, y = y0, (13.90)

2) y = 0, z = z0.

After three quarters of a period ( cosω(t− x
c
) = 1)

1) z = 0, y = y0[1 + A+], (13.91)

2) y = 0, z = z0[1− A+].

Similarly, if we consider a small ring of particles centered at the origin, the effect produced
by a gravitational wave with polarization ’+’ is shown in figure (13.2).

Let us now see what happens if A× 6= 0 and A+ = 0 :

hyy = hzz = 0, hyz = hzy = 2A× cosω(t− x

c
). (13.92)

Comparing with eqs. (13.84) we see that a generic particle initially at P = (y0, z0), when
t > 0 will move according to the equations

y = y0 +
1

2
hyz z0 = y0 + z0A× cosω(t− x

c
), (13.93)

z = z0 +
1

2
hzy y0 = z0 + y0A× cosω(t− x

c
).

Let us consider four particles disposed as indicated in figure (13.3)

1) y = r, z = r, (13.94)

2) y = −r, z = r,

3) y = −r, z = −r,
4) y = r, z = −r.

As before, we shall assume that the initial time t = 0 corresponds to ω(t− x
c
) = π

2
. After

a quarter of a period (cosω(t− x
c
) = −1), the particles will have the following positions

1) y = r[1− A×], z = r[1− A×], (13.95)

2) y = r[−1− A×], z = r[1 + A×],

3) y = r[−1 + A×], z = r[−1 + A×],

4) y = r[1 + A×], z = r[−1− A×].
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Figure 13.1:
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Figure 13.2:
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After half a period cosω(t− x
c
) = 0, and the particles go back to the initial positions. After

three quarters of a period, when cosω(t− x
c
) = 1

1) y = r[1 + A×], z = r[1 + A×], (13.96)

2) y = r[−1 + A×], z = r[1− A×],

3) y = r[−1− A×], z = r[−1− A×],

4) y = r[1− A×], z = r[−1 + A×].

The motion of the particles is indicated in figure (13.3).
It follows that a small ring of particles centered at the origin, will again become an

ellipse, but rotated at 450 (see figure (13.4)) with respect to the case previously analysed.
In conclusion, we can define A+ and A× as the polarization amplitudes of the wave.
The wave will be linearly polarized when only one of the two amplitudes is different from
zero.
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Figure 13.3:
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Figure 13.4:


