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0.1 Prologue

The content of this manuscript is the first semester course in quantum field
theory that I have delivered at the Physics Department of the Faculty of
Sciences of the University of Bologna since the academic year 2007/2008.
It is a pleasure for me to warmly thank all the students and in particular
Angelo Giuseppe Ferrari, Pietro Longhi, Lorenzo Rossi, Fabrizio Sgrignuoli
and Demetrio Vilardi for their invaluable help in finding many mistakes and
misprints. In addition it is mandatory to me to express my deep and warm
gratitude to Dr. Paola Giacconi for her concrete help in reading my notes
and her continuous encouragement. To all of them I express my profound
thankfulness.

Roberto Soldati

Distanze
Questo è il tempo in cui tutto
è a portata di mano
e niente a portata di cuore

Sono sempre di piú quelli
che aspettano uno sguardo.
I nostri occhi non sanno piú vedere.
Per questo, un giorno, qualcosa cambierá.

Maurizio Bacchilega

A revolution is not a dinner party, or writing an essay,
or painting a picture, or doing embroidery;
it cannot be so refined, so leisurely and gentle,
so temperate, kind, courteous, restrained and magnanimous.
A revolution is an insurrection, an act of violence...

Mao Tse Tung
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Introduction : Some Notations

Here I like to say a few words with respect to the notation adopted. The
components of all the tetra-vectors or 4-vectors have been chosen to be real.
The metric is defined by means of the Minkowski constant symmetric tensor
of rank two

gµν =


0 for µ 6= ν
1 for µ = ν = 0
−1 for µ = ν = 1, 2, 3

µ, ν = 0, 1, 2, 3

i.e. the invariant product of two tetra-vectors a and b with components
a0, a1, a2, a3 and b0, b1, b2, b3 is defined in the following manner

a · b ≡ gµν a
µbν = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − a · b = a0b0 − akbk

Thus the Minkowski space will be denoted by M = R1,3. Summation over
repeated indexes is understood – Einstein’s convention – unless differently
stated, while bold type a,b notation is used to denote ordinary vectors in
the 3-dimensional Euclidean space. Indexes representing all four components
0,1,2,3 are usually denoted by Greek letters, while all the indexes representing
the three space components 1,2,3 are denoted by Latin letters.

The upper indexes are, as usual, contravariant while the lower indexes are
covariant. Raising and lowering indexes are accomplished with the aid of the
Minkowski metric tensor , e.g.

aµ = gµν a
ν aµ = g µν aν gµν = g µν

in such a manner that the invariant product can also be written in the form

a · b = gµν a
µbν = aµbµ = a0b0 + akbk = a0b0 + a1b1 + a2b2 + a3b3

Throughout the notes the natural system of units is used

c = ~ = 1

for the speed of light and the reduced Planck’s constant, unless explicitly
stated. In turn, for physical units the Heaviside–Lorentz C. G. S. system
of electromagnetic units will be employed. In the natural system of units it
appears that energy, momentum and mass have the dimensions of a reciprocal
length or a wave number, while the time x0 has the dimensions of a length.
The Coulomb’s potential created by a point charge q is

ϕ(x) =
q

4π |x |
=
( q
e2

) α

r
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and the fine structure constant is

α =
e2

4π
=

e2

4π~c
= 7.297 352 568(24)× 10−3 ≈ 1

137

The symbol −e (e > 0) stands for the negative electron charge with [ e ] =
eV G−1 cm−1 . We generally work with the four dimensional Minkowski form
of the Maxwell equations

εµνρσ∂νFρσ = 0 ∂µF
µν =

1

c
Jν

where
Aµ = (ϕ,A) Fµν = ∂µAν − ∂νAµ Jµ = (cρ,J)

B = ∇×A E = −∇ϕ− 1

c
Ȧ

in which

E = (E1, E2, E3) , Ek = F k0 = F0k , ( k = 1, 2, 3 )

B = (F32, F13, F21) B  = 1
2
ε k` Fk` ( ε 123 = ε 1230 = −1 )

are the electric and magnetic fields respectively while

∂µ =
∂

∂xµ
=
( 1

c

∂

∂t
, ∇
)

= (c−1∂ t , ∇ ) = (c−1∂ t, ∂x, ∂y, ∂z)

so that

∇ · E = ρ c∇×B = J +
∂E

∂t

Notice that in the Heaviside–Lorentz C. G. S. system of electromagnetic units
we have [ E ] = [ B ] = G = eV

1
2 cm−

3
2 while [ Jµ ] = esu cm−2 s−1 = G s−1 .

We will often work with the relativistic generalizations of the Schrödinger
wave functions of 1-particle quantum mechanical states. We represent the
energy-momentum operators acting on such wave functions following the
convention:

P µ = (P0 , P) = i∂ µ = ( i∂ t , − i∇ )

In so doing the plane wave exp{− i p · x} has momentum pµ = ( p0 , p) and
the Lorentz covariant coupling between a charged particle of charge q and
the electromagnetic field is provided by the so called minimal substitution

Pµ − q Aµ(x) =

{
i∂ t − q ϕ(x) for µ = 0
i∇− qA(x) for µ = 1, 2, 3

6



The Pauli spin matrices are the three Hermitean 2× 2 matrices

σ1 =

 0 1
1 0

 σ2 =

 0 −i
i 0

 σ3 =

 1 0
0 −1


which satisfy

σi σj = δ ij + i ε ijk σk

where ε 123 = 1 = − ε 123 so that

[σi , σj ] = 2 i ε ijk σk {σi , σj} = 2δ ij

The Dirac matrices in the Weyl, or spinorial, or even chiral representation
are given by

γ0 =

 0 1
1 0

 γ k =

 0 σk
−σk 0

 ( k = 1, 2, 3 )

with the Hermitean conjugation property

γ µ† = γ 0 γ µ γ 0 {γ µ , γ ν} = 2g µν I

so that

β = γ0 =

 0 1
1 0

 α k =

 −σk 0
0 σk

 ( k = 1, 2, 3 )

It follows that the Dirac operator in the Weyl representation of the Clifford
algebra takes the form

i∂/−m = i}


imc/} 0 ∂0 + ∂z ∂x − i∂y

0 imc/} ∂x + i∂y ∂0 − ∂z
−∂0 − ∂z −∂x + i∂y imc/} 0
−∂x − i∂y −∂0 + ∂z 0 imc/}


Concerning the Levi-Civita symbol εµνρσ , i.e. the totally anti-symmetric unit
tensors, I follow the conventions in Lev D. Landau and Evgenij M. Lif̌sits,
Teoria dei campi, Editori Riuniti, Roma (1976) §6., pp. 30-40: namely,

ε 0123 = +1 = − ε 0123 ε 123 = +1 = − ε 123

C = A×B C ı = 1
2
ε ık A Bk = −C ı = ε ık A B k

B = ∇×A B ı = 1
2
ε ık ∂ Ak = −B ı = − 1

2
ε ık ∂ Ak
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Chapter 1

Basics in Group Theory

The aim of this Chapter is to briefly summarize the main definitions and key
results of group theory, a huge and tough mathematical subject, which turns
out to be absolutely necessary in order to understand and appreciate the
crucial role of the symmetries in the development of field theory models to
describe High Energy and Particle Physics. Needless to say this brief review
is by no means exhaustive and accurate, so that I warmly recommend the
students to approach one or many of the excellent textbooks in the subject
available in the Literature.

1.1 Groups and Group Representations

1.1.1 Definitions

A set G of elements e, f, g, h, . . . ∈ G that satisfies all the four conditions
listed below is called an abstract group or simply a group.

1. A law of composition, or multiplication, is defined for the set, such that
the multiplication of each pair of elements f and g gives an element h
of the set : this is written as

fg = h

Element h is called the product of the elements f and g , which are
called the factors. In general the product of two factors depends upon
the order of the factors, so that the elements fg and gf can be different.

2. The multiplication is associative : if f , g and h are any three elements,
the product of the element f with gh must be equal to the product of
the element fg with h

f(gh) = (fg)h

8



3. The set G contains a unit element e called the identity giving the
relation

ef = fe = f ∀f ∈ G

4. For any element f ∈ G there is an element f −1 ∈ G called the inverse
or reciprocal of f such that

f −1f = ff −1 = e ∀f ∈ G

If the number of elements in G is finite, then the group is said to be
finite, otherwise the group is called infinite. The number of elements in a
finite group is named its order.

If the multiplication is commutative, i.e. , if for any pair of elements f
and g we have fg = gf , then the group is said to be commutative or Abelian.

Any subset of a group G , forming a group relative to the very same law
of multiplication, is called a subgroup of G .

The 1:1 correspondence between the elements of two groups F and G

f ↔ g f ∈ F g ∈ G

is said to be an isomorphism iff for any pair of relations

f1 ↔ g1 f2 ↔ g2 f1, f2 ∈ F g1, g2 ∈ G

then there follows the relation

f1f2 ↔ g1g2

Groups between the elements of which an isomorphism can be established
are called isomorphic groups. As an example, consider the set of the n−th
roots of unity in the complex plane

zk = exp{2πi k/n} ( k = 0, 1, 2, . . . , n− 1, n ∈ N )

which form the commutative group

Zn ≡
{
zk ∈ C | znk = z0 = e 2πi ,  ∈ Z , k = 0, 1, 2, . . . , n− 1 , n ∈ N

}
where the composition law is the multiplication

zk · zh = zk+h = zh+k ∀ k, h = 0, 1, 2, . . . , n− 1

9



the identity is z0 = e 2πi (  ∈ Z ) and the inverse z− 1
k = z̄k is the complex

conjugate. This finite group with n elements is isomorphic to the group of
the counterclockwise rotations around the OZ axis (mod 2π), for instance,
through the n angles

ϕk =
2πk

n
( k = 0, 1, 2, . . . , n− 1, n ∈ N )

in such a manner that

Rk =

 cosϕk sinϕk
− sinϕk cosϕk

 ( k = 0, 1, 2, . . . , n− 1, n ∈ N )

The isomorphism of these groups follow from the correspondence

ϕk ↔ zk = e iϕk ( k = 0, 1, 2, . . . , n− 1, n ∈ N )

Homomorphism between two groups differs from isomorphism only by the
absence of the requirement of 1:1 correspondence, so that isomorphism is a
particular case of homomorphism. For example, the group S3 of permutations
of 3 objects is homomorphic to Z2 = {1,− 1} , the law of composition being
multiplication. The following relationships establish the homomorphism of
the two groups: namely,{

1 2 3
1 2 3

}
→ 1

{
1 2 3
2 3 1

}
→ 1

{
1 2 3
3 1 2

}
→ 1{

1 2 3
2 1 3

}
→ −1

{
1 2 3
1 3 2

}
→ −1

{
1 2 3
3 2 1

}
→ −1

The results of one branch of the theory of groups, namely the theory of
group representations, are used in the overwhelming majority of important
cases in which group theory is applied to Physics. The theory of the group
representations studies the homomorphic mappings of an arbitrary abstract
group on all possible groups of linear operators.

• We shall say that a representation T of a group G is given in a certain
linear space L , iff to each element g ∈ G there is a corresponding linear
operator T (g) acting in the space L , such that to each product of the
elements of the group there is a corresponding product of the linear
operators, i.e.

T (g1)T (g2) = T (g1g2) ∀g1, g2 ∈ G

10



T (e) = I T (g−1) = T −1(g)

where I denotes the identity operator on L . The dimension of the space
L is said to be the dimension of the representation. A group can have
representations both of a finite and of an infinite number of dimensions.
By the very definition, the set of all linear operators T (g) : L →
L ( g ∈ G ) is closed under the multiplication or composition law.
Hence it will realize an algebra of linear operators over L that will be
denoted by A(L) . If the mapping T : G → A(L) is an isomorphism,
then the representation T is said faithful. In what follows, keeping
in mind the utmost relevant applications in Physics, we shall always
assume that the linear spaces upon which the representations act are
equipped by an inner product 1 , in such a manner that the concepts
of orthonormality, adjointness and unitarity are well defined in the
conventional way.

One of the problems in the theory of representations is to classify all the
possible representations of a given group. In the study of this problem
two concepts play a fundamental role: the concept of equivalence of
representations and the concept of reducible representations.

• Knowing any representation T of a group G in the space L one can
easily set up any number of new representations of the group. For
this purpose, let us select any non-singular linear operator A , carrying
vectors from L into a space L ′ with an equal number d of dimensions,
and assign to each element g ∈ G the linear operator

TA(g) = AT (g)A−1 ∀g ∈ G

acting in the vector space L ′ . It can be readily verified that the map
g 7→ TA(g) is a representation of the group G that will be thereby said
equivalent to the representation T (g) .

All the representations equivalent to a given one are equivalent among
themselves. Hence, all the representations of a given group split into
classes of mutually equivalent ones, so that, accordingly, the problem of
classifying all representations of a group is reduced to the more limited
one of finding all mutually nonequivalent representations.

• Consider a subspace L1 of the linear vector space L . The subspace
L1 ⊆ L will be said an invariant subspace with respect to some given

1The inner product between to vectors a, b ∈ L is usually denoted by (a , b) in the
mathematical literature and by the Dirac notation 〈 a | b 〉 in quantum physics. Here I
shall often employ both notations without loss of clarity.
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linear operator A acting on L iff

A`1 ∈ L1 ∀`1 ∈ L1

Of course L itself and the empty set ∅ are trivial invariant sub-spaces.

• The representation T of the group G in the vector space L is said to
be reducible iff there exists in L at least one nontrivial subspace L1

invariant with respect to all operators T (g) , g ∈ G . Otherwise the
representation is called irreducible. All one dimensional representations
are evidently irreducible.

• A representation T of the group G in the vector space L is said to be
unitary iff all the linear operators T (g) , g ∈ G , are unitary operators

T †(g) = T −1(g) = T (g−1) ∀g ∈ G

1.1.2 Theorems

There are two important theorems concerning unitary representations.

• Theorem 1. Let T a unitary reducible representation of the group G
in the vector space L and let L1 ⊆ L an invariant subspace. Then the
subspace L2 = {L1 , the orthogonal complement of L1 , is also invariant.

Proof.

Let `1 ∈ L1 , `2 ∈ L2 , then T −1(g)`1 ∈ L1 and (T −1(g)`1, `2 ) = 0 . On
the other hand the unitarity of the representation T actually implies
( `1, T (g)`2 ) = 0 . Hence, T (g)`2 is orthogonal to `1 and consequently
T (g)`2 ∈ L2 , ∀g ∈ G , so the theorem is proved. �

Hence, if the vector space L transforms according to a unitary reducible
representation, it decomposes into two mutually orthogonal invariant
sub-spaces L1 and L2 such that L = L1⊕L2 . Iterating this process we
inevitably arrive at the irreducible representations.

• Theorem 2. Each reducible unitary representation T (g) of a group G
on a vector space L decomposes, uniquely up to equivalence, into the
direct sum of irreducible unitary representations τ a(g) , a = 1, 2, 3, . . . ,
acting on the invariant vector spaces La ⊆ L in such a way that

L = L1 ⊕ L2 ⊕ L3 ⊕ . . . =
⊕
a

La La ⊥ Lb for a 6= b

12



τ a(g) `a ∈ La ∀a = 1, 2, . . . ∀g ∈ G
Conversely, each reducible unitary representation T (g) of a group G
can be always composed from the irreducible unitary representations
τ a(g) , a = 1, 2, 3, . . . , of the group.

The significance of this theorem lies in the fact that it reduces the
problem of classifying all the unitary representations of a group G ,
up to equivalent representations, to that of finding all its irreducible
unitary representations.

As an example of the decomposition of the unitary representations of the
rotation group, we recall the decomposition of the orbital angular momentum
which is well known from quantum mechanics. The latter is characterized
by an integer ` = 0, 1, 2, . . . and consist of (2`+ 1)× (2`+ 1) square matrices
acting on quantum states of the system with given eigenvalues

λ` = ~2`(`+ 1) `+ 1 ∈ N

of the orbital angular momentum operator L2 = [ r× (− i~∇) ]2 . The set of
2` + 1 quantum states belonging to the subspace of the Hilbert space with
a definite orbital angular momentum ` are labeled by the possible values of
the projections of the orbital angular momentum along a certain axis, e.g.
Lz = −~`,−~(` − 1), . . . , ~(` − 1), ~` , in such a manner that we have the
spectral decomposition

L2 =
∞∑
`=0

~2`(`+ 1) P̂` P̂` =
∑̀
m=−`

| `m〉〈`m |

with
〈 `m | ` ′m ′ 〉 = δ `` ′ δmm ′ tr P̂` = 2`+ 1

where [ tr ] denotes the trace (sum over the diagonal matrix elements) of the

projectors P̂` over the finite dimensional spaces L` (` = 0, 1, 2, . . .) spanned by
the basis { | `m〉 |m = −`,−`+ 1, . . . , `− 1, ` } of the common eigenstates of
L2 and Lz . Thus, for each rotation g ∈ G around a fixed point in the ordinary
three dimensional Euclidean space, there exists a (2`+ 1)× (2`+ 1) unitary
matrix τ `(g) that specifies the way how the (2`+1) quantum states transform
among themselves as a result of the rotation g ∈ G , which actually realizes
an irreducible unitary finite dimensional representation of the rotation group.
The Hilbert space H for a point-like spin-less particle is thereby decomposed
according to

H =
∞⊕
`=0

L` L` ⊥ Lm for ` 6= m dim (L`) = 2`+ 1

13



τ ` : L` → L` ` = 0, 1, 2, . . .

1.1.3 Direct Products of Group Representations

It is very useful to introduce the concepts of characters and the definition of
product of group representations.

• Let T (g) any linear operator corresponding to a given representation
of the group G . We define the characters χ(g) of the representation to
be the sum of the diagonal matrix elements of T (g)

χ(g) ≡ trT (g) =
∑
ı

Tıı(g) ∀ g ∈ G (1.1)

In the case of infinite dimensional representations we have to suppose
the linear operators T (g) to be of the trace class.

Two equivalent representations have the same characters, as the trace
operation does not depend upon the choice of the basis in the vector
space.

• Definition. Consider two representations T1(g) and T2(g) of the group
G acting on the vector (Hilbert) spaces L1 and L2 of dimensions n1 and
n2 respectively. Let

{e1j ∈ L1 | j = 1, 2, . . . , n1} {e2r ∈ L2 | r = 1, 2, . . . , n2}

any two bases so that

e1j 2r ≡ {e1j ⊗ e2r | j = 1, 2, . . . , n1 , r = 1, 2, . . . , n2}

is a basis in the tensor product L1 ⊗ L2 of the two vector spaces with
dim(L1⊗L2) = n1 n2 . Then the matrix elements of the linear operators
T1(g) and T2(g) with respect to the above bases will be denoted by

[T1(g) ]jk ≡ ( e1j, T1(g) e1k ) [T2(g) ]rs ≡ ( e2r, T2(g) e2s )

The direct product

T (g) ≡ T1(g)× T2(g) ∀ g ∈ G

of the two representations is a representation of dimension n = n1 n2

the linear operators of which, acting upon the tensor product vector

14



space L1 ⊗ L2 , have the matrix elements, with respect to the basis
e1j 2r , which are defined by

( e1j 2r , T (g) e1k 2s ) ≡ [T1(g) ]jk [T2(g) ] rs

= ( e1j , T1(g) e1k ) ( e2r , T2(g) e2s ) (1.2)

where j, k = 1, 2, . . . , n1 and r, s = 1, 2, . . . , n2 . From the definition
(1.1) it is clear that we have

χ(g) = χ1(g)χ2(g) ∀ g ∈ G

because

χ(g) ≡
n1∑
j=1

n2∑
r=1

( e1j 2r , T (g) e1j 2r )

=

n1∑
j=1

( e1j , T1(g) e1j )

n2∑
r=1

( e2r , T2(g) e2r )

= χ1(g)χ2(g) ∀ g ∈ G (1.3)
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1.2 Continuous Groups and Lie Groups

1.2.1 The Continuous Groups

A group G is continuous if the set of its elements forms a topological space.
This means that each element g ∈ G is in correspondence with an infinite
number of subsets Ug ⊂ G, called a system of neighborhoods of any g ∈ G .
This correspondence has to satisfy certain conditions that fully guarantee
the compatibility between the structure of topological space and the group
associative composition law - see the excellent monographs [17] for details.

To illustrate the concept of neighborhood we consider the group of the
rotations around a fixed axis, which is an Abelian continuous group. Let
g = R(ϕ) , 0 ≤ ϕ ≤ 2π , a rotation through an angle ϕ around e.g. the
OZ axis. By choosing arbitrarily a positive number ε > 0 , we consider the
set Ug(ε) consisting of all the rotations g ′ = R(ϕ ′ ) satisfying the inequality
|ϕ−ϕ ′ | < ε . Every such set Ug(ε) is a neighborhood of the rotation g = R(ϕ)
and giving ε all its possible real positive values we obtain the infinite manifold
of the neighborhoods of the rotation g = R(ϕ) . Another well known example
is provided by the set R of the real numbers, which is a topological space
and a group, the composition law being the addition, the unit element being
the zero and the inverse being the opposite.

The real functions f : G → R over the group G is said to be continuous
for the element g0 ∈ G if, for every positive number δ > 0 , there exists such
a neighborhood U0 of g0 that ∀g ∈ U0 the following inequality is satisfied

| f(g)− f(g0) | < δ ∀g ∈ U0 g0 ∈ U0 ⊂ G

A continuous group G is called compact if and only if each real function
f(g) , continuous for all the elements g ∈ G of the group, is bounded. For
example, the group of the rotations around a fixed axis is compact, the
rotation group in the three dimensional space is also a compact group. On
the other hand, the continuous Abelian group R of all the real numbers is
not compact, since there exist continuous although not bounded functions,
e.g. f(x) = x , x ∈ R . The Lorentz group is not compact.

A continuous group G is called locally compact if and only if each real
function f(g) , continuous for all the elements g ∈ G of the group, is bounded
in every neighborhood U ⊂ G of the element g ∈ G . According to this
definition, the group of all the real numbers is a locally compact group and
the Lorentz group is also a locally compact group.

• Theorem : if a group G is locally compact, it always admits irreducible
unitary representations in infinite dimensional Hilbert spaces.
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In accordance with this important theorem, proved by Gel’fand and Raikov,
Gel’fand and Näımark succeeded in finding the classification of all the unitary
irreducible representations of the Lorentz group and of certain other locally
compact groups.

In general, if we consider all possible continuous functions defined over a
continuous group G , we may find among them some multi-valued functions.
These continuous multi-valued functions can not be made single-valued by
brute force without violating continuity, that is, by rejecting the exceeding
values for each element g ∈ G . As an example we have the function

f(ϕ) = e
1
2
iϕ

over the rotation group around a fixed axis. Since each rotation g = R(ϕ)
through an angle ϕ can also be considered as a rotation through an angle
ϕ+ 2π , this function must have two values for a rotation through the same
angles: namely,

f+(ϕ) = e
1
2
iϕ f−(ϕ) = e

1
2
iϕ+iπ = − e

1
2
iϕ = − f+(ϕ)

Had we rejected the second of these two values, then the function f(ϕ) would
become discontinuous at the point ϕ = 0 = 2π .

The continuous groups which admit continuous many-valued functions
are called multiply connected. As the above example shows, it turns out
that the rotation group around a fixed axis is multiply connected. Also the
rotation group in the three dimensional space is multiply-connected, as I
will show below in some detail. The presence of many-valued continuous
functions in certain continuous groups leads us to expect that some of the
continuous representations of these groups will be many-valued. On the one
hand, these many-valued representations can not be ignored just because of
its importance in many physical applications. On the other hand, it is not
always possible, in general, to apply to those ones all the theorems valid for
single-valued continuous representations.

To overcome this difficulty, we use the fact that every multiply connected
group G is an homomorphic image of a certain simply connected group G̃.
It turn out that the simply connected group G̃ can always be chosen in
such a manner that none of its simply connected subgroups would have the
group G as its homomorphic image. When the simply connected group G̃ is
selected in this way, it is called the universal covering group or the universal
enveloping group of the multiply connected group G – see [17] for the proof.
Consider once again, as an example, the multiply connected abelian group
of the rotations around a fixed axis. The universal covering group for it is
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the simply connected commutative group R of all the real numbers. The
homomorphism is provided by the relationship 2

x → ϕ = x− 2π [x/2π ] −∞ < x <∞ 0 ≤ ϕ ≤ 2π

where x = [x ] + {x} . It turns out that every continuous representation of
the group G , including any multi-valued one, can always be considered as a
single-valued continuous representation of the universal enveloping group G̃ .
The representations of the group G obtained in this manner do exhaust all
the continuous representations of the group G .

1.2.2 The Lie Groups

The Lie groups occupy the most important place among continuous groups.

Marius Sophus Lie
Nordfjordeid (Norway) 17.12.1842 – Oslo 18.02.1899
Vorlesungen über continuierliche Gruppen (1893)

Lie groups occupy this special place for two reasons : first, they represent
a sufficiently wide class of groups, including the most important continuous
groups encountered in geometry, mathematical analysis and physics ; second,
every Lie group satisfies a whole series of strict requirements which makes
it possible to apply to its study the methods of the theory of differential
equations. We can define a Lie group as follows.

Definition. Let G some continuous group. Consider any neighborhood V of
the unit element of this group. We assume that by means of n real parameters
α1, α2, . . . , αn we can define every element of the neighborhood V in such a
way that:

1. there is a continuous 1 to 1 correspondence between all the different
elements g ∈ V and all the different n−ples of the real parameters
α1, α2, . . . , αn ;

2. suppose that g1, g2 and g = g1g2 lie in the neighborhood V and that

g1 = g1(α
′
1, α

′
2 , . . . , α

′
n) g2 = g2(α

′ ′
1 , α

′ ′
2 , . . . , α

′ ′
n )

g = g (α1, α2 , . . . , αn)

where

αa = αa(α
′
1, α

′
2, . . . , α

′
n ; α′ ′1 , α

′ ′
2 , . . . , α

′ ′
n ) a = 1, 2, . . . , n

2We recall that any real number x can always be uniquely decomposed into the sum of
its integer [x ] and fractional {x} parts, i.e. x = [x ] + {x} , ∀x ∈ R.
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then the functions αa (a = 1, 2, . . . , n) are analytic functions of the
parameters α ′b , α

′ ′
c ( b, c = 1, 2, . . . , n) of the factors.

Then the continuous group G is called a Lie group of dimensions n. We shall
always choose the real parameters αa (a = 1, 2, . . . , n) in such a way that
their zero values correspond to the unit element.

1.2.3 An Example : the Rotations Group

Any rotation in the three dimensional space can always be described by an
oriented unit vector n̂ with origin in the center of rotation and directed along
the axis of rotation and by the angle of rotation α ∈ [0, 2π[. Therefore we can
denote rotations by g(n̂, α) . The angle is measured in the counterclockwise
sense with respect to the positive direction of n̂ . By elementary geometry it
can be shown that any active rotation g(n̂, α) transforms the position vector
r into the vector

r ′ = r cosα + n̂ (r · n̂)(1− cosα) + n̂× r sinα

Every rotation is defined by three parameters. If we introduce the vector
α ≡ α n̂ (0 ≤ α < 2π), then we can take the projections of the vector α
on the coordinate axes as the three numbers α = (α1, α2, α3) that label the
rotation: namely,

α1 = α sinϑ cosφ α2 = α sinϑ sinφ α3 = α cosϑ

0 ≤ α < 2π 0 ≤ ϑ ≤ π 0 ≤ φ ≤ 2π (1.4)

These angular parameters are called the canonical coordinates of the rotation
group and are evidently restricted to lie inside the 2-sphere

α2
1 + α2

2 + α2
3 < (2π)2

Thus, the rotation group is a three dimensional Lie group.
Any (abstract) rotation g can be realized by means of a linear operator

R(g) that transforms the position vector r into the new position vector r ′ =
R(g) r . This corresponds to the active point of view, in which the reference
frame is kept fixed while the position vectors are moved. Of course, one
can equivalently consider the passive point of view, in which the position
vectors are kept fixed while the reference frame is changed. As a result, the
linear operators corresponding to the two points of view are inverse one of
each other. Historically, the Euler angles ϕ, θ and ψ were firstly employed as
parameters for describing rotations. According to Euler’s point of view, any
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displacement of a solid body around a fixed point can be represented as a
product of three orthogonal matrices: the rotation matrix R 3(ϕ) about the
OZ axis, the rotation matrix R1(θ) about the OX ′ axis, which is called the
nodal line, and the rotation matrix R 3(ψ) about the OZ ′ axis, i.e.

R(g) = R(ϕ, θ, ψ) = R 3(ψ)R1(θ)R 3(ϕ)

We have

R3(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 R1(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


R3(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


The angle ϕ is named the precession angle, θ is the nutation angle, while ψ is
the proper rotation angle. From the parametric form in terms of the Eulerian
angles it immediately follows that every rotation matrix is uniquely identified
by a tern

R (g) = R (ϕ, θ, ψ ) 0 ≤ ϕ < 2π ; 0 ≤ θ ≤ π ; 0 ≤ ψ < 2π (1.5)

R(g) = R(ϕ, θ, ψ) = cosϕ cosψ − cos θ sinϕ sinψ − sinϕ cosψ − cos θ cosϕ sinψ sinψ sin θ
sinψ cosϕ+ cos θ cosψ sinϕ − sinϕ sinψ + cos θ cosϕ cosψ − cosψ sin θ

sinϕ sin θ cosϕ sin θ cos θ


and that

R (g−1) = R−1(g) = R 3(−ϕ)R1(−θ)R 3(−ψ) = R>(g)

with det [ R( ϕ, θ, ψ ) ] = 1 . It follows thereby that an isomorphism exists
between the abstract rotation group and the group of the orthogonal 3 × 3
matrices with unit determinant: this matrix group is called the 3-dimensional
special orthogonal group and is denoted by SO(3) . The matrix group SO(3)
is thereby said to be the defining representation of the rotation group around
a fixed point in the three dimensional Euclidean space.

The discrete transformation that carries every position vector r into the
vector − r is called inversion or parity transform. Parity P commutes with all
rotations Pg = gP , ∀g ∈ SO(3) ; moreover P2 = I , detP = −1 . If we add
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to the elements of the rotation group all possible products Pg , g ∈ SO(3)
we still obtain a larger group, as it can be readily checked.

This matrix group is called the 3-dimensional full orthogonal group and
is denoted by O(3) . The group O(3) splits into two connected components:
namely, the proper rotation group O(3)+ = SO(3) , which is the subgroup
connected with the unit element, and the improper component O(3)− which
is connected with the parity transform. Evidently the matrices belonging to
O(3)± have determinant equal to ±1 respectively.

The full orthogonal group O(3) is the group of transformations that leave
invariant the line element

dr2 = dx2 + dy2 + dz2 = dxidxi i = 1, 2, 3

in the 3-dimensional space. In a quite analogous way one introduces, for
odd N , the N−dimensional full orthogonal groups O(N) and the proper
orthogonal Lie groups SO(N) of dimensions n = 1

2
N(N − 1) .

1.2.4 The Infinitesimal Operators

In the following we shall consider only those representations T of a Lie group
G , the linear operators of which are analytic functions of the parameters
α1, α2, . . . , αn in such a way that

T (g) = T (α1, α2, . . . , αn) ≡ T (α) : V → A(V ) (V ⊂ G )

are operator valued analytic functions of their arguments. The derivative of
the operator T (g) with respect to the parameter αa taken for g = e , i.e.
at the values α1 = α2 = . . . = αn = 0 , is called the infinitesimal operator
or generator Ia of the representation T (g) corresponding to the parameter
αa . Thus, any representation T (g) has n generators, i.e. , the number of the
infinitesimal operators is equal to the dimension of the Lie group.

As an example, consider the real orthogonal matrices referred to the
canonical coordinates (1.4) of the rotation group. Since those matrices
g ∈ SO(3) are linear operators acting on the vectors r ∈ L = R3 , the
latter realize an irreducible representation of the rotation group with the
same number of dimensions as the group itself, which is called the vector
or the adjoint representation τA(g) of the rotation group. According to the
passive point of view, a rotation of coordinates α = (α1, 0, 0) corresponds to
the rotation of the reference frame around the positive direction of the OX
axis through an angle α1 . Then the operator τA(α1, 0, 0) is represented by
the matrix

τA(α1, 0, 0) =

 1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1


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Hence

∂

∂α1

τA(α1, 0, 0) =

 0 0 0
0 − sinα1 cosα1

0 − cosα1 − sinα1


and consequently

I1 =

 0 0 0
0 0 1
0 −1 0


In a quite analogous way we obtain

I2 =

 0 0 −1
0 0 0
1 0 0

 I3 =

 0 1 0
−1 0 0
0 0 0


The following commutation relations among the infinitesimal operators of
the rotation group SO(3) hold true: namely,

IaIb − IbIa = − εabc Ic (a, b, c = 1, 2, 3) (1.6)

where εabc is the completely anti-symmetric Levi-Civita symbol normalized
to ε123 = 1 . The crucial role played by the generators in the theory of the
Lie groups is unraveled by the following three theorems.

• Theorem I . Let T1 and T2 any two representations of a Lie group
G acting on the same vector space L and suppose that they have the
same set of generators. Then T1 and T2 are the same representation.

• Theorem II . The infinitesimal operators Ia (a = 1, 2, . . . , n) that
correspond to any representation T (g) of a Lie group G do satisfy the
following commutation relations

IaIb − IbIa ≡ [ Ia Ib ] = Cabc Ic a, b, c = 1, 2, . . . , n (1.7)

where the constant coefficients Cabc = −Cbac are real numbers which do
not depend upon the choice of the representation T (g) . The constant
coefficients Cabc of a Lie algebra fulfill the Jacobi’s identity

CabeCecd + CbceCead + CcaeCebd = 0 (1.8)

because of the identity

[ [ Ia Ib ] Ic ] + [ [ Ib Ic ] Ia ] + [ [ Ic Ia ] Ib ] = 0

which can be readily checked by direct inspection.
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• Theorem III . Suppose that a set of linear operators A1, A2, . . . , An
acting on a certain vector space L is given and which fulfill the same
commutation relations

[AaAb ] = CabcAc a, b, c = 1, 2, . . . , n

as the infinitesimal operators of the group G . Then the operators
Aa(a = 1, 2, . . . , n) are the generators of a certain representation T (g)
of the group G in the vector space L .

The details of the proofs of the above fundamental theorems in the theory
of Lie groups can be found in the excellent monographs [17]. Theorems I, II
and III are very important because they reduce the problem of finding all the
representations of a Lie group G to that of classifying all the possible sets of
linear operators which satisfy the commutation relations (1.7).

1.2.5 Lie Algebra

The infinitesimal operators Ia (a = 1, 2, . . . , n) do generate a linear space
and the commutators define a product law within this linear space. Then
we have an algebra which is called the Lie algebra G of the Lie group G with
dimG = dimG = n . The constant coefficients Cabc = −Cbac are named the
structure constants of the Lie algebra G .

Suppose that the representation T (g) of the Lie group G acts on the
linear space L and let A any non-singular linear operator upon L . Then the
linear operators AIaA

−1 ≡ Ja (a = 1, 2, . . . , n) do realize an equivalent
representation for G , i.e. the infinitesimal operators Ja (a = 1, 2, . . . , n)
correspond to a new basis in G because

[ Ja Jb ] = [AIaA
−1AIbA

−1 ] = A [ Ia Ib ]A−1

= ACabc IcA
−1 = CabcAIcA

−1

= Cabc Jc a, b, c = 1, 2, . . . , n

As a corollary, it turns out that, for any representation, the collections of
infinitesimal operators{

Ia(g) ≡ T (g) Ia T
−1(g) | a = 1, 2, . . . , n

}
∀ g ∈ G (1.9)

do indeed realize different and equivalent choices of basis in the Lie algebra.
We will say that the operators T (g) of a given representation of the Lie group
G generate all the inner automorphisms in the given representation of the Lie
algebra G .

23



It is possible to regard the structure constants as the matrix elements of
the n−dimensional representation of the generators: namely,

‖ Ia ‖ bc = Cacb (a, b, c = 1, 2, . . . , n) (1.10)

in such a way that we can rewrite the Jacobi identity (1.8) as the matrix
identity

− || Ic || de || Ia || eb + || Ia || de || Ic || eb − || Ic || ea || Ie || db = 0 (1.11)

or after relabeling of the indexes

|| [ Ia Ib ] || de = Cabc || Ic || de

Thus, for each Lie algebra G and Lie group G of dimensions n , there is
a representation, called the adjoint representation, which has the very same
dimensions n as the Lie group itself. Evidently, an Abelian Lie group has
vanishing structure constants, so that its adjoint representation is trivial,
i.e. it consists of solely the unit element. As shown above the rotation group
has three generators Ia (a = 1, 2, 3) and structure constants Cabc equal to
− εabc . Consequently, the adjoint representation of the rotation group is a
three dimensional one with generators Ia given by

|| Ia || bc = εabc (a, b, c = 1, 2, 3)

In any neighborhood of the identity operator T (e) = T (0, 0, . . . , 0) ≡ 1
we can always find a set of parameters such that

T (α) = exp {Ia αa} = 1 +
n∑
a=1

Ia αa +O(α2 ) (1.12)

1.2.6 The Exponential Representation

In order to find the representations of the group G it is sufficient to classify
the representations of its Lie algebra G . More precisely, one can prove the
following theorem – see [17] for the proof.
Theorem. Let Ia (a = 1, 2, . . . , n) a given basis of the Lie algebra G of a Lie
group G . Then, for any neighborhood U ⊂ G of the unit element e ∈ G there
exists a set of canonical coordinates αa (a = 1, 2, . . . , n) in U and a positive
number δ > 0 such that

T (g) ≡ T (α1, α2 , . . . , αn) = exp {Ia αa} g ∈ U ⊂ G , |αa | < δ
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where the exponential is understood through the Baker–Campbell–Hausdorff
formula

T (α)T (β) = T (γ) T (α) = exp {Ia αa} T (β) = exp {Ib βb}

T (γ) = exp {I` γ`} ≡ exp
{
Ia αa + Ib βb + 1

2
αaβ b [ Ia Ib ]

+ 1
12

(αaαbβc + βaβbαc) [ Ia [ Ib Ic ] ] + · · ·
}

in which the dots stand for higher order, iterated commutators among the
generators. Then we obtain the series expansion

γ` = α` + β` + 1
2
αaβ bCab` + 1

12
(αaαbβc + βaβbαc)Cad`Cbcd + · · ·

which manifestly shows that all the structure constants must be real for any
Lie group. To elucidate these notions let me discuss two examples.

1. Consider the translations group along the real line

x → x ′ = x+ a (∀x ∈ R , a ∈ R )

The translations group on the real line is a one dimensional Abelian
Lie group. Let us find the representation of this group acting on the
infinite dimensional functional space of all the real analytic functions
f : R → R with f ∈ C∞(R) . To do this, we have to recall the Taylor-
McLaurin formula

f(x+ a) =
∞∑
k=0

1

k !
ak f (k)(x)

Now, if we define

T f(x) ≡ df

dx
T k f(x) ≡ dkf

dxk
= f (k)(x)

then we can write

f(x+ a) = exp{ a · T } f(x)

=

(
∞∑
k=0

1

k !
ak T k

)
f(x) =

∞∑
k=0

1

k !
ak f (k)(x)

in such a manner that we can actually identify the generator of the
infinite dimensional representation of the translations group with the
derivative operator acting upon the functional space of all the real
analytic functions.
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2. As a second example, consider the rotations group on the plane around
a fixed point, which is an Abelian and compact Lie group SO(2,R) i.e.
the two dimensional proper orthogonal group with unit determinant.
A generic group element g ∈ SO(2) is provided by the 2×2 orthogonal
matrix

g(ϕ) =

 cosϕ sinϕ
− sinϕ cosϕ

 ( 0 ≤ ϕ ≤ 2π )

which corresponds to a passive planar rotation around the origin. If we
introduce the generator or transfer matrix

T ≡
 0 1
−1 0


with T2 = − I , then we readily find

g(ϕ) ≡ exp{Tϕ } =
∞∑
k=0

1

k !
ϕk Tk

=
∞∑
k=0

(−1)k
[
ϕ2k

(2k) !
I +

ϕ2k+1

(2k + 1)!
T
]

= I cosϕ+ T sinϕ ∀ϕ ∈ [ 0 , 2π ]

The exponential representation of the Lie group elements implies some
remarkable features. The infinitesimal operators of a unitary representation
are anti-Hermitean

T (g−1) = T †(g) ⇔ Ia = − I †a (a = 1, 2, . . . , n)

All the structure constants of an Abelian Lie group are equal to zero. For
a compact Lie group G with dimG = n it is possible to show that all the
sets of canonical coordinates span a bounded subset of Rn . Moreover any
element of any representation of a compact group can always be expressed
in the exponential form. In a non-compact Lie group G with dimG = n the
canonical coordinates run over an unbounded subset of Rn and, in general,
not all the group elements can be always expressed in the exponential form.

Any two Lie groups G1 and G2 with the same structure constants are
locally homeomorphic, in the sense that it is always possible to find two neigh-
borhoods of the unit elements U1 ⊂ G1 and U2 ⊂ G2 such that there is an
analytic isomorphism f : U1 ↔ U2 between the elements of the two groups
∀ g1 ∈ U1 , ∀ g2 ∈ U2 . Of course, this does not imply that there is a 1 to
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1 analytic map over the whole parameter space, i.e. the two groups are not
necessarily globally homeomorphic. As an example, consider the group R of
all the real numbers and the unitary group

U(1) ≡ {z ∈ C | z z̄ = 1}
of the complex unimodular numbers. These two groups are Abelian groups.
In a neighborhood of the unit element we can readily set up an homeomorphic
map, e.g. the exponential map

z = exp{iα} z̄z = 1 − π < α ≤ π

so that the angle α is the canonical coordinate. However, there is no such
mapping in the global sense, because the unit circle in the complex plane is
equivalent to a real line of which all the elements modulo 2π are considered
as identical. In other words, we can associate any real number

x = 2kπ + α ( k ∈ Z , −π < α ≤ π )

to some point of the unit circle in the complex plane with a given canonical
coordinate α and a given integer winding number k = [x/2π ] . If this is the
case, the complex unit circle is not simply connected, because all the closed
paths on a circle have a non-vanishing integer number of winding and can not
be continuously deformed to a point, at variance with regard to the simply
connected real line.

1.2.7 The Special Unitary Groups

Consider the group of 2× 2 complex unitary matrices with unit determinant
denoted as SU(2) , the Special Unitary 2-dimensional matrices

g =

 v̄ −ū
u v

 ūu+ v̄v = 1

which evidently realize a Lie group of dimensions n = 3 . Notice that we can
always set

u = −x2 + ix1 v = x4 + ix3

4∑
i=1

x2i = 1

whence it manifestly follows that SU(2) is topologically homeomorphic to the
three dimensional hyper-sphere S3 of unit radius plunged in R4 . A convenient
parametric form of S3 is provided by the spherical angular coordinates in R4

x1 = cos θ1
x2 = sin θ1 cos θ2

x3 = sin θ1 sin θ2 cos θ3
x4 = sin θ1 sin θ2 sin θ3

(1.13)
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with 0 ≤ θ1 ≤ π , 0 ≤ θ2 ≤ π , 0 ≤ θ3 ≤ 2π, in such a matter that one can
establish the correspondence

u = − sin θ1 cos θ2 + i cos θ1 v = sin θ1 sin θ2(sin θ3 + i cos θ3)

and thereby

g =

 sin θ1 sin θ2(sin θ3 − i cos θ3) sin θ1 cos θ2 + i cos θ1
− sin θ1 cos θ2 + i cos θ1 sin θ1 sin θ2(sin θ3 + i cos θ3)


Owing to the exponential representation, as the SU(2) matrices are unitary,
the three generators are anti-Hermitean 2×2 matrices, which can be written
in terms of the Pauli matrices

τa ≡ 1
2
iσa (a = 1, 2, 3) (1.14)

σ1 =

 0 1
1 0

 σ2 =

 0 −i
i 0

 σ3 =

 1 0
0 −1

 (1.15)

and therefore

[ τa τ b ] = − εabc τc (a, b, c = 1, 2, 3) (1.16)

It follows that SU(2) has the very same Lie algebra (1.6) of SO(3). Then,
according to Theorem III of section 1.2.4, the special unitary 2×2 matrices
do realize a complex 2-dimensional representation of the (abstract) rotation
group. Using the canonical coordinates (1.4), in a neighborhood of the unit
element we can write the SU(2) elements in the exponential representation.
From the very well known identities

σa σ b + σ b σa = 2 δab (σa αa)
2 = |α | 2 = α2

1 + α2
2 + α2

3

where the 2× 2 identity matrix is understood, we obtain

g(α) = exp{τa αa} ≡
∞∑
k=0

1

k!
(τa αa)

k

=
∞∑
k=0

{
1

(2k)!

(
i

2
|α |

)2k

+
1

(2k + 1)!

(
i

2
|α |

)2k+1
σa αa
|α |

}

=
∞∑
k=0

{
(−1)k

(2k)!

(
1

2
|α |

)2k

+
i(−1)k

(2k + 1)!

(
1

2
|α |

)2k+1
σa αa
|α |

}
= cos

(
1
2
|α |

)
+ iσa

αa
|α |

sin
(
1
2
|α |

)
= x4 + iσa xa (1.17)
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in which
∑4

ı=1 x
2
ı = 1 while
x1 = cos θ1 = (α1/α) sin 1

2
α

x2 = sin θ1 cos θ2 = (α2/α) sin 1
2
α

x3 = sin θ1 sin θ2 cos θ3 = (α3/α) sin 1
2
α

x4 = sin θ1 sin θ2 sin θ3 = cos 1
2
α

α = | α |

Notice that, by direct inspection,

g†(α) = g(−α) = g−1(α)

so that g(α) are unitary matrices. Furthermore we can write

g(α) =

 x4 + ix3 ix1 + x2
ix1 − x2 x4 − ix3


with det g(α) = 1 . From the explicit formula (1.17) it follows that the whole
set of special unitary 2× 2 matrices is spanned iff the canonical coordinates
α are restricted to lie inside a sphere of radius 2π, viz.,

|α | 2 = α2
1 + α2

2 + α2
3 < (2π)2

The SU(2) group of matrices constitutes the lowest dimensional nontrivial
faithful irreducible unitary representation of the rotation group, which is
thereby named its fundamental representation and denoted by τ F (g) . Since
it acts upon complex 2-components column vectors, i.e. the Pauli spinors of
the non-relativistic quantum mechanics that describe particles of spin 1

2
, it is

also named as the spinorial representation of the rotation group and further
denoted by τ 1

2
(g) ≡ τ F (g) .

A comparison between the fundamental τ F (g) = SU(2) and the adjoint
τA(g) = SO(3) representations of the rotation group is very instructive.
Since these two representations of the rotation group share the same Lie
algebra they are locally homeomorphic. It is possible to obtain all the finite
elements of SO(3) in the exponential representation. As a matter of fact, for
the infinitesimal operators (1.6) of the adjoint representation we have (the
identity matrix is understood)

(Ia αa)
2 = − |α | 2 + Ξ(α) ||Ξ(α) || ac ≡ αaαc

(Ia αa)
3 = − |α | 2 Ia αa

and consequently

[ Ξ(α) ]2 = |α | 2 Ξ(α) αa Ia Ξ(α) = 0 = Ξ(α) Ia αa

29



(Ia αa)
2k = (− |α | 2) k

(
1− |α |−2 Ξ(α)

)
(Ia αa)

2k+1 = (− |α | 2) k Ia αa
in such a way that

τA(α) ≡ exp{Ia αa} =
∞∑
k=0

(−1)k

(2k)!
|α | 2k

+
∞∑
k=0

(−1)k

(2k + 1)!
|α | 2k Ia αa

+
∞∑
k=1

(−1)k

(2k + 2)!
|α | 2k Ξ(α)

= cos |α |+ sin |α |
|α |

Ia αa +
Ξ(α)

|α | 2
∞∑
k=1

(−1)k

(2k)!
|α | 2k

= cos |α |+ sin |α |
|α |

Ia αa +
cos |α | − 1

|α | 2
Ξ(α) (1.18)

It turns out that the manifold of the canonical coordinates can be divided into
two parts: an inside shell 0 ≤ |α | < π and an outer region π ≤ |α | < 2π .
To each point in the inside shell we can assign a point in the outer region by
means of the correspondence

α ′ = (−α)
2π − |α |
|α |

0 ≤ |α | < π , π ≤ |α ′ | < 2π (1.19)

The SU(2) elements corresponding to α and α ′ are then related by

τ F (α ′ ) = − τ F (α)

All points on the boundary of the parameter space, a 2-sphere of radius 2π ,
correspond to the very same element i.e. τ F ( |α | = 2π ) = −1 . Conversely,
it turns out that for any pair of canonical coordinates (α, α ′) connected by
the relation (1.19) we have

τA(α) = τA(α ′ )

As a consequence the adjoint representation (1.18) is an irreducible and
unitary representation of the rotation group that is not a faithful one on the
whole domain of the canonical coordinates of the rotation group

D = {α = (α1, α2, α3) |α2
1 + α2

2 + α2
3 < (2π)2}
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the adjoint SO(3) representation being an homomorphism, because the map

τA(α) : D → SO(3)

is not 1:1, contrary to the fundamental SU(2) representation which is faithful.
This implies in turn that, for 0 ≤ |α | < 2π , there are paths which are closed
in the SO(3) adjoint representation and which cannot be deformed in a point.
Conversely, any closed path in the SU(2) fundamental representation can
always be deformed into a point. This means that the spinor representation
of the rotation group is simply connected, though the vector representation
is not. Owing to this SU(2) is said to be the universal covering of SO(3) .

It is worthwhile to remark that, on the one hand, had we used the Euler
angles (1.5) to label the manifold of the proper rotation group SO(3) , then
the irreducible, orthogonal adjoint representation τA(ϕ, θ, ψ) turns out to be
manifestly faithful. On the other hand, the generic element of the irreducible
and unitary fundamental spinor representation τ F (ϕ, θ, ψ) can be expressed
in terms of the Euler angles as [17]

τ 1
2
(ϕ, θ, ψ) = exp{i(ψ + ϕ)/2} cos θ/2 i exp{i(ψ − ϕ)/2} sin θ/2
i exp{i(ϕ− ψ)/2} sin θ/2 exp{−i(ψ + ϕ)/2} cos θ/2


in such a manner that, for instance,

τ 1
2
(0, θ, ψ) = − τ 1

2
(2π, θ, ψ)

Hence, to any rotation g(ϕ, θ, ψ) there correspond two opposite matrices
± τ 1

2
(ϕ, θ, ψ) so that the adjoint vector representation τA(ϕ, θ, ψ) appears to

be a real, faithful, orthogonal, irreducible single-valued representation of the
rotation group, whereas the fundamental spinor representation τ F (ϕ, θ, ψ)
turns out to be a unitary irreducible double-valued representation of the
rotation group. Hence, the rotation group SO(3) in the three dimensional
space is not simply connected, its universal enveloping group being SU(2) .

As it is well known from the theory of the angular momentum in quantum
mechanics, it turns out that all the irreducible, unitary, finite dimensional
representations of the proper rotation group are labeled by their weight, i.e.
a positive semi-definite integer or half-integer number: namely,

{τ j | j = n/2 (n = 0, 1, 2, . . .)} dim τ j = 2j + 1

From the main decomposition Theorem 2. of Section 1.1.2, it appears quite
clear that the matrix elements of the unitary matrices τ j(α) can be written
in the form

‖ τ j(α) ‖m ′m≡ τ
(j )
m ′m(α) = 〈 jm ′ | exp{−(i/~) n̂ · Jα} | jm 〉
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where m = −j,−j + 1, . . . , j − 1, j while

J2 | jm〉 = ~2 j(j + 1) | jm〉 Jz | jm〉 = ~m | jm〉 (1.20)

[Jx , Jy] = i~ Jz [ Jy , Jz ] = i~ Jx [ Jz , Jx ] = i~ Jy (1.21)

In spite of its apparent simplicity, the actual detailed dependence of the
matrix elements τ

(j )
m ′m(α) upon the quantum numbers j,m and n̂, α (the

canonical coordinates) is rather complicated, because of the Baker-Campbell-
Haussdorf formula. A much easier explicit expression can be obtained in
terms of the Euler angles: namely,

τ
(j )
km (ϕ, θ, ψ) = Pkm,j(θ) exp{ikψ + imϕ} (1.22)

Pkm,j(θ) =
(−1)j−k im−k

2j(j − k)!

√
(j − k)!(j +m)!

(j + k)!(j −m)!

× (1− cos θ)−(m−k)/2(1 + cos θ)−(m+k)/2

× dj−m

dµ j−m
[
(1− µ)j−k(1 + µ)j+k

]
µ=cos θ

(1.23)

The functions τ
(j )
km (ϕ, θ, ψ) are called the generalized spherical harmonics of

the j−th order – see G.Ya. Lyubarskii, The Application of Group Theory in
Physics, Pergamon Press (Oxford) 1960, p. 204.

From the composition law of the angular momenta, it turns out that
the product τ j × τ k of two irreducible unitary representations of the three
dimensional rotation group of weights j and k contains just once each of the
irreducible unitary representations

τ i (i = |j − k|, |j − k|+ 1, . . . , j + k − 1, j + k)

Thus the following formula is valid

τ j × τ k =

j+k⊕
i=|j−k|

τ i
(
∀ j, k = 0, 1

2
, 1, 3

2
, 2, . . .

)
Other important examples of Lie groups are:

1. the full orthogonal groups O(N) of the real orthogonal square matrices
of rank N and their special or proper subgroups SO(N) with unit
determinant, the dimensions of which are n = 1

2
N(N − 1) ;

2. the groups U(N) of the complex unitary square matrices of rank N ,
the dimensions of which are n = N 2 ; in fact the generic U(N) matrix
depends upon 2N 2 real parameters, but the request of unitarity entails
N 2 real conditions so that the dimension of the Lie group U(N) is
n = N 2 .
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3. the groups SU(N) of the N ×N special unitary complex matrices, i.e.
with unit determinant, of dimensions n = N 2 − 1 .

Notice that U(N) is homeomorphic to the product SU(N)× U(1) .

4. The special linear groups SL(N,R) of the N ×N real matrices of unit
determinant, the dimensions of which are n = N 2 − 1 ;

5. the special linear groups SL(N,C) of the N ×N complex matrices of
unit determinant, the dimensions of which are n = 2N 2 − 2 ;

The six dimensional special linear group SL(2,C) will be of particular
relevance, as it turns out to be the universal covering spinorial group
of the Lorentz group, i.e. it will play the same role in respect to the
Lorentz group as the unitary group SU(2) did regard to the three
dimensional rotation group.
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1.3 The Non-Homogeneous Lorentz Group

1.3.1 The Lorentz Group

Consider a space-time point specified in two inertial coordinate systems S
and S ′, where S ′ moves with a constant relative velocity v with respect to S.
In S the space-time point is labeled by (x, y, z, t) and in S ′ by (x ′, y ′, z ′, t ′ ) .
The transformation that relates the two inertial coordinate frames is called
a Lorentz transformation: according to the postulates of the Special Theory
of Relativity, it has the characteristic property (c = 299 792 458 m s−1 is the
exact value of the velocity of light in vacuum)

c2t2 − x2 − y2 − z2 = c2t ′ 2 − x ′ 2 − y ′ 2 − z ′ 2

where we are assuming that the origins of both inertial frame coordinate
systems do coincide for t = t ′ = 0 – for the moment we do not consider
translations under which the relative distances remain invariant; if these
are included one finds non-homogeneous Lorentz transformations, also called
Poincaré transformations. We shall use the following standard notations and
conventions [15] – sum over repeated indexes is understood

xµ ≡ (x0 = ct, x, y, z) = (x0,x) = (x0, xk ) µ = 0, 1, 2, 3 k = 1, 2, 3

so that
xµ xµ ≡ x2 = gµν x

µx ν = gµν x
′µx ′ ν ≡ x ′ 2

with

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Owing to space-time homogeneity and isotropy the Lorentz transformations
are linear

x ′µ = Λµ
ν x

ν

which implies

gρσ = gµν Λµ
ρ Λν

σ (1.24)

or even in matrix notations

xµ xµ = x> · g x = x ′µ x ′µ x ′ = Λx g = Λ> gΛ
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where > denotes transposed matrix. Eq. (1.24) does indeed define the Lorentz
group L as a group of rank four square matrices acting upon the Minkowski
space column four-vectors3. As a matter of fact we have

1. composition law : Λ , Λ′ ∈ L ⇒ Λ · Λ′ = Λ′′ ∈ L
matrix associative product : (Λ′′ )µρ = Λµ

ν (Λ′) νρ

2. identity matrix : ∃ ! I

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


3. inverse matrix : from the defining relation (1.24) we have

det g = det (Λ> gΛ) ⇒ det Λ = ±1

and thereby ∃ ! Λ−1 = g · Λ> · g ∀Λ ∈ L

which means that L is a group of matrices that will be called the homogeneous
full Lorentz group. From the relation

1 = g 00 = gµν Λµ
0 Λ ν

0 =
[

Λ0
0

] 2 − Λ k
0 Λ k

0 ⇒
∣∣Λ0

0

∣∣ ≥ 1

it follows that the homogeneous full Lorentz group splits into four subsets
called connected components

• proper orthochronus L↑+ = {Λ ∈ L | det Λ = 1 ∩ Λ0
0 ≥ 1}

• improper orthochronus L↑− = {Λ ∈ L | det Λ = −1 ∩ Λ0
0 ≥ 1}

• proper nonorthochronus L↓+ = {Λ ∈ L | det Λ = 1 ∩ Λ0
0 ≤ −1}

• improper nonorthochronus L↓− = {Λ ∈ L | det Λ = −1 ∩ Λ0
0 ≤ −1}

Among the four connected components of the homogeneous full Lorentz
group there is only L↑+ which is a subgroup, i.e. the component connected
with the identity element, which is also called the restricted subgroup of the
homogeneous full Lorentz group. Other common notations are as follows.
The homogeneous full Lorentz group is also denoted by O(1, 3) , the proper
orthochronus component L↑+ by SO(1, 3)+ or O(1, 3)++ and is also called the

3This means in turn that contravariant indexes are row indexes while covariant ones
are column indexes.
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restricted homogeneous Lorentz group. Furthermore, the three remaining
connected components are also respectively denoted by

O(1, 3)−+ = L↓+ O(1, 3)+− = L↑− O(1, 3)−− = L↓−

Examples :

1. special Lorentz transformation, or even boost, in the OX direction with
velocity v > 0 towards the positive OX axis

Λ(η) =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1


cosh η = (1− β 2)−1/2 sinh η = β (1− β 2)−1/2 β =

v

c

2. spatial rotation around the OZ axis

Λ(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


boosts and rotations belong to the special homogeneous Lorentz group.

3. parity transformation with respect to the OY axis

Λy
P =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


full spatial reflection or full parity transformation

ΛP =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.25)

spatial reflections or parity transforms belong to L↑− = O(1, 3)+−

4. time inversion or time reflection T transformation

ΛT =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ L↓− = O(1, 3)−−
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5. full inversion or PT transformation

ΛPT =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∈ L↓+ = O(1, 3)−+

Any Lorentz transformation can always been decomposed as the product of
transformations of the four types belonging to the above described connected
components. Since there are three independent rotations as well as three
independent boosts, of for each spatial direction, the special homogeneous
Lorentz transformations are described in terms of six parameters.

The homogeneous Lorentz group is a six dimensional Lie group, so that each
element can be labeled by six real parameters. For example, one can choose
the three Euler angles and the three ratios between the components of the
relative velocity and the light velocity: namely,

Λ ∈ O(1, 3) → Λ = Λ(ϕ, θ, ψ, β1, β 2, β 3) ( βk ≡ vk/c )

0 ≤ ϕ ≤ 2π , 0 ≤ θ < π , 0 ≤ ψ ≤ 2π , −1 < βk < 1 ( k = 1, 2, 3 )

The most suitable parametric form is in terms of the canonical coordinates

(α ,η ) = (α1, α2, α3 ; η1, η 2, η3) (1.26)

where the angles αk (k = 1, 2, 3) with α2 < (2π)2 are related to the spatial
rotations around the orthogonal axes of the chosen inertial frame, whilst the

hyperbolic arguments ηk ≡ Arsh
(
βk (1−β 2

k )−1/2
)

(k = 1, 2, 3) with η ∈ R3

are related to boosts along the spatial directions. More specifically

Λ(α1) =


1 0 0 0
0 1 0 0
0 0 cosα1 sinα1

0 0 − sinα1 cosα1


represents a rotation of the inertial reference frame in the counterclockwise
sense of an angle α1 around the OX axis whereas e.g.

Λ(η3) =


cosh η3 0 0 − sinh η3

0 1 0 0
0 0 1 0

− sinh η3 0 0 cosh η3


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corresponds to a boost with a rapidity parameter

η3 = Arsh
(
β3 (1− β 2

3 )−1/2
)

(1.27)

associated to the OZ direction. Notice that the inverse transformations can
be immediately obtained after sending αk 7→ −αk and η k 7→ − η k . Since
the domain of the canonical coordinates is the unbounded subset of R6

D ≡ {(α ,η ) |α2 < (2π)2 , η ∈ R3}

it follows that the Lorentz group is non-compact. It is convenient to write
the elements of the special homogeneous Lorentz group in the exponential
form and to introduce the infinitesimal generators according to the standard
convention [17]

Λ(α1) = exp{α1I1} Λ(η3) = exp{η 3J3}

where

I1 ≡
dΛ

dα1

(α1 = 0) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


J 3 ≡

dΛ

dη3
(η 3 = 0) =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


et cetera . It is very important to gather that the infinitesimal generators
of the space rotations are anti-Hermitean I†k = −Ik (k = 1, 2, 3) whereas the
infinitesimal generators of the special Lorentz transformations turn out to be
Hermitean Jk = J †k (k = 1, 2, 3) . One can also check by direct inspection that
the infinitesimal generators do fulfill the following commutation relations

[ Ij Ik ] = − εjkl Il [ Ij Jk ] = − εjkl Jl [ Jj Jk ] = εjkl Il (1.28)

( j, k, l = 1, 2, 3)

The above commutation relations uniquely specify the Lie algebra of the
homogeneous Lorentz group.

Together with the infinitesimal generators Ik, Jk (k = 1, 2, 3) it is very
convenient to use the matrices

Ak ≡ 1
2

(Ik + i Jk) Bk ≡ 1
2

(Ik − i Jk) k = 1, 2, 3
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It is worthwhile to remark that all the above matrices are anti-Hermitean

A†j = −Aj B†k = −Bk ( j, k = 1, 2, 3)

The commutation relations for these matrices have an especially simple form:

[Aj Ak ] = − εjklAl [Bj Bk ] = − εjklBl [Aj Bk ] = 0

( j, k, l = 1, 2, 3)

which follow from the commutation relations of the infinitesimal generators.
We stress that the commutation relations for the operators Ak (k = 1, 2, 3)
are the same as those for the generators of the three dimensional rotation
group SO(3) and of its universal covering group SU(2) . This is also true for
the operators Bk (k = 1, 2, 3) .

The infinite dimensional reducible and unitary representations of the total
angular momentum Lie algebra are very well known. Actually, one can render
simultaneously diagonal the positive semi-definite operators

A†j Aj = Aj A
†
j = −Aj Aj = −A2

B †k Bk = Bk B
†
k = −Bk Bk = −B2

the spectral resolutions of which read

−A2 =
∑
m

m (m+ 1) P̂m − B2 =
∑
n

n (n+ 1) P̂n

tr P̂m = 2m+ 1 tr P̂n = 2n+ 1

m,n = 0 , 1
2
, 1 , 3

2
, 2 , 5

2
, 3 , . . . . . .

Those operators are called the Casimir operators of the Lorentz group, the
latter ones being defined by the important property of commuting with all
the infinitesimal generators of the group: namely

[ A2I  ] = [ A2J  ] = [ B2I  ] = [ B2J  ] = 0 (  = 1, 2, 3 )

It follows therefrom that

• all the irreducible finite dimensional representations of the Lorentz
group are labeled by a pair (m,n) of positive semi-definite integer or
half-integer numbers
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• the irreducible finite dimensional representations τmn contain(
tr P̂m

)
·
(

tr P̂n

)
= (2m+ 1) (2n+ 1)

linearly independent states characterized by the eigenvalues of e.g. A3

and B3 respectively

• we can identify Sk = Ik = Ak + Bk (k = 1, 2, 3) with the components
of the spin angular momentum operator, so that we can say that τmn

is an irreducible representation of the Lorentz group of spin angular
momentum s = m+ n

• the lowest dimensional irreducible representations of the Lorentz group
are: the 1-dimensional scalar representation τ 0 0 and the pair of 2-
dimensional Weyl representations of the left spinors τ 1

2
0 and right

spinors τ 0 1
2

(the handedness being conventional)

Hermann Klaus Hugo Weyl
one of the most influential personalities for Mathematics

in the first half of the XXth century

Elmshorn, Germany, 9.11.1885 – Zurich, CH, 8.12.1955
Gruppentheorie und Quantenmechanik (1928)

• under a parity transform ΛP = Λ−1P we find

Ik 7→ Λ−1P Ik ΛP = Ik Jk 7→ Λ−1P Jk ΛP = − Jk (1.29)

Ak 7→ Λ−1P Ak ΛP = Bk Bk 7→ Λ−1P Bk ΛP = Ak

meaning that the two non-equivalent irreducible Weyl’s representations
interchange under parity. Hence, to set up a spinor representation of
the full Lorentz group out of the two Weyl’s representations, one has
to consider the direct sum

τD = τ 1
2
0 ⊕ τ 0 1

2

which is a reducible four dimensional representation of the restricted
Lorentz group and is called the Dirac representation

• all the other irreducible representations of higher dimensions can be
obtained from the well known Clebsch-Gordan-Racah multiplication
and decomposition rule

τmn × τ p q =
⊕
r , s

τ r s
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|m− p | ≤ r ≤ m+ p |n− q | ≤ s ≤ n+ q

In particular, the spin 1 representation does coincide with the above
introduced four vector representation, which we actually used to define
the homogeneous Lorentz group

τ 1
2
0 × τ 0 1

2
= τ 1

2
1
2

The anti-symmetric Maxwell field strength Fµν transforms according
to the reducible parity symmetrical representation τ 1 0 ⊕ τ 0 1 .

• All the irreducible finite dimensional representations of the Lorentz
group are non-unitary. As a matter of fact we have e.g.

τmn(β3) = exp{ β3J3 } = exp{− iβ3(A3 −B3) }

and thereby

τ †mn(β3) = τmn(β3) 6= τ −1mn(β3) = τmn(−β3)

All the unitary irreducible representations of the Lorentz group are infinite
dimensional and have been classified by

I.M. Gel’fand and M.A. Naimark
Unitary representations of the Lorentz group
Izv. Akad. Nauk. SSSR, matem. 11, 411, 1947.

Exercise. A second rank tensor tµν with µ, ν = 0, 1, 2, 3 transforms according to the
reducible representation T = τ 1

2
1
2
× τ 1

2
1
2

of the Lorentz group O(1, 3) .

1. Decompose the representation T into the sum of irreducible representations of
O(1, 3)

2. Specify the dimensions of T and of each irreducible representations appearing in
the above decomposition

3. Among the sixteen matrix elements tµν find the components belonging to each
irreducible representations appearing in the decomposition.

Solution. From the general decomposition rule

τmn × τ p q =
⊕
r , s

τ r s

|m− p | ≤ r ≤ m+ p |n− q | ≤ s ≤ n+ q

we obtain for m = n = 1
2

T = τ 0 0

⊕
τ 1 0

⊕
τ 0 1

⊕
τ 1 1
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so that the dimensions correctly match because

16 = 1 + 3 + 3 + 9

The one dimensional irreducible representation τ 0 0 corresponds to the trace of the second
rank tensor tµν i.e.

t = g µν tµν

which is a Lorentz scalar. The six components of the anti-symmetric part of the second
rank tensor tµν that is

Aµν = 1
2 (tµν − tνµ)

transform according to the parity invariant representation τ 1 0

⊕
τ 0 1 , while the nine

components of the traceless and symmetric part of the second rank tensor tµν viz.,

Sµν = 1
2 (tµν + tνµ)− 1

4 g
µν t

transform according to the irreducible representation τ 1 1 . Therefore we can always write
the most general decomposition

tµν = Aµν + Sµν + 1
4 gµν t ( t = g µν tµν )

Exercise. Find the explicit form of the structure constants of the Lorentz group.

Solution. The commutation relations (1.28) can be written in explicit form as

[ I1 I2 ] = − I3 [ I1 I3 ] = I2 [ I1 J1 ] = 0 [ I1 J2 ] = − J3 [ I1 J3 ] = J2

[ I2 I3 ] = − I1 [ I2 J1 ] = J3 [ I2 J2 ] = 0 [ I2 J3 ] = − J1

[ I3 J1 ] = − J2 [ I3 J2 ] = J1 [ I3 J3 ] = 0

[ J1 J2 ] = I3 [ J1 J3 ] = − I2
[ J2 J3 ] = I1

Now it is convenient to slightly change the notation and denote the boost generators by

J1 = I4 J2 = I5 J3 = I6

in such a manner that all the non-vanishing structure constants of the Lorentz group

Cabc = −Cbac ( a, b, c, . . . = 1, 2, . . . , 6 )

can be read off the above commutation relations: namely,

C123 = −1 C132 = 1 C156 = −1 C165 = 1

C231 = −1 C246 = 1 C264 = −1

C345 = −1 C354 = 1

C453 = 1 C462 = −1

C561 = 1

whence it manifestly appears that the structure constants are completely anti-symmetric,

as it will be proved later on.
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1.3.2 Semi-Simple Groups

Lie groups and their corresponding Lie algebras can be divided into three
main categories depending upon the presence or absence of some invariant
subgroups and invariant sub-algebras.

By its very definition, an invariant subgroup H ⊆ G satisfies the following
requirement: for any elements g ∈ G and h ∈ H there always exists an
element h′ ∈ H such that

gh = h′g

Of course, any Lie group G has two trivial invariant subgroups, G itself and
the unit element.

Concerning the infinitesimal operators Ja ∈ G (a = 1, 2, . . . n) and Tb ∈
H (b = 1, 2, . . .m ≤ n) of the corresponding Lie algebra and sub-algebra, we
shall necessarily find

[ Ja Tb ] = Cabc Tc (a = 1, 2, . . . n , b, c = 1, 2, . . .m ≤ n) (1.30)

• Groups that do not possess any nontrivial invariant subgroup are called
simple.

• A weaker requirement is that the group G had no nontrivial invariant
Abelian subgroups : in such a circumstance G is said to be semi-simple.

In this case it can be proved that any semi-simple Lie group G is locally
isomorphic to the so called direct product or cartesian product of some
mutually commuting simple non-Abelian groups G1, G2, . . . , Gs . This
means that ∀ gα ∈ Gα , gβ ∈ Gβ we have

G =̇G1 ×G2 × · · · ×Gs

gα gβ = gβ gα α 6= β (α, β = 1, 2, . . . , s)

dim(G) =
s∑

α=1

dim(Gα)

where the symbol =̇ means that the analytic isomorphism is true in
some suitable neighborhoods of the unit elements of the involved Lie
groups.

For the corresponding Lie algebras we have that ∀ Iα ∈ Gα , Iβ ∈ Gβ

G =
s⊕

α=1

Gα [ Iα Iβ ] = 0 α 6= β (α, β = 1, 2, . . . , s)

An example of a semi-simple group is SO(4) =̇ SO(3)× SO(3) .
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• Groups that do contain some invariant Abelian nontrivial subgroups
are said to be non-semi-simple.

Such groups do not always factorize into the direct product of an
Abelian invariant subgroup and a semi-simple group.

The planar Euclidean group. As an example, let us consider the two dimensional
Euclidean group or non-homogeneous orthogonal group IO(2) , which is the group
of the rotations and translations in the plane with no reflections with respect to
an axis of the plane. We shall denote a translation by the symbol T (a) , where
a = (ax, ay) is a general displacement of all points in the OXY plane. Evidently

T (a)T (b) = T (a + b)

It is elementary to proof that every element g of the group IO(2) can be represented
in the form of a product of a rotation around an arbitrary point O of the plane and
a certain translation:

g = T (a)RO g ∈ IO(2)

It is also straightforward to prove the following identities

g T (a) g−1 = T (g a) g 6= T (b) (1.31)

T (a)RO T (−a) = RO+a (1.32)

where g ∈ IO(2) , g a is the point in the plane obtained from a by the displacement
g ∈ IO(2) , RO any rotation around the point O and O + a the point to which O
moves owing to the translation of a . Now, if we choose

g(α) = exp{α Iz} 0 ≤ α ≤ 2π T (a) = exp {a ·P}

where

Iz =

 0 1
−1 0

 g(α) =

 cosα sinα
− sinα cosα


from eq. (1.31) and for very small α, ax, ay we readily obtain the Lie algebra among
the generators of IO(2) , i.e.

[Px Py ] = 0 [ Iz Px ] = Py [ Iz Py ] = −Px

which precisely corresponds to the condition (1.30). Translations constitute an

invariant Abelian subgroup of IO(2) which is consequently non-semi-simple.

A very important quantity is the Cartan–Killing metric of a Lie group G ,
which is defined to be

gab ≡ CacdCbdc (a, b, c, d = 1, 2, . . . , n) (1.33)

where Cabc are the structure constants of the Lie algebra G . According to
the correspondence (1.10) we can also write

tr (AaAb) = gab (a, b = 1, 2, . . . , n)
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where n × n square matrices Aa (a = 1, 2, . . . , n) denote the generators in
the adjoint representation. For instance, in the case of SU(2) we find

gab = (− εacd)(− εbdc) = − εacd εbcd = − 2 δab

It is important to remark that the Cartan-Killing metric of a Lie group G is
a group invariant. As a matter of fact, for any inner automorphism of the
adjoint representation, see the definition (1.9), we find

tr
(
Aa(g)Ab(g)

)
= tr

(
TA(g)Aa T

−1
A (g)TA(g)Ab T

−1
A (g)

)
= tr

(
TA(g)AaAb T

−1
A (g)

)
= tr

(
AaAb T

−1
A (g)TA(g)

)
= tr (AaAb) = gab

∀ g ∈ G (a, b = 1, 2, . . . , n) (1.34)

where TA(g) (g ∈ G) are the linear operators of the adjoint representation
and I have made use of the cycle property of the trace operation, that is

tr (A1A2 · · ·An) = tr (A2 · · ·AnA1) = tr (AnA1A2 · · ·An−1) = · · ·

In particular, for an infinitesimal group transformation

TA(g) = IA + αcAc |αc | � 1

where IA is the identity operator in the adjoint representation, the above
equality entail

0 = δ gab = αc tr
(

[AcAa ]Ab

)
+ tr

(
Aa[AcAb ]

)
αc

= αcCcad tr (AdAb) + Ccbd tr (AaAd)αc

= (Ccad g bd + Ccbd g ad)αc = (Ccab + Ccba)αc (1.35)

whence

Ccab = −Ccba (1.36)

which means anti-symmetry of the structure constants also respect the last
two indexes. As a consequence the structure constants of any Lie group turn
out to be completely anti-symmetric with respect to the exchange of all three
indexes: namely, Cabc = −Cbac = Cbca = −Ccba .
The Cartan-Killing metric is non-singular, i.e. det || g || 6= 0 , if and only if
the group is semi-simple. Here ‖ g ‖ indicates the n × n matrix of elements
gab . For example we have

g = (−2)

 1 0 0
0 1 0
0 0 1

 for SU(2) (1.37)
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g = (−2)

 0 0 0
0 0 0
0 0 1

 for IO(2)

The Cartan-Killing metric is a real symmetric matrix: therefore, it can
be set diagonal by means of an orthogonal transformation that reshuffles the
infinitesimal operators.

1. If there are null eigenvalues in the diagonal form of the metric, then
the Lie group is non-semi-simple.

2. If the Cartan-Killing metric is negative definite, then the Lie group is
compact.

3. If the Cartan-Killing metric has both positive and negative eigenvalues,
as in the case of the homogeneous Lorentz group or the group SL(2,R),
then the Lie group is non-compact.

Since the Cartan-Killing metric is a non-singular n×n matrix for semi-simple
Lie groups it is possible to define its inverse matrix g ab , which can be used to
raise and lower the group indexes a, b, c, . . . = 1, 2, . . . , n . For example, the
Lie product of two generators in the representation R, or commutator in the
Quantum Physics terminology, will be written in different though equivalent
forms like

[ I Ra I Rb ] = Cabc I
R
c = Cabc g

cd I Rd = C c
ab I

R
c

because contractions over lower group indexes have to be performed by means
of the inverse Cartan-Killing metric tensors.

For any semi-simple Lie group G it is always possible to select a special
element for any representation of its semi-simple Lie algebra G, that is

CR ≡ g ab I
a
R I

b
R = g ab I Ra I Rb I aR ≡ g abI Rb (a, b = 1, 2, . . . , n) (1.38)

the subscript R labeling some particular representation of the infinitesimal
operators. The quadratic operator CR is called the Casimir operator of the
representation R and turn out to be group invariant: namely,

TR(g)CR T
−1
R (g) = CR ∀ g ∈ G

or else
[TR(g)CR ] = 0 ∀ g ∈ G

Proof : first we notice that

[ IRc CR ] = g ab [ IRc (I Ra I Rb ) ]

= g ab [ IRc I
R
a ] I Rb + g ab I Ra [ IRc I

R
b ]

= g ab Ccad g
de I Re I Rb + g ab I Ra Ccbd g

de I Re

= g ab Ccad g
de I Re I Rb + g ab Ccbd g

de I Ra I Re
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Reshuffling indexes in the second addendum of the last line we obtain

[ IRc CR ] = Ccad

(
g ab g ed + g ea g db

)
I Re I Rb (1.39)

and owing to complete anti-symmetry of the structure constants with respect to all indexes
we eventually find

[ IRc CR ] = 0

By iterating the above procedure it is immediate to verify that

[ (αa I
R
a )k CR ] = 0 ∀ k ∈ N αa ∈ R ( a = 1, 2, . . . , n )

Hence, from the exponential representation

TR (g)CR = exp
{
αa I

R
a

}
CR =

∞∑
k=0

1

k!

(
αa I

R
a

)k
CR

= CR

∞∑
k=0

1

k!

(
αa I

R
a

)k
= CR exp

{
αa I

R
a

}
= CR TR (g) ∀ g ∈ G

which completes the proof . �

The general structure of the Casimir’s operators is strongly restricted by

• Schur’s lemma : if a linear operator commutes with every element of
any irreducible representation τ (g) of a group, then it is proportional
to the identity operator.

For a Lie group this lemma may also be rephrased as follows.

• If a linear operator commutes with all the generators in an irreducible
representation of a Lie algebra G , then it must be proportional to the
identity operator.

See [17] for the proof. According to Schur’s lemma we come to the conclusion
that in the irreducible representation labeled by R we have

CR = g ab I
a
R I

b
R = dR IR

where dR is a number, depending upon the irreducible representation, which
is called the Dynkin’s index.

• For the adjoint representation we have

trCA = gab tr (AaAb) = dA tr IA = n dA = g ab g ab = n

so that

gab = CadcCbcd = κ δ ab g ab = κ−1 δ ab dA = 1 (1.40)

where κ is a suitable normalization constant.

47



• In the case of the special unitary group SU(2) , i.e. in the case of
the fundamental representation of the rotation group, from the very
definition (1.14) and the Cartan-Killing metric (1.37), the Casimir’s
operator (1.38) reads – remember that gab = (−2) δ ab

trCF = 2 dF = − 1
2
δ ab tr (τa τb) = − 1

2
δ ab

(
− 1

4

)
2 δ ab = 3

so that dF = 3
8

and dA = 1 for the rotation group.

• For any irreducible representation of the rotation group it is possible
to show that

CR = 1
2
J (J + 1) IR

where J is the weight of the irreducible representation, which is related
to the eigenvalue of the total angular momentum by J2 = ~2J(J + 1) .
Hence

dJ = 1
2
J (J + 1)

(
J = 0, 1

2
, 1, 3

2
, 2, 5

2
, 3, . . .

)
are the Dynkin’s indexes for the irreducible unitary representations of
the rotation group.

• For a non-semi-simple Lie group G, just like the Poincaré group for
example, owing to the singular nature of the Cartan-Killing metric
tensor, the Casimir operators in any irreducible representation R are
just defined by the very requirement of being invariant under the whole
group of linear transformations TR (g) (g ∈ G) : namely,

CR = TR (g)CR TR
−1(g) ∀ g ∈ G
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1.3.3 The Poincaré Group

The quite general symmetry group of all the relativistic classical and quantum
field theories obeying the principles of the Special Relativity is the restricted non-
homogeneous Lorentz group, also named the Poincaré group. We can write the
passive transformations of the space-time events under the Poincaré group
in the form

x ′µ = Λµ
ν (x ν + a ν) x ν = Λ ν

µ x
′µ − a ν

where aµ is an arbitrary constant four vector. Hence the Poincaré group
is a non-semi-simple ten parameters Lie group, the canonical coordinates of
which, in accordance with (1.26), can be identified with

(α ,η , a ) =
(
α1, α2, α3 ; η1, η 2, η3 ; a0, a1, a2, a3

)
The space-time translations T (a) do constitute an Abelian four parameters
subgroup and fulfill

T (a)T (b) = T (a+ b) = T (b)T (a)

However, space-time translations do not commute with the Lorentz group
elements. Consider in fact two Poincaré transformations with parameters
(Λ, a) and (Λ ′, a ′ ) so that

xµ 7→ Λµ
ν (x ν + a ν) 7→ Λ′µρ

[
Λ′ρν

(
x ν + a ν

)
+ a ′ρ

]
aµ 7→ Λ′µρ

(
Λρ

ν a
ν + a ′ρ

)
whence we see that the translation parameters get changed under a Lorentz
transformation. Owing to this feature, called the soldering between the
Lorentz transformations and the space-time translations, the Poincaré group
is said to be a semi-direct product of the Lorentz group and the space-time
translation Abelian group.

The generators of the space-time translations are the components of the
tetra-gradient operator. As a matter of fact, for any analytic real function
f : M → R we have

T (a) f(x) = exp {aµ∂µ} f(x) = f(x+ a)

[ ∂µ , ∂ν ] ≡ ∂µ ∂ν − ∂ν ∂µ = 0

Thus, the infinitesimal operators of the space-time translations turn out to
be differential operators acting of the infinite dimensional space C∞(M) of
the analytic functions on the Minkowski space.
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It is necessary to obtain an infinite dimensional representation of the
generators of the Lorentz group acting on the very same functional space.
Introduce the six anti-Hermitean differential operators

`µν ≡ gµρ x
ρ ∂ν − g νρ x ρ ∂µ ≡ xµ ∂ν − x ν ∂µ (1.41)

`µν = − `νµ = − ` †µν
One can immediately gather that the three differential operators from the
spatial components, viz.,

i~`k = x (− i~ ∂k)− xk (− i~ ∂) = x p k − xk p 

are nothing but the components of the orbital angular momentum self-adjoint
operators of non-relativistic Quantum Mechanics L = r× p : namely,

i~ `23 = Lx i~ `31 = Ly i~ `12 = Lz

which fulfill the well known SU(2) Lie algebra

[Lx , Ly ] = i~Lz [Ly , Lz ] = i~Lx [Lz , Lx ] = i~Ly

so that for example

[Lx , Ly ] = i~Lz ⇔ [ `23 , `31 ] = `12 et cetera (1.42)

By direct inspection it is straightforward to verify the commutation relations

[ `µν , `ρσ ] = − gµρ `νσ + gµσ `νρ − g νσ `µρ + g νρ `µσ (1.43)

Notice that the latter are fixed by the requirement of anti-symmetry with
respect to the two pairs of indexes µν and ρσ , together with the overall
sign which is provided by the commutator (1.42). Thus, if we make the
correspondences

Ij ↔ − 1
2
ε jkl `kl Jk ↔ `0k ( j, k, l = 1, 2, 3, ε123 = 1)

it can be checked that the above commutation relations among the differential
operators `µν do realize a representation of the Lie algebra (1.28) of the
Lorentz group, which is infinite dimensional as the generators are differential
operators acting upon the infinite dimensional functional space C∞(M) of
the analytic functions on the Minkowski space. Furthermore, it is important
to remark that in the above infinite dimensional representation of the Lorentz
group all six generators are anti-Hermitean, at variance with the infinitesimal
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operators of all the finite dimensional irreducible representations, in which
only the three generators of the rotation subgroup are anti-Hermitean.

Moreover we find

[ `µν , ∂ρ ] = − gµρ ∂ν + g νρ ∂µ

hence we eventually come to the infinite dimensional representation of the
Lie algebra of the Poincaré group

[ ∂µ , ∂ν ] = 0 [ `µν , ∂ρ ] = − gµρ ∂ν + g νρ ∂µ

[ `µν , `ρσ ] = − gµρ `νσ + gµσ `νρ − g νσ `µρ + g νρ `µσ (1.44)

However, in view of the applications to Quantum Mechanics and Quantum
Field Theory, it is convenient and customary to introduce a set of Hermitean
generators of the Poincaré group: namely,

Pµ ≡ i~ ∂µ = (i~ ∂0 , i~∇) (1.45)

Lµν ≡ i~ `µν = xµ Pν − x ν Pµ (1.46)

and the corresponding Lie algebra

[Pµ , Pν ] = 0 [Lµν , Pρ ] = − i~ gµρ Pν + i~ g νρ Pµ

[Lµν , Lρσ ] = − i~ gµρ Lνσ + i~ gµσ Lνρ − i~ g νσ Lµρ + i~ g νρ Lµσ (1.47)

One can easily recognize that the six Hermitean differential operators Lµν
do actually constitute the relativistic generalization of the orbital angular
momentum operator of non-relativistic Quantum Mechanics. We find indeed,
as already noticed,

L = (L23, L31, L12) = r × ~
i
∇ (1.48)

On the other hand, it turns out that the most general infinite dimensional
representation of the Poincaré Lie algebra is given by

[Pµ , Pν ] = 0 [Mµν , Pρ ] = − i~ gµρ Pν + i~ g νρ Pµ
[Mµν , Mρσ ] = − i~ gµρMνσ + i~ gµσMνρ − i~ g νσMµρ + i~ g νρMµσ

where

Mµν ≡ Lµν + Sµν (1.49)
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in which the relativistic spin angular momentum operator Sµν must satisfy

[Pµ , S νρ ] = 0 = [Sµν , L ρσ ] (1.50)

[Sµν , Sρσ ] = − i~ gµρ Sνσ + i~ gµσ Sνρ − i~ g νσ Sµρ + i~ g νρ Sµσ (1.51)

Also the above construction is nothing but the relativistic generalization of
the most general representation for the Lie algebra of the three dimensional
Euclidean group IO(3) in the non-relativistic Quantum Mechanics

p =
~
i
∇ J = L + S = r× p + S

where p,L,S are the self-adjoint operators of the momentum, orbital angular
momentum and spin angular momentum respectively of a point-like particle
with spin. Notice that from the correspondences (1.46) and (1.48) we get in
turn

S = (S23, S31, S12) (1.52)

Since the translation infinitesimal operators Pµ do evidently constitute
an Abelian invariant sub-algebra, the restricted Poincaré group turns out to
be a non-semi-simple and non-compact Lie group, the diagonal form of the
Cartan–Killing symmetric square matrix of rank ten leading to three positive
(boosts), three negative (rotations) and four null (translations) eigenvalues.

In order to single out the Casimir operators of the Poincaré group, it is
useful to introduce the Pauli-Lubanski operator

W µ ≡ − 1
2
εµνρσ PνM ρσ = − 1

2
εµνρσ Pν S ρσ (1.53)

W µ =

{
P · S for µ = 0

P0 S−P×Υ for µ = 1, 2, 3
(1.54)

S = (S23, S31, S12) Υ = (S01, S02, S03) (1.55)

and its dual counterpart, i.e. the Shirkov operator

V µ ≡ S µν Pν =

{
P ·Υ for µ = 0

P0 Υ−P× S for µ = 1, 2, 3
(1.56)

which satisfy the relationships

Wµ P
µ = 0 = Vµ P

µ
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From the identity

− εµναβε λρσ
µ = g νλg αρg βσ + g νρg ασg βλ + g νσg αλg βρ

− g νρg αλg βσ − g νλg ασg βρ − g νσg αρg βλ (1.57)

with ε 0123 = 1 a straightforward calculation yields

W 2 = 1
4
εµναβε λρσ

µ Pν Pλ Sαβ S ρ σ

= 1
2
P 2 S 2 − V 2 (1.58)

where we have set
1
2
S 2 = 1

2
Sρσ S

ρσ = S2 −Υ2

A tedious computation allows to check that the following commutators hold
true, viz.,

[Wµ , Pν ] = 0 [Mµν , Wρ ] = − i~ gµρWν + i~ g νρWµ

Thus, one can readily recognize the two Casimir operators of the Poincaré
group to be the scalar and pseudo-scalar differential operators

Cm = P 2 = P µPµ Cs = W 2 = W µWµ (1.59)

which are respectively said the mass and the spin operators. Now, according
to Wigner’s theorem [27], any symmetry transformation in Quantum Mechanics
must be realized only by means of unitary or anti-unitary operators

Eugene Paul Wigner (Budapest 17.11.1902 – Princeton 1.1.1995)
Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atom-
spektrum, Fredrick Vieweg und Sohn, Braunschweig, Deutschland, 1931, pp.
251–254, Group Theory and its Application to the Quantum Theory of Atomic
Spectra, Academic Press Inc., New York, 1959, pp. 233–236.

The representation theory for the Poincaré group has been worked out
by Bargmann and Wigner (1948) [3]. The result is that all the unitary
irreducible infinite dimensional representations of the Poincaré
group have been classified and fall into four classes.

1. The eigenvalues of the Casimir operator

Cm = m2c2

are real and positive, while the eigenvalues of the Casimir operator

Cs = − (m~c)2 s(s+ 1)
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where s is the spin, do assume discrete values s = 0, 1
2
, 1, 3

2
, 2, . . .

Such a kind of unitary irreducible representations τm, s are labeled by
the rest mass m > 0 and the spin s . The states belonging to this kind
of unitary irreducible representations are distinguished, for instance,
by e.g. the component of the spin along the OZ axis

sz = −s,−s+ 1, . . . , s− 1, s ; s = 0, 1
2
, 1, 3

2
, 2, . . .

and by the continuous eigenvalues of the spatial momentum p , so that
p20 = p2 +m2 : namely,

|m, s ; p, sz 〉 m > 0 s = 0, 1
2
, 1, 3

2
, 2, . . .

p ∈ R3 sz = −s,−s+ 1, . . . , s− 1, s

Physically, these states will describe some elementary particle of rest
mass m, spin s , momentum p and spin projection sz along the OZ
axis. Massive particles of spin s are described by wave fields which
correspond to 2s+ 1 wave functions on the Minkowski space.

2. The eigenvalues of both the Casimir operators vanish, i.e. P 2 = 0 and
W 2 = 0 , and since P µWµ = 0 it follows that Wµ and Pµ are light-like
and proportional

Wµ = ± ~s Pµ
the constant of proportionality being called the helicity, which is equal
to ±~s, where s = 0, 1

2
, 1, 3

2
, 2, . . . is again the spin of the mass-less

representation.

The states belonging to this kind of unitary irreducible representations
τ 0 , s are distinguished by e.g. two possible values of the the helicity
± ~s and by the continuous eigenvalues of the momentum p , so that
p20 = p2

|p,± s 〉 p ∈ R3 s = 0, 1
2
, 1, 3

2
, 2, . . .

Thus, this kind of unitary irreducible representations of the Poincaré
group will correspond to the mass-less particles that, for s 6= 0 , are
described by two independent real (or one complex) wave functions on
the Minkowski space. Examples of particles falling in this category are
photons with spin 1 and two helicity or polarization states, the spin 1

2

mass-less left-handed neutrinos ( h = − 1
2

) and mass-less right-handed
anti-neutrinos ( h = + 1

2
) and maybe the graviton with spin 2 and two

polarization states.
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3. The eigenvalue of the Casimir mass operator is zero, P 2 = 0 , while
that one of the Casimir spin operator is continuous, i.e. W 2 = −w2

where w > 0 . Thus, this kind of unitary irreducible representations
τ 0 , w of the Poincaré group would correspond to elementary particles of
zero rest mass, with an infinite and continuous number of polarization.
These objects have never been detected in Nature.

4. There are also tachyon-like unitary irreducible representations which
P µ Pµ < 0 which are not physical as they drive to a-causality.

There are further irreducible representations of the Poincaré group but they
are neither unitary nor anti-unitary. As already remarked, Wigner’s theorem
[27] generally states that all symmetry transformations – just like Poincaré
transformations – in Quantum Mechanics can be consistently realized solely
by means of some unitary or anti-unitary operators.

• All the unitary representations of the Poincaré group turn out to be infinite
dimensional, corresponding to particle states with unbounded momenta
p ∈ R3 .

• Elementary particles correspond to the irreducible representations, the
reducible representations being naturally associated to the composite
objects. For example, the six massive quarks with spin s = 1

2
and

with fractional electric charge q = 2
3

or q = − 1
3

are considered as
truly elementary particles, although not directly detectable because of
the dynamical confinement mechanism provided by Quantum-Chromo-
Dynamics (QCD), while hadrons, like the nucleons and π mesons, are
understood as composite objects.

• As already seen, all finite dimensional irreducible representations of the
Lorentz group are non-unitary.

• The relativistic quantum fields on the Minkowski space do constitute
the only available way to actually implement the unitary irreducible
representations of the Poincaré group, that will be thereof associated
to the elementary particles obeying the general principles of Quantum
Mechanics and of the Special Theory of Relativity.
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Chapter 2

The Action Functional

In this chapter I will review the main dynamical properties and structural
features of the classical relativistic wave fields, as they follow from the definite
transformation laws under the Poincaré group. All those fundamental aspects
will be crucial in order to set up the quantum field theory. Moreover, the
general requirements to be fulfilled by the classical Action, together with
the meaning and the role of the continuous symmetry transformations in the
classical relativistic field theory will be considered in some detail.

2.1 The Classical Relativistic Wave Fields

As we shall see further on, in order to build up the infinite dimensional
Hilbert spaces that carry on all the irreducible unitary representations of
the Poincaré group, which describe the quantum states of the elementary
particles we detect in Nature, we will apply the canonical quantum procedure
to some classical mechanical systems with an infinite number of degrees of
freedom. These mechanical systems consist in a collection of real or complex
functions defined on the Minkowski space M

uA(x) : M −→
{

R
C (A = 1, 2, . . . , N)

with a well defined transformation law under the action of the Poincaré group
IO(1, 3) . We shall call these systems the classical relativistic wave fields. More
specifically, if we denote the elements of the Poincaré group by g = (Λ, a) ∈
IO(1, 3) , where Λ ∈ L is an element of the Lorentz group while aµ specify a
translation in the four dimensional Minkowski space M , we have

uA(x)
g7−→ u ′A(x ′) ≡ u ′A(Λ(x+ a))
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u ′A(x ′) = [T (Λ) ]AB uB(x)

= [T (Λ) ]AB uB

(
Λ−1x ′ − a)

)
(2.1)

(Λ, a) ∈ IO(1, 3) (A,B = 1, 2, . . . , N)

where T (Λ) are the operators of a representation of the Lorentz group of finite
dimensions N . This means that, if the collection of the wave field functions at
the point P ∈M of coordinates xµ is given by uA(x) (A = 1, 2, . . . , N) in a
certain inertial frame S , then in the new inertial frame S ′ , related to S by the
Poincaré transformation (Λ, a) ∈ IO(1, 3) , the space-time coordinates of P
will be changed to x ′ = Λ(x+a) and contextually the wave field functions will
be reshuffled as u ′A(x ′) (A = 1, 2, . . . , N) because the functional relationships
will be in general frame dependent.

2.1.1 Field Variations

We can always represent the collection of the classical relativistic wave field
functions as an N−component column vector

u(x) =


u1(x)
u2(x)

...
uN−1(x)
uN(x)


x ∈M

Then we can suitably introduce some finite quantities which are said to be
the total variation, the local variation and the differential of the classical
relativistic wave field u(x) according to

u ′ (x ′)− u(x) total variation (2.2)

u ′ (x ′)− u(x ′) local variation (2.3)

u(x ′)− u(x) differential variation (2.4)

so that we can write

u ′ (x ′)− u(x) = [u ′ (x ′)− u(x ′) ] + [u(x ′)− u(x) ]

that is the total variation is equal to the sum of the local and of the differential
variations for any classical relativistic wave field.

In order to suitably label the Lorentz matrices, it is very convenient to
make use of the Minkowski notation. According to the general theorem of
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section 1.2.6, any rank four square matrix Λµ
ν close to the identity can always

be expressed in the exponential form (1.12) that reads

Λ = exp {αk Ik + η` J`} = I + αk Ik + η` J` + · · ·

where Ik = − I>k ( k = 1, 2, 3 ) are the 4×4 real anti-symmetric generators of
the rotation subgroup, while J` = J >` ( ` = 1, 2, 3 ) are the 4 × 4 symmetric
real generators of the special Lorentz transformations or boosts. We first
rename the six canonical coordinates (α,η) in terms of an anti-symmetric
tensor parametric form according to

α1 = −ω 23 α2 = −ω 31 α3 = −ω 12

η1 = ω 01 η2 = ω 02 η3 = ω 03

with
ωµν + ω νµ = 0 (µ, ν = 0, 1, 2, 3 )

Next we rename the generators by introducing the spin anti-symmetric tensor

Ij =
i

2}
εjkl Skl Jk = − i

}
S 0k S ρσ + Sσρ = 0 (2.5)

where εjkl is the Levi-Civita symbol, totally anti-symmetric in all of its three
spatial indexes and normalized as ε123 = + 1 = − ε123 . Notice that we have
the induced Hermitean properties

S ı = S †ı S 0k = −S †0k ( ı, , k = 1, 2, 3 )

Thus we can eventually write

αk Ik + η` J` = − (i/2})ω ρσ S ρσ

in such a manner that the exponential representation of any Lorentz matrix
close to the identity can always be expressed in the so called manifestly
covariant form

Λ(ω) = exp {− (i/2~)ω ρσ S ρσ}

Consider now a first order infinitesimal (passive) Lorentz transformation

Λµ
ν = δ µν + εµν = δ µν + εµρ g ρν | εµν | � 1 (2.6)

in which we have neglected all the terms of higher order in the very small
quantities εµρ . On the one hand, from the defining relation (1.24) of the
Lorentz matrices we obtain

0 = gµρ ε
ρ
ν + g νρ ε

ρ
µ ⇔ εµν + ε νµ = 0

59



that is, the infinitesimal parameters εµν constitute an anti-symmetric matrix
with six independent entries that can be evidently identified as

εµν = gµρ g νσ δ ω
ρσ

in such a manner that we can also write

Λµ
ν = δ µν −

i

2~
δω ρσ (S ρσ)µν (2.7)

It is worthwhile to realize that, up to the first order, the infinitesimal rapidity
parameters can be identified with the infinitesimal velocities since we find

δηk = εk0 = δω 0k = δArsh

(
βk/
√

1− β2
k

)
= δβk

For example, an infinitesimal rotation around the OZ axis corresponds to

α1 = α2 = 0 , α3 = − δω 12 = − ε12
Λµ

ν = δ µν + δω12 (δ µ1 g 2ν − δ µ2 g 1ν)

Λ(α3) =


1 0 0 0
0 1 α3 0
0 −α3 1 0
0 0 0 1

 (2.8)

Moreover, an infinitesimal boost along the OX axis is described by

β1 = δω 01 , β2 = β3 = 0

Λµ
ν = δ µν + δω 01 (δ µ0 g 1ν − δ µ1 g 0ν)

Λ(β1) =


1 −β1 0 0
−β1 1 0 0

0 0 1 0
0 0 0 1

 (2.9)

A comparison between the expressions (2.6) and (2.7) yields

εµλ gλν = − ε ρσ δ µσ g ρν
= 1

2
ε ρσ (δ µρ gσν − δ µσ g ρν)

= (− i/2~)δω ρσ (S ρσ)µν (2.10)

and thereby

(S ρσ)µν = i~
(
δ µρ gσν − δ µσ g ρν

)
(2.11)
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This means that the six matrices S ρσ do actually realize the relativistic spin
angular momentum tensor of the irreducible vector representation τ 1

2
1
2

of
the Lorentz group. By the way, it is worthwhile to stress once more that the
components Sjk are Hermitean matrices and generate rotations, while the
components S 0k are anti-Hermitean matrices and generate boosts.

Turning back to the three kinds of infinitesimal variation we can write

x ′µ ≈ xµ + δ xµ = xµ + δω µν g νρx
ρ + δω µ (2.12)

δω µν + δω νµ = 0 | δω µν | � 1 | δω µ | � |xµ |

∆u(x) ≡ u ′ (x+ δ x)− u(x)

≡ [u ′ (x+ δ x)− u(x+ δ x) ] + [u(x+ δ x)− u(x) ]

≡ δ u(x+ δ x) + du(x)

= δ u(x) + δ xµ ∂µ δ u(x) + · · ·+ du(x)

= δ u(x) + δ xµ∂µu(x) +O (δ x · ∂ δu) (2.13)

so that we can safely write the suggestive symbolic relation

∆ = δ + d = δ + δ xµ ∂µ (2.14)

among the first order infinitesimal variations together with

∆u(x) ≈ δ u(x) + du(x) = δ u(x) + δ x · ∂ u(x) (2.15)

It is important to remark that, by definition, the local variations do commute
with the tetra-gradient differential operator

∂µ δ u(x) = δ ∂µu(x) ⇔ [ δ , ∂µ ] = 0 (2.16)

Notice that the infinitesimal form of the Poincaré transformations for the
space-time coordinates can be written in terms of the Hermitean generators

δ xµ =
i

~
[

1
2
δω ρσ L ρσ x

µ − δω ρ P ρ x
µ
]

where – see the definition (1.46)

Pµ = i~ ∂µ Lµν ≡ xµ Pν − x ν Pµ

Here below we shall analyse the most relevant cases.
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2.1.2 The Scalar and Vector Fields

1. Scalar field: the simplest case is that of a single invariant real function

φ : M −→ R φ ′ (x ′ ) = φ(x) (2.17)

so that

∆φ(x) = 0 ⇔ δφ(x) = − dφ(x) = − δ x · ∂ φ(x)

From the infinitesimal change (2.12) we get the local variation

δφ(x) = − δω µν g νρx
ρ ∂µφ(x)− δω µ ∂µφ(x)

= − i

~
[

1
2
δω µν Lµν − δω µ Pµ

]
φ(x) (2.18)

whence it follows that for a scalar field we find by definition

Mµν φ(x) ≡ Lµν φ(x) ⇔ Sµν φ(x) ≡ 0

i.e. the scalar field carries relativistic orbital angular momentum but
not relativistic spin angular momentum.

It is worthwhile to consider also the pseudo-scalar field, which are odd
with respect to improper orthochronus Lorentz transformations, i.e.

φ̃ ′ (Λx+ a) = (det Λ) φ̃(x) = − φ̃(x) ∀Λ ∈ L↑− (2.19)

Complex scalar (pseudo-scalar) field are complex invariant functions
with scalar (pseudo-scalar) real and imaginary parts.

2. Vector field: a relativistic contravariant vector wave field is defined
by the transformation law under the Poicaré group that reads

V ′µ(x ′ ) = V ′µ(Λx+ a) ≡ Λµ
ν V

ν(x) (2.20)

The above transformation law can be obviously generalized to the aim
of defining the arbitrary relativistic tensor wave fields of any rank with
many contravariant and covariant Minkowski indexes

T ′αβ...µν... (x ′) = T ′αβ...µν... (Λx+ a)

≡ Λ ρ
µ Λ σ

ν . . . Λα
λ Λβ

κ . . . T
λκ...
ρσ... (x) (2.21)

It follows therefrom that the components of a vector field transform
according to the irreducible vector representation τ 1

2
1
2

of the Lorentz
group. For infinitesimal Lorentz transformations we can write

Λµ
ν = δ µν + δω µρ g ρν δω µρ + δω ρµ = 0
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and consequently

∆Vµ (x) = δω ρσ gµρ Vσ (x)

≡ − i

2~
δω ρσ (S ρσ )νµ Vν (x) (2.22)

the generators of the total variation of the covariant vector field under
a Poincaré transformation being the relativistic spin angular momentum
matrices (2.5), the action of which actually reads

(S ρσ )νµ Vν (x) = i~ gµρ Vσ (x)− i~ gσµ Vρ (x)

≡ S ρσ ∗ Vµ (x) (2.23)

in which

(S ρσ )νµ = i~
[
gµρ δ

ν
σ − gµσ δ νρ

]
(2.24)

The above expression can be readily checked taking the four gradient
of a real scalar field. As a matter of fact we obtain

∂µφ(x) ≡ Vµ (x) (2.25)

so that from eq. (2.18) we find the infinitesimal transformation law

∆Vµ (x) = ∆∂µφ(x)

= [ ∆ , ∂µ ]φ(x) + ∂µ∆φ(x)

= [ ∆ , ∂µ ]φ(x) (2.26)

Now we have

[ ∆ , ∂µ ] = [ δ , ∂µ ] + [ δx · ∂ , ∂µ ]

= δω λν g νρ [x ρ , ∂µ ] ∂λ

= − δω λν g νρ δ
ρ
µ ∂λ

= δω λν gλµ ∂ ν (2.27)

and thereby
∆∂µφ(x) = δω ρσ gµρ ∂σ φ(x)

whence eq. (2.22) immediately follows.

From the symbolic relation (2.14) we obtain the expression for the local
variation of a relativistic covariant vector wave field

δVρ (x) = ∆Vρ (x)− δ xµ ∂µ Vρ(x)

= − δω µν

[
i

2~
Sµν ∗ Vρ (x) + x ν ∂µ Vρ (x)

]
− δω µ ∂µ Vρ (x)

= − i

~
[

1
2
δω µνMµν ∗ Vρ (x)− δω µ Pµ Vρ (x)

]
(2.28)
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Mµν = Lµν + Sµν = xµ Pν − x ν Pµ + Sµν

Well known examples of vector and tensor wave fields are the vector
potential and the field strength of the electromagnetic field

A ′µ (x ′) = Λ ν
µA ν (x)

∆Aµ (x) = δω λν gµλA ν (x)

F ′µν (x ′) = Λ ρ
µ Λ σ

ν F ρσ (x)

∆Fµν (x) = δω λρ [ gµλ F ρν (x) + g νλ Fµρ (x)
]

(2.29)

A tensor wave field of any rank with many contravariant and covariant
indexes will exploit a local variation in accordance with the obvious
generalization of the infinitesimal change (2.28). In particular, the
action of the relativistic spin matrix on a tensor wave field will be
the (algebraic) sum of expressions like (2.5), one for each index. For
instance, the action of the spin matrix on the electromagnetic field
strength is given by

− i

~
S ρσ ∗ Fµν (x) = g ρµ Fσν (x)− gσµ F ρν (x)

+ g ρν Fµσ (x)− gσν Fµρ (x) (2.30)

If we consider a full parity transformation (1.25) ΛP ∈ L↑− we have

A ′µ (ΛP x) = (ΛP ) νµA ν (x) (2.31)

that yields

A′0 (x0,−x) = A 0 (x0,x) A′ (x0,−x) = −A(x0,x) (2.32)

Conversely, a covariant pseudo-vector wave field will be defined by the
transformation law

Ṽ ′µ (Λx) = (det Λ) Λ ν
µ Ṽ ν (x) ∀Λ ∈ L↑− (2.33)

so that under parity

Ṽ ′0 (x0,−x) = − Ṽ 0 (x0,x) Ṽ ′ (x0,−x) = Ṽ (x0,x) (2.34)
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2.1.3 The Spinor Fields

The two irreducible fundamental representations τ 1
2
0 and τ 0 1

2
of the

homogeneous Lorentz group can be realized by means of SL(2,C) , i.e.
the group of complex 2×2 matrices of unit determinant. The SL(2,C)
matrices belonging to τ 1

2
0 act upon the so called Weyl’s 2-component

left spinors, whilst the SL(2,C) matrices belonging to τ 0 1
2

act upon the
so called Weyl’s 2-component right spinors.

In any neighborhood of the unit element, the SL(2,C) matrices can
always be presented in the exponential form

ΛL ≡ exp
{

1
2
iσk (αk − iηk)

}
(2.35)

ΛR ≡ exp
{

1
2
iσk (αk + iηk)

}
(2.36)

in which

αk , βk =
vk
c
, ηk = Arsh

(
βk(1− β 2

k )−1/2
)

( k = 1, 2, 3 )

are respectively the angular canonical coordinates, the relative velocity
components (1.26) and rapidity (1.27) parameters of the Lorentz group,
whereas σk (k = 1, 2, 3) are the Pauli matrices. Notice that

σ2 σk σ2 = − σ∗k = − σ>k (k = 1, 2, 3) (2.37)

σj σk = δjk + iε jkl σl {σj σk} = 2δjk

[σj σk ] = 2iε jkl σl ( j, k, l = 1, 2, 3 ) (2.38)

It is clear that for βk = ηk = 0 (k = 1, 2, 3) , i.e. for rotations, we have
that ΛL(α) = ΛR(α) ∈ SU(2) whereas for αk = 0 (k = 1, 2, 3) , i.e. for
boosts, the matrices ΛL ,R (η) are Hermitean and non-unitary.

Let us therefore introduce the relativistic two-component Weyl’s spinor
wave fields

ψL (x) ≡
 ψL 1 (x)

ψL 2 (x)

 ψR (x) ≡
 ψR 1 (x)

ψR 2 (x)

 (2.39)

which, by definition, transform according to

ψ ′L (x ′ ) = ΛL ψL (x) ψ ′R (x ′ ) = ΛR ψR (x) (2.40)
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The infinitesimal form of the above transformation laws give rise to the
total variations

∆ψL (x) = 1
2
i (σj δα j − i σk δβk)ψL (x)

= − 1
2
i
(
σj

1
2
εjkl δω

kl + iσk δω
0k
)
ψL (x)

≡ − i

2~
δω ρσ (Sρσ)L ψL (x) (2.41)

and quite analogously

∆ψR (x) = 1
2
i (σj δα j + iσk δβk)ψR (x)

= − 1
2
i
(
σj

1
2
εjk` δω

k` − iσk δω 0k
)
ψR (x)

≡ − i

2~
δω ρσ (Sρσ)R ψR (x) (2.42)

whence we identify

(Sk`)L = 1
2
~εjk` σj = (Sk`)R (2.43)

(S0k)L = 1
2
i~σk = (S 0k)R (2.44)

From the symbolic relation (2.14) we can easily obtain the expression
for the local variation of both relativistic Weyl’s spinor fields.

The SL(2,C) matrices do satisfy some important properties :

(a) Λ−1L = Λ †R Λ−1R = Λ †L

(b) σ2 ΛL σ2 = Λ ∗R σ2 ΛR σ2 = Λ ∗L

(c) Λ>L = σ2 Λ−1L σ2 Λ>R = σ2 Λ−1R σ2

Proof

(a) We have

Λ †R = exp
{
− 1

2
iσk (αk − iηk)

}
= exp

{
1
2
iσk (−αk + iηk)

}
= ΛL(−α,− η) = Λ−1L

Λ †L = exp
{
− 1

2
iσk (αk + iηk)

}
= exp

{
1
2
iσk (−αk − iηk)

}
= ΛR(−α,− η) = Λ−1R
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(b) From the definition of the exponential of a matrix we get

σ2 ΛL σ2 = σ2 exp

{
i

2
σk (αk − iηk)

}
σ2

=
∞∑
n=0

(
i

2

)n
1

n!
σ2 σk1 σk2 · · · σkn σ2

× (αk1 − iηk1) (αk2 − iηk2) · · · (αkn − iηkn)

=
∞∑
n=0

(
i

2

)n
1

n!
σ ∗k1 σ

∗
k2
· · · σ ∗kn

× (−αk1 + iηk1) (−αk2 + iηk2) · · · (−αkn + iηkn)

= exp

{
i

2
σ ∗k (−αk + iηk)

}
=

(
exp

{
i

2
σk (αk + iηk)

})∗
= Λ ∗R

and in the very same way we prove that σ2 ΛR σ2 = Λ ∗L .

(c) Finally we get

σ2 Λ−1L σ2 = σ2 Λ †R σ2

= σ2 exp
{
− 1

2
iσk (αk − iηk)

}
σ2

=
(
exp

{
1
2
iσk (αk − iηk)

})>
= Λ>L

and repeating step-by-step we prove that σ2 Λ−1R σ2 = Λ>R �

The above listed relations turn out to be rather useful to single out
Lorentz invariant combinations out of the Weyl’s spinors. Consider for
instance (

σ2 ψ
∗
L

)′
= σ2 (ΛLψL)∗ = σ2Λ

∗
Lσ2 σ2ψ

∗
L = ΛR σ2ψ

∗
L

which means that σ2 ψ
∗
L ∈ τ 0 1

2
and correspondingly σ2 ψ

∗
R ∈ τ 1

2
0 .

We show now that the anti-symmetric combination of the two Weyl
representations of the Lorentz group transforms according to the scalar
representation. As a matter of fact, on the one hand we find

χ>L iσ2 ψL = χL 1ψL 2 − χL 2ψL 1 (2.45)

On the other hand we have

(χ>L σ2 ψL) ′ = χ>LΛ>L σ2 ΛLψL = χ>L σ2 ψL ∈ τ 0 0 (2.46)
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From the anti-symmetry of the above invariant combination, it follows
that ψ>L σ2 ψL ≡ 0 for ordinary c−number valued Weyl’s left spinors.

If we now take χL ≡ σ2 ψ
∗
R then we obtain the complex invariants

I = ψ>∗R σ>2 σ2 ψL = −ψ†R ψL I∗ = −ψ†L ψR (2.47)

We can build up a four vector out of a single Weyl left spinor fields. To
this purpose, let me recall the transformation laws of a contravariant
four vector under passive infinitesimal boosts and rotations respectively

δV 0 = ε0k V
k = − ε0k V k = − δ βk V k

δV j = εj0 V
0 = εj0 V 0 = − δ βj V 0

}
( boosts )

δV 0 = 0

δV j = εjk V
k = − εjk V k = − εjk` V k δα`

}
( rotations )

Consider in fact the left combination

ψ†L(x)σ µ ψL(x) σ µ ≡ (1,−σk) ( k = 1, 2, 3 )

Under a passive infinitesimal Lorentz transformation the total variation
(2.41) yields

∆
(
ψ†L(x)σ µ ψL(x)

)
=

− 1
2
ψ†L(x) iσk σ

µ ψL(x) (δα k + iδ β k)

+ 1
2
ψ†L(x) iσ µ σk ψL(x) (δα k − iδ β k)

= 1
2
ψ†L(x) [σ µ , σk ]ψL(x) iδα k + 1

2
ψ†L(x) {σk , σ µ }ψL(x) δ β k

=

{
ψ†L(x)σk ψL(x) δ β k = −ψ†L(x)σk ψL(x) δ β k (µ = 0)

−ψ†L(x)ψL(x) δ β j + ε jk` ψ
†
L(x)σ` ψL(x) δαk (µ = j )

= − i

2~
δω ρσ (S ρσ)µν ψ

†
L (x)σ ν ψL(x) (2.48)

which means that the left-handed combination

V µ
L (x) ≡ ψ †L(x)σ µ ψL(x) = V µ †

L (x) σ µ = (1,−σk)

transforms under the restricted Lorentz group like a contravariant real
vector field, that is

V ′µL (x ′ ) = Λµ
ν ψ
†
L(x)σ ν ψL(x) = Λµ

ν V
ν
L (x) (2.49)
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In the very same way one can see that the right combination

V µ
R (x) ≡ ψ †R(x) σ̄ µ ψR(x) = V µ †

R (x) σ̄ µ = (1, σk)

transform under the Lorentz group like a contravariant real vector field

V ′µR (x ′ ) = Λµ
ν ψ
†
R(x) σ̄ ν ψR(x) = Λµ

ν V
ν
R (x) (2.50)

In conclusion we see that the following relationships hold true: namely,

Λ †L σ
µ ΛL = Λµ

ν σ
ν Λ †R σ̄

µ ΛR = Λµ
ν σ̄

ν (2.51)

It becomes now easy to build up the Lorentz invariant real kinetic terms

TL = 1
2
ψ †L(x)σ µ i∂µψL(x)− 1

2
[ i∂µψ

†
L(x) ]σ µ ψL(x)

≡ 1
2
ψ †L(x) iσ µ

↔
∂µψL(x) (2.52)

TR = 1
2
ψ †R(x) σ̄ µ i∂µψR(x)− 1

2
[ i∂µψ

†
R(x) ]σ̄ µ ψR(x)

≡ 1
2
ψ †R(x) iσ̄ µ

↔
∂µψR(x) (2.53)

When the full Lorentz group is a concern, we have already seen (1.29)
that it is necessary to consider the direct sum of the two nonequivalent
irreducible Weyl’s representation. In so doing, we are led to the so
called four components bispinor or Dirac relativistic spinor wave field

ψ(x) ≡
 ψL (x)

ψR (x)

 =


ψL 1 (x)
ψL 2 (x)
ψR 1 (x)
ψR 2 (x)

 (2.54)

The full parity transformation, also named space inversion,

P : ψL ,R ↔ ψR ,L

is then represented by the 4× 4 matrix

γ0 ≡
 0 1

1 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


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so that

ψ ′ (x ′ ) = ψ ′ (x0,−x) = (Pψ)(x)

= γ0 ψ (x) =

 ψR (x)
ψL (x)

 (2.55)

that means

ψ ′L(x0,−x) = ψR(x0,x) ψ ′R(x0,−x) = ψL(x0,x)

The left and right Weyl’s components can be singled out by means of
the two projectors

PL ≡ 1
2

(I− γ 5 ) PR ≡ 1
2

(I + γ 5 )

where

I =

 1 0
0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.56)

γ 5 = γ 5 ≡
 −1 0

0 1

 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (2.57)

Starting from the Lorentz invariant complex bilinears in the Weyl
spinors (2.47), one can easily build up the Lorentz and parity invariant
real bilinear in the Dirac spinors, viz.,

I + I∗ = −ψ†R ψL − ψ
†
L ψR = −ψ†γ0ψ ≡ − ψ̄ψ (2.58)

where ψ̄ ≡ ψ†γ0 is said to be the adjoint spinor. In the very same way
we can construct the parity even and Lorentz invariant Dirac kinetic
term

TD = 1
2
ψ̄(x) γ µ i

↔
∂µψ(x) = TL + TR (2.59)

which is real, where we have eventually introduced the set of matrices

γ0 =

 0 1
1 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (2.60)
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γ1 =

 0 σ1
−σ1 0

 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (2.61)

γ2 =

 0 σ2
−σ2 0

 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 (2.62)

γ3 =

 0 σ3
−σ3 0

 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 (2.63)

γ5 =

 −1 0
0 1

 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (2.64)

The above set of five 4× 4 matrices are said to be the Dirac matrices in
the Weyl or chiral or even spinorial representation. The gamma matrices
do satisfy the so called Clifford algebra

{γ µ , γ ν} = 2g µν {γ µ , γ 5} = 0 (2.65)

in which
γ 5 ≡ iγ0γ1γ2γ3

Notice that we have the Hermitean conjugation properties

γ µ † = γ 0γ µγ 0 γ †5 = γ 5 (2.66)

and moreover

γ µ =

 0 σ̄µ

σµ 0

 σ̄µ ≡ (1,σ) σµ ≡ (1,−σ)

γ 0γ µ =

 σµ 0
0 σ̄µ

 ≡ αµ

We have already seen the transformation laws of the left-handed (2.41)
and right-handed (2.42) Weyl’s spinors under the restricted Lorentz
group. If we consider an infinitesimal boost δ ω kl = 0 (k, l = 1, 2, 3)
both transformation laws can be written in terms of a Dirac spinor as

∆ψ(x) = 1
4
δω 0k (γ0γk − γkγ0)ψ(x) (k = 1, 2, 3) (2.67)
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Analogously, the transformation laws under an infinitesimal rotation
δω 0k = 0 (k = 1, 2, 3) can be written together in the form

∆ψ(x) = 1
8
δω jk(γjγk − γkγj)ψ(x) ( j, k = 1, 2, 3) (2.68)

This means that, if we introduce

(S µν )D ≡ ~σ µν =
i~
4

[ γ µ , γ ν ] (2.69)

we eventually obtain that the transformation law for the Dirac spinors
under the restricted Lorentz group becomes

∆ψ(x) = − 1
2
iσ µν ψ(x) δωµν (2.70)

which leads us to identify, in natural units, the boost and the rotation
generators for the Dirac bispinors as

~−1(S 0k )D =
i

4
[ γ 0 , γ k ] =

1

2

 −iσk 0
0 iσk


and respectively

~−1(S jk )D =
i

4
[ γ j , γ k ] = 1

2
εjk`

 σ` 0
0 σ`

 ≡ 1
2
εjk` Σ`

Hence the covariant spin angular momentum tensor operator for the
relativistic Dirac spinor wave field reads

σµν = 1
4
igµλ g νκ [ γ λ , γ κ ] (2.71)

the spatial components being Hermitean whilst the spatial temporal
components being anti-Hermitean, that is

(σ µν )† = γ 0 σ µν γ 0 σµν = γ 0 σ †µν γ
0 (2.72)

By construction, the six components of the spin angular momentum
tensor of the Dirac field enjoy the Lie algebra of the Lorentz group

[σ µν , σ λκ ] = − ig µλ σ νκ + ig µκ σ νλ − ig νκ σ µλ + ig νλ σ µκ

Actually, it is worthwhile to remark that, mutatis mutandis, the above
construction keeps true in any D−dimensional space with a symmetry
group O(m,n) in which

D = m+ n m ≥ 0 n ≥ 0
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x2 =
m∑
k=1

x2k −
n∑
j=1

x2m+j

For any finite passive transformation of the restricted Lorentz group
we have

ψ ′(x ′ ) = Λ 1
2

(ω)ψ (x) = exp
{
− 1

2
iσµν ω

µν
}
ψ (x) (2.73)

As an example, for a boost along the positive OY axis we find

Λ 1
2

(η) = exp
{
− iσ 02 ω

02
}

= cosh
η

2
− γ0γ2 sinh

η

2
= Λ†1

2

(η)

=


cosh η/2 i sinh η/2 0 0
−i sinh η/2 cosh η/2 0 0

0 0 cosh η/2 −i sinh η/2
0 0 i sinh η/2 cosh η/2


where sinh η = vy (1− v2y)−1/2 (vy > 0) .

From the Hermitean conjugation property (2.72) we can write

Λ†1
2

(ω) = exp
{

1
2
iσ †µν ω

µν
}

=
∞∑
n=0

1

n !

n∏
=1

(
i

2

)
γ 0 σµρ γ

0 ω µρ

= γ 0

∞∑
n=0

1

n !

(
i

2

)n
(σµν ω

µν )n γ 0

= γ 0 exp
{

1
2
iσµν ω

µν
}
γ 0

= γ 0 Λ−11
2

(ω) γ 0 = γ 0 Λ 1
2

(−ω) γ 0 (2.74)

which entails in turn the two further relations

γ 0 Λ†1
2

(ω) γ 0 = Λ−11
2

(ω) = Λ 1
2

(−ω) (2.75)(
Λ−11

2

(ω)
)†
γ 0 Λ−11

2

(ω) = Λ†1
2

(−ω) γ 0 Λ−11
2

(ω) = γ 0 (2.76)

From the Lorentz invariance of the Dirac real kinetic term (2.59) it
follows that the bilinear

ψ̄(x) γ µ ψ(x) ≡ J µ(x)
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transforms as a contravariant four vector and is thereby named the
Dirac vector current. Actually the finite transformation law holds true

Λ−11
2

(ω) γ λ Λ 1
2

(ω) = Λλ
κ γ

κ (2.77)

γ λ = Λλ
κ Λ 1

2
(ω) γ κ Λ−11

2

(ω) (2.78)

Proof. Consider any Lorentz infinitesimal transformation up to the first order
approximation in the arbitrary infinitesimal parameters δωµν . Then we can write{

1 + 1
2 iσ

µν δωµν
}
γ λ
{
1− 1

2 iσ
µν δωµν

}
=
{
δλκ + g λρ δω ρκ

}
γ κ

1
2 i
[
σ µν , γ λ

]
δωµν = g λρ δω ρκ γ

κ = 1
2 δω ρκ

(
g λρ γ κ − g λκ γ ρ

)[
γ ν γ µ , γ λ

]
−
[
γ µ γ ν , γ λ

]
= 2g λµ γ ν − 2g λν γ µ

Now we can make use of the algebraic identity

[ ab, c ] = abc− cab = abc− acb+ acb− cab = a { b, c } − { a, c } b

that immediately yields the result from the Clifford algebra. Now, owing to the

arbitrariness of the six infinitesimal parameters δωµν the finite transformation rules

(2.77-2.78) hold actually true. As a matter of fact, any finite transformation matrix

can always be written as the product of the one parameter matrices for each one of

the canonical coordinate (α,η) of the Lorentz group O(1,3). �

As we have seen above, it turns out that σ2ψ
∗
L ∈ τ 0 1

2
while σ2ψ

∗
R ∈ τ 1

2
0 .

Thus, we can build up the charge conjugated spinor of a given relativistic
Dirac wave field ψ(x) as follows :

ψ 7→ ψ c = Cψ∗ =

 σ2 ψ
∗
R

−σ2 ψ∗L

 C = γ2 (2.79)

Notice that (ψ c) c = γ2 (γ2 ψ∗)∗ = ψ . As a consequence, starting from a
solely left or right handed Weyl spinor, it is possible to build up charge
self-conjugated Majorana bispinors

χL =

 ψL
−σ2 ψ∗L

 = χ cL

χR =

 σ2 ψ
∗
R

ψR

 = χ cR (2.80)

Ettore Majorana

(5 Agosto 1906, Catania, via Etnea 251 – 26 marzo 1938, ?)
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Teoria simmetrica dell’elettrone e del positrone

Il Nuovo Cimento, volume 14 (1937) pp. 171-184

The classical charge self-conjugated Majorana spinors are real spinors
in a four components form, so that their field degrees of freedom content
is half of that one of a Dirac spinor wave field.
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2.2 The Action Principle

In the previous sections we have seen how to build up Poincaré invariant
expressions out of the classical relativistic wave fields corresponding to the
irreducible tensor and spinor representations of the non-homogeneous Lorentz
group. The requirement of Poincaré invariance will ensure that these classical
field theories will obey the axioms of the Special Theory of Relativity.

The general properties that will specify the Action for the collection of
the classical relativistic wave field functions uA(x) (A = 1, 2, . . . , N) will be
assumed in close analogy with the paradigmatic and very well known case of
the classical electromagnetic field, as it was developed since the early days
of the field theory 1.

1. The Action integrand L(x) is called the Lagrange density or Lagrangian
for short

Giuseppe Lodovico Lagrangia (Torino 25.1.1736 – Paris 10.4.1813)

Mécanique Analytique (1788)

In the absence of preassigned background fields, the Lagrangian can
not explicitly depend on the coordinates xµ , so as to ensure space-time
translation invariance, and must be a Lorentz invariant to ensure that
the corresponding theory will obey the axioms of Special Relativity.

2. To fulfill causality, the differential equations for the field functions must
be at most of the second order in time, in such a way that the related
Cauchy problem has a unique solution. Classical field theories described
by differential equations of order higher than the second in time will
typically develop a-causal solutions, a well known example being the
Abraham-Lorentz equation 2 of electrodynamics, which is a third order
in time differential equation that encodes the effects of the radiation
reaction and shows a-causal effects such as pre-acceleration of charged
particles yet to be hit by radiation.

3. The wave equations for all the fundamental fields that describe matter
and radiation are assumed to be partial differential equations and not

1Henri Poincaré, Sur la dynamique de l’électron, Rendiconti del Circolo Matematico di
Palermo 21 (1906) 129-175; J.J. Larmor, Aether and Matter, Cambridge University Press
(1900) Chap.6; Karl Schwarzschild, Zur Elektrodynamik I. Zwei Formen des Princips der
Aktion in der Elektonentheorie, Gött. Nachr. Math.-Phys. Kl. (1903) 126-131; Max Born,
Die Träge Masse und das Relativitätstheorie, Ann. Phys. 28 (1909) 571.

2M. Abraham, Ann. Phys. 10, 105 (1903), H. A. Lorentz, Amst. Versl. 12, 986 (1904);
cfr. [14] pp. 578–610.
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integral-differential equations, which do satisfy Lorentz covariance in
accordance with the special theory of Relativity: as a consequence the
Lagrangian must be a Lorentz invariant local functional of the field
functions and their first partial derivatives

L(x) = L
(
uA(x), ∂µuA(x)

)
The classical Action

S =

∫ tf

tı

dt

∫
dx L(t,x)

has the very same physical dimensions of the Planck constant or the
angular momentum, i.e.

[S ] = [ } ] = g cm2 s−1 = eV s

while the Lagrangian has engineering dimensions of eV cm−3. In the
natural units system the Action is dimensionless and the Lagrangian
in four space-time dimensions has natural dimensions of cm−4 .

4. According to the variational principle of classical mechanics, the Action
must be real and must exhibit a local minimum in correspondence of
the Euler-Lagrange equations of motion: in classical Physics complex
potentials lead to absorption, i.e. disappearance of matter into nothing,
a phenomenon that will not be considered in the sequel – it will be found
a posteriori that a real classical Action is crucial to obtain a satisfactory
quantum field theory where the total probability is conserved.

5. The astonishing phenomenological and theoretical success of the gauge
theories in the construction of the present day standard model of the
fundamental interactions in particle physics does indeed suggest that
the Action functional will be invariant under further symmetry groups
of transformations beyond the non-homogeneous Lorentz group. Such
a kind of transformations does not act upon the space-time coordinates
and will be thereby called internal symmetry groups of transformations.
These transformations will involve new peculiar field degrees of freedom
such as the electric charge, the weak charge, the color charge and maybe
other charges yet to be discovered. In particular, gauge theories are
described by an Action functional which is invariant under local – i.e.
space-time point dependent – transformations among those internal
degrees of freedom.
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Consider the Action functional

S(ti, tf ; [u ]) =

∫ tf

ti

d t

∫
dx L

(
u(x), ∂µu(x)

)
where we shall denote by

u(x) = {uA(x) | A = 1, 2, . . . , N , x = (x0,x) , ti ≤ t ≤ tf , x ∈ R3}

the collection of all classical relativistic local wave fields. The index A =
1, 2, . . . , N < ∞ runs over the Lorentz group as well as all the internal
symmetry group representations, so that we can suppose the local wave field
component to be real valued functions.

We recall that, by virtue of the principle of the least Action, the field
variations are assumed to be local and infinitesimal

u(x) 7→ u′(x) = u(x) + δu(x) | δu(x) | � |u(x) |

and to vanish at the initial and final times ti and tf

δu(ti ,x) = δu(tf ,x) = 0 ∀x ∈ R3 (2.81)

A local variation with respect to the wave field amplitudes gives

δS =

∫ tf

ti

d t

∫
dx δL

(
u(x), ∂µu(x)

)
=

∫ tf

ti

d t

∫
dx

[
δL
δu(x)

δu(x) +
δL

δ∂µu(x)
δ ∂µu(x)

]
The local infinitesimal variations do satisfy by definition

δ ∂µu(x) = ∂µ δu(x) ⇒ [ δ , ∂µ ] = 0

so that

δS =

∫ tf

ti

d t

∫
dx

[
δL
δu(x)

− ∂µ
δL

δ∂µu(x)

]
δu(x)

+

∫ tf

ti

d t

∫
dx ∂µ

[ δL
δ∂µu(x)

δu(x)
]

The very last term can be rewritten, using the Gauß theorem, in the form∫
dx
[ δL
δ ∂0u(x)

δu(x)
]tf
ti

+

∫ tf

ti

d t

∫
dx ∇ ·

[ δL
δ∇u(x)

δu(x)
]

= lim
R→∞

R 2

∫ tf

ti

d t

∫
dΩ r̂ ·

[ δL
δ∇u(t, R,Ω)

δu(t, R,Ω)
]
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where R is the radius of a very large sphere centered at x = 0 , Ω = (θ, φ)
is the solid angle in the three dimensional space and r̂ is the radial unit
vector, i.e. the exterior unit normal vector to the sphere. If we assume the
asymptotic radial behavior

lim
R→∞

R2 [ δL/δ ∂ru(t, R,Ω) ] δu(t, R,Ω) = 0 ∀t ∈ [ ti, tf ] (2.82)

where ∂r ≡ r̂·∇ is the radial derivative, then the above boundary term indeed
disappears and consequently, from the arbitrariness of the local variations
δu(x) , we eventually come to the Euler–Lagrange equations of motion for
the classical relativistic wave field

∂µ
δL

δ∂µu(x)
=

δL
δu(x)

(2.83)

2.3 The Nöther Theorem

For the construction of the constants of motion in field theory we shall use
Nöther theorem :

Amalie Emmy Nöther
Erlangen 23.03.1882 – Brynn 14.04.1935
Invariante Varlationsprobleme, Nachr. d. König. Gesellsch. d. Wiss.
Göttingen, Math–phys. Klasse (1918), 235–257
English translation M. A. Travel
Transport Theory and Statistical Physics 1 (1971), 183–207 .

This theorem states that to every continuous transformation of coordinates
and fields, which makes the variation of the Action equal to zero, there
always corresponds a definite constant of motion, i.e. a combination of the
field functions and their derivatives which remains conserved in time. Such a
transformation of coordinates and fields will be called a continuous symmetry
and will correspond to some representation of a Lie group of transformations
of finite dimension. In order to prove Nöther theorem we shall consider the
infinitesimal active transformation of coordinates

xµ 7→ x ′µ = xµ + δxµ δxµ = X µ
a δ ω

a (2.84)

with coefficients X µ
a that may depend or not upon the space-time points and

s space-time independent infinitesimal parameters

δ ω a (a = 1, 2, . . . , s)

79



which include, for example, the cases of the active infinitesimal translations
δ ω µ and homogeneous Lorentz transformations δ ω µν :

δxµ = − δ ω µ − x ν δ ω µν δ ω µν = − δ ω νµ

In general we shall suppose to deal with a collection of N field functions

uA(x) (A = 1, 2, . . . , N)

with a well defined infinitesimal transformation law under the continuous
symmetry (2.84) that may be written in the form

uA(x) 7→ u ′A(x ′) = u ′A(x+ δx) = uA(x) + ∆uA(x)

∆uA(x) = u ′A(x+ δx)− uA(x) = Y a
AB uB (x) δω a (2.85)

where the very last variation is just the already introduced total variation
(2.2) of the field function. The fields total variations are assumed to be space-
time point independent. For example, in the case of an infinitesimal Lorentz
active transformation, the definitions (2.24), (2.41), (2.42), (2.70) and (2.71)
yield

∆uA(x) = Y a
AB uB (x) δω a =

i

2
(Sµν)AB uB (x) δω µν (2.86)

The Jacobian that corresponds to the infinitesimal transformation of the
coordinates is provided by

δJ = δ det ‖ ∂x ′/∂x ‖ = ∂µ δx
µ

Proof. As a matter of fact we have in general

d4x ′ = det

∥∥∥∥∂x ′∂x

∥∥∥∥ d4x

and for infinitesimal coordinate transformations x ′ = x+ δx one obtains the 4× 4 matrix
J with matrix elements

Jµν ≡ ∂ν(xµ + δxµ) = δµν + ∂νδx
µ

that is

J =


1 + ∂tδx

0 ∂xδx
0 ∂yδx

0 ∂zδx
0

∂tδx 1 + ∂xδx ∂yδx ∂zδx
∂tδy ∂xδy 1 + ∂yδy ∂zδy
∂tδz ∂xδz ∂yδz 1 + ∂zδz


so that the explicit evaluation of its determinant yields

J ≡ det J = 1 + ∂µ δx
µ +O

(
(∂αδx

ρ)(∂βδx
σ)
)
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in such a manner that, up to the first order in ∂ν δx
µ , one gets δJ = ∂µ δx

µ , which

completes the proof. �

Hence we can eventually write

δS =

∫ tf

ti

d t

∫
dx L

(
uA(x), ∂µuA(x)

)
∂λ δx

λ

+

∫ tf

ti

d t

∫
dx ∆L

(
uA(x), ∂µuA(x)

)
=

∫ tf

ti

d t

∫
dx L

(
uA(x), ∂µuA(x)

)
∂λ δx

λ

+

∫ tf

ti

d t

∫
dx δxλ ∂λ L

(
uA(x), ∂µuA(x)

)
+

∫ tf

ti

d t

∫
dx δL

(
uA(x), ∂µuA(x)

)
where use has been made of the relation (2.14). If the Euler-Lagrange wave
field equations (2.83) are assumed to be valid then we can recast the local
variation of the Lagrangian in the form

δL
(
uA(x), ∂µuA(x)

)
= ∂µ

[
δL

δ ∂µ uA(x)
δuA(x)

]
Hence we immediately obtain

δS =

∫ tf

ti

d t

∫
dx ∂µ

[
L(x) δxµ +

δL
δ ∂µ uA(x)

δuA(x)
]

(2.87)

Alternatively, we can always recast the local variations (2.3) in terms of the
total variations (2.2) so that

δS =

∫ tf

ti

d t

∫
dx ∂µ

{[
δ µν L(x) − δL

δ ∂µuA(x)
∂ν uA(x)

]
δx ν
}

+

∫ tf

ti

d t

∫
dx ∂µ

[
δL

δ ∂µuA(x)
∆uA(x)

]
(2.88)

Consider now the infinitesimal symmetry transformations depending upon
constant parameters, i.e. space-time independent, so that

δxµ ≡
(
∂ xµ

∂ ω a

)
δ ω a = X µ

a (x) δ ω a (a = 1, 2, . . . , s)
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∆uA(x) ≡ (Y a )AB uB (x) δω a (A = 1, 2, . . . , N)

then we have

δS

δ ω a
=

∫ tf

ti

d t

∫
dx ∂µJ

µ
a (x) (2.89)

where

J µ
a (x) ≡ −

[ δL
δ ∂µ uA(x)

∂ν uA(x) − L(x) δ µν

]
X ν
a (x)

+
δL

δ ∂µ uA(x)
(Y a )AB uB (x) (2.90)

are the Nöther currents associated to the parameters ω a (a = 1, 2, . . . , s)
of the Lie group of global symmetry transformations. Suppose the Action
functional to be invariant under this group of global transformations

(δS / δ ω a) = 0 =

∫ tf

ti

d t

∫
dx ∂µJ

µ
a (x) (a = 1, 2, . . . , s)

Then from Nöther and Gauß theorems we get

0 =

∫ tf

ti

d t

∫
dx ∂µJ

µ
a (x)

=

∫
dx
[
J 0
a (tf ,x)− J 0

a (ti,x)
]

+ c

∫ tf

ti

d t

∫
dx ∇ · J (x0,x)

=

∫
dx
[
J 0
a (tf ,x)− J 0

a (ti,x)
]

+ c lim
R→∞

R 2

∫ tf

ti

d t

∫
dΩ r̂ · Ja (x0, R,Ω) (2.91)

where R is the radius of a very large sphere centered at x = 0 , Ω = (θ, φ)
is the solid angle in the three dimensional space and r̂ is the exterior unit
normal vector to the sphere, i.e. the radial unit vector. Once again, if we
assume the radial asymptotic behavior

lim
R→∞

R 2 r̂ · Ja(x0, R,Ω) = 0 ∀x0 ∈ [ ti , tf ] (2.92)

then the above boundary term indeed disappears and we eventually come to
the conservation laws

δS

δ ω a
= 0 ⇔ d

d t
Qa(t) = 0 (2.93)
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where the conserved Nöther charges are defined to be

Qa ≡
∫

dx J 0
a (t,x) (a = 1, 2, . . . , s) (2.94)

Notice that the Nöther current is not uniquely identified: as a matter of fact,
if we redefine the tetra-currents (2.90) according to

J̃ µ
a (x) ≡ J µ

a (x) + ∂ ν Aµν
a (x) (2.95)

where Aµν
a (x) (a = 1, 2, . . . , s) is an arbitrary set of anti-symmetric tensor

fields
Aµν
a (x) +A ν µ

a (x) = 0

then by construction

∂µ J̃
µ
a (x) = ∂µ J

µ
a (x) = ∂ t J

0
a (t, r) + ∇ · Ja(t, r)

and the same conserved Nöther charges (2.94) are obtained. This is Nöther
theorem. Let us now examine some important examples.

1. Space-time translations

δxµ = − δω µ a ≡ ρ = 0, 1, 2, 3

X ν
a ≡ − δ νρ ∆uA(x) ≡ 0

for there is no change under space-time translations for any classical
relativistic wave field. In this case the corresponding Nöther’s current
yields the canonical energy-momentum tensor

J µ
a (x) 7→ T µ

ρ (x)

T µρ (x) =
δL

δ ∂µ uA(x)
∂ ρuA(x) − L(x) g µρ (2.96)

the corresponding conserved charge being the total energy-momentum
tetra-vector of the system

Pµ =

∫
dx T 0

µ (x) (2.97)

Actually, it can be readily shown that the canonical energy-momentum
tensor does fulfill the continuity equation ∂µT

µ
ν(x) = 0 because

∂µ T
µ
ν(x) = ∂µ

[
δL

δ ∂µ uA(x)
∂νuA(x)

]
− ∂µ L(x) δ µν

=
δL

δ uA(x)
∂νuA(x) +

δL
δ ∂µ uA(x)

∂µ ∂νuA(x)

−
[

δL
δ uA(x)

∂µuA(x) +
δL

δ ∂ρ uA(x)
∂µ ∂ρuA(x)

]
δ µν = 0

where use has been suitably made of the Euler-Lagrange field equation.
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2. Lorentz transformations

δ x ν = − δω νρ x ρ a ≡ {ρ σ} = 1, . . . , 6

and from (2.84) and (2.86) with a = [ ρσ ] and δωa = − δω ρσ we obtain

X ν
a ≡ 1

2

(
xσ δ

ν
ρ − x ρ δ νσ

)
∆uA(x) ≡ i

2~
(S ρσ )AB uB (x) δω ρσ

In this case the corresponding Nöther current yields the relativistic
total angular momentum density third rank tensor

J µ
a (x) = J µ

ρσ (x) = 1
2
M µ

ρσ (x)

M µ
ρσ (x) = x ρ T

µ
σ (x)− xσ T µ

ρ (x)

+
δL

δ ∂µ uA (x)
( iS ρσ )AB uB (x)

def
= Lµ

ρσ (x) + S µ
ρσ (x) (2.98)

where the third rank tensors

Lµ
ρσ (x) = − Lµ

σρ (x) = x ρ T
µ
σ (x)− xσ T µ

ρ (x) (2.99)

S µ
ρσ (x) = − S µ

σρ (x) =
δL

δ ∂µ uA (x)
( iS ρσ )AB uB (x) (2.100)

are respectively the relativistic orbital angular momentum density and
the relativistic spin angular momentum density of the wave field. The
corresponding charge is the total angular momentum anti-symmetric
tensor of the system

Mµν =

∫
dx M 0

µν (t,x) Mµν +M ν µ = 0 (2.101)

Notice however that, as we shall see further on, the actual validity of
the continuity equation for the total angular momentum density, viz.,

∂λM
λ
µν(x) = 0 (2.102)

does indeed entails

Tµν(x)− Tνµ(x) + ∂λ S
λ
µν(x) = 0 (2.103)
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which indicates that any component

Sµν =

∫
dx S 0

µν(t,x)

of the relativistic spin angular momentum is conserved if and only if the
corresponding component of the canonical energy-momentum tensor is
symmetric: namely,

Ṡµν = 0 ⇔ Tµν(x) = Tνµ(x)

3. Internal symmetries

X ν
a ≡ 0 ∆uA(x) ≡ Y a

AB uB (x) δω a (2.104)

where Y a (a = 1, 2, . . . , s) are the generators of the internal symmetry
Lie group in some given representation. It follows thereby that the
corresponding Nöther current and charge yields the internal symmetry
current and charge multiplets

J a
µ (x) =

δL
δ ∂µ uA(x)

Y a
AB uB (x) (a = 1, 2, . . . , s) (2.105)

Q a =

∫
dx J a

0 (x) (a = 1, 2, . . . , s) (2.106)

Lorentz invariance of the conserved charges. We have seen that Nöther
theorem implies the occurrence of s tetra-vector fields (2.90), which satisfy the
continuity equation and lead to the existence of s conserved charges (2.94), where
s is the dimension of the Lie group of the symmetry transformation of the classical
Action. It is very important to gather that those conserved charges are also Lorentz
invariant quantities. Since the rotation invariance is obviously true from the very
structure (2.94), let us concentrate on a boost that, without loss of generality by
just taking the rotation invariance into account, we can always suppose to be along
the OZ axis, viz.,

x ′µ = Λµν x
ν ⇐⇒


ct ′ = ct cosh η − z sinh η

x ′ = x y ′ = y
z ′ = z cosh η − ct sinh η

where we have set η ≡ Arsh
(
βz/
√

1− β 2
z

)
(βz = vz/c > 0 ) in such a manner

that we can write

 a ′0 (x ′) =  a0 (x) cosh η +  a3 (x) sinh η ( a = 1, 2, . . . , s )
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in which the Nöther tetra-currents (2.90) do satisfy the continuity equation owing
to the validity of the Euler-Lagrange field equations. For the sake of simplicity,
but without loss of generality, we shall here suppose the symmetry group to be
internal, the straightforward generalization to the IO(1,3) symmetry being left
to the interested reader. Hence, in order to prove the Lorentz invariance of any
Nöther internal charge, it is expedient to recast it as follows. Let K and K ′ the
laboratory and moving inertial reference frames respectively: then, in the moving
inertial reference frame K ′, we can write

Q ′ =
∫

dx ′  ′0(t
′,x ′) =

∫
dx ′  ′0(0,x

′) =
∫

d4x ′  ′0(t
′,x ′) δ(t ′)

=
∫

d4x ′  ′0(t
′,x ′) ∂ ′0θ(t

′) = g µν
∫

d4x ′  ′µ(x ′) ∂ ′νθ(t
′)

= g µν
∫

d4x ′ ∂ ′ν
[
 ′µ(x ′) θ(t ′)

]
where the Lie algebra index a = 1, 2, . . . , s has been omitted to lighten notations,
while use has been made of :

a) the time independence of the charge integral for any inertial observer;
b) the invariant continuity equation ∂µ 

µ(x) = 0 for the Nöther current.

Notice that the charge spatial integrals are constant quantities, i.e. proper time
independent, for any inertial Observer. From the transformation law

 ′µ(x ′) θ(t ′) =

{
 ′µ(x ′) for t ′ > 0

0 for t ′ < 0
= Λ ν

µ  ν(x) θ(t cosh η − z sinh η)

after turning to the laboratory inertial reference frame K we obtain

Q ′ =
∫

d4x ∂µ [ µ(x) θ(t cosh η − z sinh η) ]

Thus we can eventually write

Q ′ −Q =
∫

d4x ∂µ

(
µ(t,x) [ θ(t cosh η − z sinh η)− θ(t) ]

)
Now, as we have already stressed, the charge integral is a constant for any inertial
Observer, in such a manner that we can evaluate the above difference in terms of
e.g. the laboratory frame Minkowski coordinates: namely,

Q ′ −Q =

∫
dx

∫ ∞
−∞

dt ∂µ

(
µ(t,x) [ θ(t cosh η − z sinh η)− θ(t) ]

)
=

∫
dx
{
0(t,x)[ θ(t cosh η − z sinh η)− θ(t) ]

}t→∞

t→−∞

+

∫ ∞
−∞

dt

∫
dx ∇k

{
 k(t,x) [ θ(t cosh η − z sinh η)− θ(t) ]

}
= 0

(2.107)

owing to the Gauß divergence theorem and under the customary assumption of
the asymptotic spatial behavior

uA(t,x) ∼ O
(
| x |−1−ε

)
( | x |→ ∞ , ε > 0 )

that proves the Lorentz invariance of any charge integral, as expected.
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2.3.1 Problems

1. Maxwell Field Equations. Write the Maxwell equations in Lorentz
covariant form and derive them from an Action principle.

Solution. The celebrated Maxwell’s field equations of Electromagnetism are
usually grouped into two pairs: namely,{

∇ ·B = 0

Ḃ + c∇× E = 0
First Couple

{
∇ · E = ρ

− Ė + c∇×B = J
Second Couple

Notice that in the C.G.S. system of Heaviside-Lorentz electromagnetic units
we have the following simple dimensional correspondences: namely,

α =
e 2

4π}c
' 1

137
⇐⇒ [ e ] = esu =

√
eV cm

[ E 2 + B 2 ] = eV cm−3 [ eB ] = [ eE ] = eV cm−1

whence
[ E ] = [ B ] = Gauss = eV

1
2 cm−

3
2 = esu cm−2

[ J ] = esu cm−2 s−1 = eV
1
2 cm−

3
2 s−1 = Gauss s−1
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As a check we have that the quantity Φ = hc/e = e/2α is a unit of quantum
flux or electric charge because

[ Φ ] = [ e ] = eV
1
2 cm

1
2 = Gauss cm2 = esu

The second couple of the Maxwell field equations can be readily set into a
Lorentz covariant form, once we identify

E = (F 10, F 20, F 30) B = (F 32, F 13, F 21)

As a matter of fact, we find that the second couple of the Maxwell field
equations can be recast into the manifestly Poincaré covariant form: namely,

c ∂µF
µν = Jν

that is immediately verified by direct inspection. Next, if we introduce the
so called dual electromagnetic tensor

F µν
∗ = 1

2
εµνρσ Fρσ ( ε 0123 = 1 )

in which the electric and magnetic components are interchanged, for F 10
∗ =

B32 et cetera, then we can write the first couple in the Lorentz covariant form

∂µF
µν
∗ = 0

which can also readily verified by direct inspection. If the charged matter
is made up by n point-like charges qı( ı = 1, 2, . . . , n ) with instantaneous
position vectors rı(t), then we have the following charge and density current

ρ(t,x) =
n∑
ı=1

qı δ(x− rı(t))

J(t,x) =
n∑
ı=1

qı ṙı(t) δ(x− rı(t))

which satisfy by construction the continuity equation

ρ̇+∇ · J = 0

that can also be written with the Minkowski notations

∂µJ
µ(x) = 0 Jµ = ( cρ,J )

It should be stressed that the charge and current densities are supposed to
be fixed preassigned distributions, which do not undergo any dynamics but
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merely act as external sources for the electromagnetic fields. Contextually,
the external sources are provided in some given inertial reference frame, which
is understood to be definitely chosen.

To the purpose of building up a Lagrangian for the classical radiation
field, we notice that there are two Lorentz and gauge invariant quadratic
expressions in the tetra-vector potential, viz.,

FµνF
µν = − 2E2 + 2B2 FµνF

µν
∗ = − 2E ·B

both being null for the electromagnetic radiation in vacuum. The second
invariant is a tetra-divergence because

1
2
εµνρσFµνFρσ = 2εµνρσ∂µ (Aν∂ρAσ)

the other terms being null for symmetry reasons. In such a circumstance, the
second couple of Maxwell field equation can be derived through an Action
principle from the following Lagrangian

L = − 1
4
F µν Fµν − c−1AµJµ

As a matter of fact we immediately find

δL/δ∂µAν(x) = −F µν(x) δL/δAν(x) = − c−1Jν(x)

whence the second pair of Maxwell equations follows in the Euler-Lagrangian
form. As a final remark it is worthwhile to stress that the radiation-matter
coupling is gauge invariant, up to an irrelevant tetra-divergence, owing to the
continuity equation satisfied by the tetra-current external source: namely

A ′ν(x)Jν(x) = [Aν(x) + ∂νf(x) ]Jν(x) = Aν(x)Jν(x) + ∂ν [ f(x)Jν(x) ]

so that A ′νJ
ν .

= AνJ
ν , where

.
= means up to an irrelevant tetra-divergence

which does not affect the dynamics.

2. Energy-Momentum Tensor of the Radiation Field. Construct the
symmetric energy momentum tensor and the total angular momentum tensor
density for the classical radiation field in the absence of charge and current
sources 3.

Solution. The classical Maxwell Lagrangian that describes the radiation field
is provided by

L(x) = − 1
4
F µν (x)Fµν (x)

3 See e.g. L.D. Landau, E.M. Lif̌sits, Teoria dei campi, Editori Riuniti/Edizioni Mir,
Roma, 1976, § 33 p. 114.
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where the electromagnetic field strength tensor

Fµν (x) = ∂µA ν (x)− ∂ νAµ (x)

is invariant under the gauge transformations of the vector potential

Aµ (x) 7→ A ′µ(x) = Aµ (x) + ∂µ f(x)

for any arbitrary analytic function f(x). Then from Nöther theorem we get
the canonical energy-momentum tensor

T µρ (x) =
δL

δ ∂µAν(x)
∂ ρAν(x)− L(x) g µρ

= 1
4
F λν(x)Fλν(x) g µρ − F µν(x) ∂ ρAν(x)

= −F µν(x)F ρ
ν(x) + 1

4
F λν(x)Fλν(x) g µρ

− F µν(x) ∂ νA
ρ(x) (2.108)

which is not symmetric with respect to µ and ρ owing to the last addendum
in the right-hand-side of the above equality. Actually we find

T µρ (x)− T ρµ (x) = ∂ ν

(
Aµ (x)F ρν (x)− A ρ (x)F µν (x)

)
= ∂ ν S

νρµ (x)

where use has been done of the Maxwell equations ∂νF
µν(x) = 0 and of the

spin angular momentum density rank-three tensor as obtained from equations
(2.22) and (2.98)

S µ
ρσ = i F µν S ρσ ∗ Aν = Aρ F

µ
σ − Aσ F

µ
ρ

which enjoys the anti-symmetry property S µ
ρσ+S µ

σρ = 0. In accordance with
the general rule (2.95), we shall introduce the so called improved symmetric
energy-momentum tensor

Θµρ(x) ≡ 1
4
F λν(x)Fλν(x) g µρ − F µν(x)F ρ

ν(x) = Θ ρµ(x)

which is manifestly symmetric by construction. Hence we can write

T µν(x) =̇ Θµν(x)− 1
2
∂λ
[
F µλ(x)Aν(x) + F νλ(x)Aµ(x) + S λµν(x)

]
where =̇ means up to the use of the Maxwell equations ∂νF

µν(x) = 0 . From
the obvious equality

F µλ(x)Aν(x) + F νλ(x)Aµ(x) + Aλ(x)F µν(x)− Aλ(x)F µν(x)

= S µνλ(x) + S νµλ(x)
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we eventually get the Belifante-Rosenfeld relationship 4

Θµν(x) =̇ T µν(x) + 1
2
∂λ
[
S λµν(x) + S µνλ(x) + S νµλ(x)

]
in such a manner that Nöther theorem yields

∂µ T
µρ (x) = ∂µΘµρ (x) = ∂ρΘµρ (x) (2.109)

Pµ =

∫
dx T 0

µ (x) =

∫
dx Θ 0

µ (x) Ṗµ = 0 (2.110)

It turns out that the improved symmetric energy-momentum tensor of the
electromagnetic field is trace-less, i.e. gµρΘµρ = 0. Let us express explicitly
the well known components:

Θjk = 1
2
δ jk (E2 + B2)− EjEk −BjBk ( Maxwell stress tensor )

Θj0 = S j/c = ε jklE
k B l S = cE×B ( Poynting vector )

Θ00 = 1
2

(E2 + B2) ( Energy density )

that yield

cP =
1

c

∫
dx S(t,x) =

∫
dx E(t,x)×B(t,x)

W =

∫
dx Θ00(t,x) =

∫
dx 1

2

(
E2(t,x) + B2(t,x)

)
From equations (2.22) and (2.98) we can derive the canonical total angular
momentum density of the radiation field

M µ
ρσ = xρ T

µ
σ − xσ T µ

ρ + Aρ F
µ
σ − Aσ F

µ
ρ

= xρ T
µ
σ − xσ T µ

ρ + S µ
ρσ (2.111)

which satisfies the continuity equation according to Noether’s theorem

∂µM
µ
ρσ = Tρσ − Tσρ + ∂µ

(
Aρ F

µ
σ − Aσ F

µ
ρ

)
= ∂µ S

µ
ρσ − 1

2
∂ ν S

ν
ρσ + 1

2
∂ ν S

ν
σρ = 0

One can also express the canonical energy-momentum tensor in terms of
the improved and symmetric energy momentum tensor. Taking the Maxwell
equations into account one gets

M µρσ = xρ
(

Θµσ − F µν∂νA
σ
)
− xσ

(
Θµρ − F µν∂νA

ρ
)

+ S µρσ

= xρ Θµσ − xσ Θµρ − ∂ν
(
xρF µνAσ − xσF µνAρ

)
= xρ Θµσ − xσ Θµρ − ∂ν [F µν (xρAσ − xσAρ) ]

4Frederik J. Belifante, On the spin angular momentum of mesons, Physica 6 (1939)
887-898; L. Rosenfeld, Sur le tenseur d’impulsion-énergie, Mémoires de l’Academie Roy.
Belgique 18 (1940) 1-30.
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The very last term does not contribute at all to the continuity equation by
virtue of the anti-symmetry with respect to the pair of indexes µ ν . Hence
we obtain the improved total angular momentum density, a third rank tensor
of a pure orbital form

Mµ
ρσ = M µ

ρσ + ∂ ν [F µν (xρAσ − xσ Aρ ) ]

= xρ Θµ
σ − xσ Θµ

ρ

in such a manner that the continuity equations hold true, viz.,

∂µM
µ
ρσ = ∂µM

µ
ρσ = 0

On the one hand, it is clear that the classical spin angular momentum second
rank tensor of the radiation field is neither conserved in time nor gauge
invariant since we have

∂λS
λµρ(x) = T ρµ(x)− T µρ(x) = F µν(x) ∂ ρAν(x)− F ρν(x) ∂ µAν(x) 6= 0

and thereby the integrated quantities

Σ%σ(t) =

∫
dx
(
A%(t,x)F 0

σ(t,x)− Aσ(t,x)F 0
%(t,x)

)
Σ0(t) =

∫
dx E (t,x)A0(t,x)

Σk(t) =

∫
dx
{
E(t,x)Ak(t,x)− Ek(t,x)A(t,x)

}
turn out to be time and gauge dependent, in general. However, if we select
the radiation gauge or Coulomb gauge ∇·A = 0 , A0 = 0 , in which only the
transverse and physical components of the vector potential are involved, we
find Σ0 ≡ 0 , Σ̇ = 0 because

cE = − Ȧ Ė = c∇×B (2.112)

Σ̇ =

∫
dx [∇×B(t,x) ]×A(t,x) =̇ 0 (2.113)

On the other hand, it turns out to be manifest that the total angular
momentum tensor can always appear to be of a purely orbital form. As a
consequence we get the three spatial components

M ı =
1

c2

∫
dx
{
x ı S(t,x)− x S ı(t,x)

}
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of the total angular momentum spatial vector for the radiation field

M = (M23,M31,M12) ≡
1

c

∫
x× (E×B) d3x

while the spatial-temporal components

M 0k = x0 c P k −
∫

dx xk Θ00(t,x)

lead to the definition of the center of the energy for the radiation, viz.,

X t ≡
∫

d3x
x

W
Θ00(t,x)

that satisfies the suggestive particle light ray relationship

Ṁ 0k = 0 ⇐⇒ Ẋ t ≡ ∂tX t = c2 P/W
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Chapter 3

The Scalar Field

In this chapter we shall analyze the quantum theory for a real Klein-Gordon
field. As a first step we obtain the most general real solution of the Klein-
Gordon evolution equation. This leads to the normal modes expansions of a
Klein-Gordon field. Once this expansion is available we shall investigate the
Hamiltonian formulation of the dynamics and quantize the system according
to the canonical Heisenberg-Dirac procedure. The general structure of the
Fock space of the states and the Lorentz covariance properties of the Klein-
Gordon quantum field will be discussed. Finally, the Feynman propagator
and the Euclidean formulation for scalar field theory will be developed.

3.1 General Features

The simplest though highly nontrivial example of a quantum field theory
involves a real scalar field φ : M → R . As we shall see below, the Lorentz
scalar Hermitean quantum field describes neutral spin-less massive or mass-
less particles. The most general Poincaré invariant Lagrange density that
fulfill all the criteria listed in section 2.2 takes the general form

L = 1
2
∂µφ(x) ∂ µφ(x)− V [φ(x) ] (3.1)

where V(φ) is assumed to be a real analytic functional of its relativistic wave
field argument, that is

V [φ(x) ] = υm4 + κm3 φ(x)± 1

2
m2 φ 2(x) +

g

3!
mφ 3(x) +

λ

4!
φ 4(x) + · · ·

with m > 0 and υ,κ, g, λ ∈ R . Notice that the structure of the kinetic term
is such to fix the canonical dimension of the scalar field : [φ ] = cm−1 = eV
in natural units ~ = c = 1 . Moreover, the important case of the negative
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quadratic mass term does generally provide the remarkable phenomenon of
the spontaneous symmetry breaking, which lies at the heart of the present day
Standard Model of the High Energy Particle Physics and Quantum Field
Theory of the Fundamental Interactions.

The Euler-Lagrange field equations of motion read

�φ(x) + κm3 ±m2 φ(x) +
g

2
mφ 2(x) +

λ

6
φ 3(x) + · · · = 0 (3.2)

while the conserved energy-momentum tensor (2.96) and vector (2.97) are

Tµν (x) = ∂µφ(x) ∂ ν φ(x)− gµν L(x) = T νµ (x) (3.3)

Pµ =

∫
T 0

µ (x) dx =

∫
dx
[
∂ 0φ(x)∂µφ(x)− g 0µ L(x)

]
(3.4)

It is very easy to check that thanks to the Euler-Lagrange equations of motion
the energy-momentum current is conserved, i.e.

∂µ T
µ
ν (x) = 0

Proof. As a matter of fact we readily find

∂µT
µ
ν(x) = (�φ(x)) ∂νφ(x) + (∂ µφ(x)) ∂µ∂νφ(x)− ∂ν L(x)

= (�φ(x)) ∂νφ(x) + (∂ µφ(x)) ∂µ∂νφ(x)− ∂ν
(

1
2 ∂ρφ(x) ∂ ρφ(x)− V [φ(x) ]

)
= (�φ(x)) ∂νφ(x) + [ δ V/δφ(x) ]∂νφ(x) =

(
�φ(x) +

δ V
δφ(x)

)
∂νφ(x) = 0

owing to the Euler-Lagrange equations of the motion �φ+ δV/δφ = 0 . �

Moreover, the stability requirement that the total energy must be bounded
from below, to avoid a collapse of the mechanical system, entails that the
analytic potential has to be a bounded from below functional of the real
scalar field. Finally, as it will be better focused later on, the constraining
criterion of power counting renormalizability for the corresponding quantum
field theory will forbid the presence of coupling parameters with canonical
dimensions equal to positive integer powers of length. In such a circumstance,
the Lagrange density for a self-interacting, stable, renormalizable real scalar
field theory reduces to

L(x) = 1
2
g µν ∂µφ(x)∂ νφ(x)− V [φ(x) ] (3.5)

V [φ(x) ] = V0 + κm3 φ(x)± 1

2
m2 φ 2(x) +

mg

3!
φ 3(x) +

λ

4!
φ 4(x)
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in which V0 is a finite classical zero point energy, while κ, g and λ are real
numerical constants, the dimensionless positive coupling λ > 0 just endorsing
stability. Hence we obtain the canonical conjugate momentum field

Π(x) ≡ δL

δ∂0φ(x)
=

δS

δ∂0φ(x)
= ∂0φ(x) = φ̇(x) (3.6)

S ≡
∫ tf

ti

dt L(t) L(t) ≡
∫

dxL(t,x) (3.7)

To proceed further on we shall restrict ourselves to the paradigmatic case of
the λφ4

4 even functional potential

V [φ(x) ] =
1

2
m2 φ 2(x) +

λ

4!
φ 4(x) (3.8)

which corresponds to the self-interacting theory of a neutral spin-less field
in four space-time dimensions, the so called λφ4

4 field theory, with a null
minimum classical energy. This model is actually picked out if we impose the
internal discrete symmetry Z2 that is the invariance of the classical Action
under the transformation

φ(x) 7−→ φ ′(x) = −φ(x)

Hence the Lagrangian must be either even or odd, but stability enforces the
even choice i.e. the λφ4

4 self-interaction. The classical Hamiltonian functional
can be obtained through the functional Legendre transformation

H[φ,Π ] =

∫
dx
{
φ̇(t,x) Π(t,x)− L[φ(t,x), φ̇(t,x) ]

}
(3.9)

and reads

H ≡ P 0 =

∫
T 0
0 (x0,x) dx = H0 +HI ≥ 0

H0 =

∫
1
2

[
Π 2 (x)− φ(x)∇ 2φ(x) +m2 φ 2(x)

]
dx (3.10)

HI =

∫
λ

4!
φ 4(x) dx (3.11)

Furthermore, from Nöther’s theorem we get the total momentum

P ≡ −
∫

dx Π(x)∇φ(x) (3.12)
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and the total angular momentum, which is of the pure orbital form for a
scalar field, viz.,

Lµν =

∫
dx
[
xµ T 0ν (t,x)− x ν T 0µ (t,x)

]
(3.13)

We observe en passant that the above expressions are indeed obtained by
making use of the asymptotic radial behavior

lim
|x|→∞

|x|φ(x0,x) x ·∇φ(x0,x) = 0

by virtue of which and of the Gauß theorem we can write∫
dx ∇φ(x) ·∇φ(x) = −

∫
dx φ(x)∇ 2φ(x)

It is also worthwhile to remark that the angular momentum density third
rank tensor

M λ
µν (x) = xµ T

λ
ν (x)− x ν T λ

µ (x)

does fulfill the continuity equation thanks to the symmetry of the canonical
energy-momentum tensor T ρσ(x) .

The field equations can also be rewritten in the Hamiltonian formalism.
To this concern, let me remind that for any pair of functional of the real
scalar field and its conjugate momentum one can readily define the functional
Poisson’s bracket{

F [φ,Π] , G[φ,Π]
}
≡∫

dx

(
δF [φ,Π]

δφ(t,x)
· δG[φ,Π]

δΠ(t,x)
− δF [φ,Π]

δΠ(t,x)
· δG[φ,Π]

δφ(t,x)

)
(3.14)

Hence, from the fundamental canonical Poisson’s brackets

{φ(t,x) , Π(t,y)} =

∫
dz

δφ(t,x)

δφ(t, z)
· δΠ(t,y)

δΠ(t, z)

=
∫

dz δ(x− z) δ(y − z)

= δ(x− y)

{φ(t,x) , φ(t,y)} = 0 = {Π(t,x) , Π(t,y)}

one can immediately get{
φ̇(x) = {φ(t,x) , H } = δH/δΠ(x)

Π̇(x) = {Π(t,x) , H } = − δH/δφ(x)
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and thereby

φ̇(x) = Π(x) (3.15)

Π̇(x) = φ̈(x) = ∇ 2φ(x)−m2 φ(x)− λ

3!
φ 3(x) (3.16)

which is nothing but the Euler-Lagrange field equation

(�+m2 )φ(x) = − 1
6
λφ 3(x) (3.17)

Proof. As a matter of fact we find

φ̇(t,x) = {φ(t,x) , H } =

∫
dz

δφ(t,x)

δφ(t, z)
· δH[φ,Π]

δΠ(t, z)
=

∫
dz δ(x− z)

δH[φ,Π]

δΠ(t, z)

=
δH[φ,Π]

δΠ(t,x)
= 1

2

∫
dy

δΠ2(t,y)

δΠ(t,x)
=

∫
dy Π(t,y) δ(x− y) = Π(t,x)

Π̇(t,x) = {Π(t,x) , H } = −
∫

dz
δΠ(t,x)

δΠ(t, z)
· δH[φ,Π]

δφ(t, z)
= −

∫
dz δ(x− z)

δH[φ,Π]

δφ(t, z)

= − δH[φ,Π]

δφ(t,x)
= 1

2

∫
dy

δ

δφ(t,x)

[
φ(t,y)∇ 2φ(t,y)

]
−

∫
dy δ(x− y)

[
m2 φ(t,y) +

λ

6
φ 3(t,y)

]
Now we get

1
2

∫
dy

δ

δφ(t,x)

[
φ(t,y)∇ 2φ(t,y)

]
= 1

2

∫
dy
[
δ(x− y)∇2φ(t,y) + φ(t,y)∇2

y δ(x− y)
]

= 1
2 ∇2φ(t,x) + 1

2

∫
dy φ(t,y)∇2

x δ(x− y)

= 1
2 ∇2φ(t,x) + 1

2∇
2
x

∫
dy φ(t,y) δ(x− y) = ∇2φ(t,x)

Putting altogether we can eventually write

Π̇(t,x) = − δH[φ,Π]

δφ(t,x)
= ∇2φ(t,x)−m2 φ(t,x)− λ

3!
φ 3(t,x)

which endorses the Euler-Lagrange field equations. �

Action and Lagrangian in Physical Units. According to the classical mechanics of
continuous systems we have

S[φ ] =

∫ t f

t i

dt L[φ, φ̇ ] =

∫ t f

t i

dt

∫
dxL[φ(t,x), φ̇(t,x) ]

so that in the C. G. S. system of units [S ] = eV s . As a consequence the Lagrangian
functional for a real self-interacting classical scalar field in physical units takes the form

L[φ(t,x), φ̇(t,x) ] =
1

2c2
φ̇2(t,x)− 1

2
| ∇φ(t,x) |2 −m

2c2

2~2
φ2(t,x)− λ

4!~c
φ4(t,x)
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whence we can readily get

[L ] = eV cm−3 [φ ] =
√

eV/cm λ ≥ 0

and from its very definition

Π(t,x) = δL[φ(t,x), φ̇(t,x) ]/δφ̇(t,x) = φ̇(t,x)/c2 [ Π ] = eV
1
2 s cm−

5
2

so that [ Πφ̇ ] = eV/cm3. Thus we obtain the classical non-vanishing Poisson’s brackets

{φ(t,x) , Π(t,y)} =

∫
dz

δφ(t,x)

δφ(t, z)
· δΠ(t,y)

δΠ(t, z)

=
∫

dz δ(x− z) δ(y − z) = δ(x− y)

while the Hermitean quantum field operator valued distributions φ̂(t,x) and Π̂(t,y) keep
the very same physical dimensions so that the canonical commutation relations yields

[ φ̂(t,x) , Π̂(t,y) ] = i~ δ(x− y) = i~ {φ(t,x) , Π(t,y)}

all the other commutators being null, according to the Dirac-Heisenberg correspondence

principle of quantum theory.

It turns out that nobody still knows any exact solution of the
simplest classical field theoretic model: namely, a mass-less scalar field with
φ4
4 self-interaction in the 1+3 dimensional Minkowski space M

�φ(x) + 1
6
λφ3(x) = 0 (x ∈M , λ > 0 )

Spontaneous Symmetry Breaking. Consider the classical Lagrangian for a real
scalar field

L = 1
2 ∂µφ(x) ∂ µφ(x) + 1

2 µ
2 φ2 (x)− 1

4 λφ
4 (x)

with µ ∈ R and λ > 0 . The invariance symmetry groups of the model are the non-
homogeneous full Lorentz group IO(1,3) and the internal discrete symmetry group
Z2 . The canonical energy-momentum tensor of the model, which is symmetric, is
provided by

T µν =
δL

δ ∂µφ(x)
∂ ν φ(x) − L(x) g µν = T ν µ

in such a manner that we obtain the classical Hamiltonian functional

H =
1

2

∫
dx
[

Π 2(t,x) + |∇φ(t,x)| 2 − µ 2 φ 2(t,x) + 1
2 λφ

4(t,x)
]

= cP0

which represents the total energy of the system, as well as the total momentum

P = −
∫

dx Π(t,x)∇φ(t,x)
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Notice that the mass term in the Hamiltonian just corresponds to an imaginary
tachyon-like mass iµ . The classical field configurations which minimize the total
energy are required to satisfy

Π(t,x) = φ̇(t,x) = 0 ∇φ(t,x) = 0

which yields φ = constant and thereby

dH

dφ
= −µ2 φ+ λφ3 = 0 ⇒ φ = 0 ∨ φ2 =

µ2

λ
≡ v 2 > 0

in such a manner that

H(φ = 0) = 0 H(v) = − 1
4 µ

2 v 2
∫

dx < 0

that means that the two constant field configurations that minimize the energy
density are φ± = ± v which are evidently Z2 symmetric. After setting

φ(x) = v + ϕ(x) ϕ̇(x) = Π(x)

we readily obtain

Lϕ = 1
2 ∂ν ϕ(x) ∂ ν ϕ(x) + 1

2 µ
2 [± v + ϕ(x) ]2 − 1

4 λ [± v + ϕ(x) ]4

= 1
2 ∂ν ϕ(x) ∂ ν ϕ(x) + 1

2 µ
2 v 2 + 1

2 µ
2 ϕ2 (x)± µ2 vϕ(x)

− 1
4 λ
(
v 4 ± 4v 3ϕ(x) + 6v 2ϕ2 (x)± 4v ϕ3 (x) + ϕ4 (x)

)
= 1

2 ∂ν ϕ(x) ∂ ν ϕ(x) + 1
4 λ v

4 − µ2 ϕ2 (x)

∓ λ v ϕ3 (x)− 1
4 λϕ

4 (x)

and thereby

H = H0 +H int

H0 = 1
2

∫
dx
[

Π2(t,x) + |∇ϕ(t,x)|2 + 2µ2 ϕ2(t,x)− µ4/2λ
]

H int =

∫
dx
[

1
4 λϕ

4(t,x)± µ
√
λϕ3 (t,x)

]
It follows that the shifted field ϕ(t,x) has a mass µ

√
2 , while a negative zero-point

energy density does appear at the classical level, viz.

ρ0 = − µ
4c5

4λ~3
= − λυ 4

4(~c)3

where υ is expressed in GeV, whereas the Z2 symmetry is definitely broken.
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3.2 Normal Modes Expansion

Consider the non-interacting or free scalar field theory, in which the Action,
the Lagrangian and the Hamiltonian are quadratic functional of the scalar
field function, so that the Euler-Lagrange equations of motion becomes linear
and exactly solvable

L0 = 1
2
g µν ∂µφ(x) ∂ ν φ(x)− 1

2
m2 φ 2(x) (3.18)

H0 = 1
2

∫
dx
[

Π 2(x)− φ(x)∇2φ(x) +m2 φ 2(x)
]

(3.19)

(
� +m2

)
φ(x) = 0 (3.20)

which is the well known Klein-Gordon relativistic wave equation. To solve it,
let us introduce the Fourier decomposition

φ(x) ≡ (2π)−3/2
∫

dk φ̃(k) exp{− ik · x} φ̃∗(k) = φ̃(−k) (3.21)

so that
(k2 −m2) φ̃(k) = 0

the most general solution of which reads

φ̃(k) = f(k) δ(k2 −m2)

f(k) being an arbitrary complex function which is regular on the momentum
space hyperbolic manifold k 2 = m2 (k ∈ M) and which fulfill the reality
condition f ∗(k) = f(−k) to endorse the real nature of a neutral scalar field.
Then we have

φ(x) ≡ (2π)−3/2
∫

dk f(k) δ(k2 −m2) exp{− ik · x} (3.22)

and from the well known tempered distribution identities

δ(ax) =
1

|a|
δ(x) θ(x) + θ(−x) = 1 (3.23)

one can readily obtain the decomposition

δ(k2 −m2) =
1

2ωk

[ θ(k0) δ(k0 − ωk) + θ(− k0) δ(k0 + ωk) ]

in which the Klein-Gordon dispersion relation holds true

ωk = ω(k) ≡ c
√

k 2 +m2c2/~2 = ω−k (3.24)
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Hence

φ(x) = (2π)−3/2
∫

dk f(k) exp{− ik · x}

× 1

2ωk

[ θ(k0) δ(k0 − ωk) + θ(− k0) δ(k0 + ωk) ]

= (2π)−3/2
∫

dk

2ωk

f(ωk,k) exp{− itωk + ik · x}

+ (2π)−3/2
∫

dk

2ωk

f(−ωk,−k) exp{itωk − ik · x}

=

∫
dk

[ 2ωk(2π)3 ] 1/2
· f(ωk,k)√

(2ωk)
exp{− itωk + ik · x}+ c.c.

where we used the reality condition. It is very convenient to set

uk(x) ≡
√
c [ 2ωk(2π)3 ]−

1
2 exp{ik · x− itωk} (3.25)

so that [uk ] =
√

cm while

φ(x) =
∑
k

[
fk uk(x) + f ∗k u

∗
k(x)

]
Π(x) =

∑
k

iωk

[
f ∗k u

∗
k(x)− fk uk(x)

]
(3.26)

with the suitable notations

fk ≡
f(ωk,k)√

(2ωk)

∫
dk ≡

∑
k

which endorse the fact that (3.26) is nothing but the normal modes expansion
of the real scalar field. The wave functions uk(x) (k ∈ R3) do constitute a
complete and orthogonal set, i.e. the normal modes of the real scalar free
field: namely, they fulfill the orthogonality relations

(uh , uk ) ≡
∫

dx u∗h(x) i
↔
∂ 0 uk(x) = δ(h− k) (3.27)

(u∗h , u
∗
k ) ≡

∫
dx uh(x) i

↔
∂ 0 u

∗
k(x) = − δ(h− k) (3.28)

(u∗h , uk ) ≡
∫

dx uh(x) i
↔
∂ 0 uk(x) = 0 (3.29)

(uh , u
∗
k ) ≡

∫
dx u∗h(x) i

↔
∂ 0 u

∗
k(x) = 0 (3.30)
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as well as the closure relations∑
k

uk(x)u∗k(y) = − iD (−) (x− y) (3.31)∑
k

u∗k(x)uk(y) = iD (+) (x− y) (3.32)

where I have set

D (±) (x− y)
def
= ∓ i

∫
d4k

(2π)3
θ (k0 ) δ

(
k 2 −m2c2/~2

)
e± ik·(x−y)

From these orthogonality relations it is easy to invert the normal modes
expansions that yields

(uh , φ ) = (uh ,
∑

k[ fk uk + f ∗k u
∗
k ] )

=
∑
k

[
fk (uh , uk ) + f ∗k (uh , u

∗
k )
]

=
∑
k

fk δ(h− k) = fh (3.33)

(u∗h , φ ) = − f ∗h (3.34)

Notice that the amplitudes fk of the normal modes have canonical dimensions
[ fk ] =

√
eV cm2 in physical units and [ fk ] = cm

3
2 in natural units.

As it is well known the normal modes decomposition is what we need
to set into diagonal form the energy-momentum vector of the mechanical
system. As a matter of fact, from the equality in natural units

P0 =

∫
dx 1

2

[
Π2 (x) + ∇φ(x) ·∇φ(x) +m2φ2(x)

]
=

∫
dx 1

2

{
φ̇(x) Π(x)− φ(x)

[
∇ 2φ(x)−m2 φ(x)

]}
=

∫
dx 1

2

{
φ̇(x) Π(x)− φ(x) Π̇(x)

}
=

∫
dx 1

2
Π(x)

↔
∂0 φ(x) (3.35)

P =

∫
dx 1

2

{
φ(x)∇φ̇(x)− φ̇(x)∇φ(x)

}
=

∫
dx 1

2
φ(x)

↔
∂0∇φ(x) (3.36)
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by substituting the normal modes expansions

φ(x) =
∑
k

[
fk uk(x) + f ∗k u

∗
k(x)

]
Π(x) =

∑
p

i ωp

[
f ∗p u

∗
p(x)− fp up(x)

]
from the orthogonality relations we obtain

P0 =
∑
k

∑
p

1
2
ωp

∫
dx
[
f ∗p u

∗
p(x)− fp up(x)

]
i
↔
∂0

[
fk uk(x) + f ∗k u

∗
k(x)

]
=

∑
k

∑
p

1
2
ωp

[
f ∗p fk (up , uk )− fp f ∗k

(
u ∗p , u

∗
k

) ]
=

∑
k

1
2
ωk

(
fkf

∗
k + f ∗k fk

)
=

∫
dkω(k)| f(k) | 2 (3.37)

Moreover we find

P =
∑
k

∑
p

1
2
p

∫
dx
[
fk uk(x) + f ∗k u

∗
k(x)

]
i
↔
∂0

[
fp up(x)− f ∗p u ∗p(x)

]
=

∑
k

∑
p

1
2
p
[
f ∗p fk (up , uk )− fp f ∗k

(
u ∗p , u

∗
k

) ]
=

∑
k

1
2
k
(
fkf

∗
k + f ∗k fk

)
=

∫
dk k | f(k) | 2 (3.38)

in such a manner that we can definitely write

Pµ =
∑
k

1
2
kµ

(
fkf

∗
k + f ∗k fk

)
=

∫
dk kµ | f(k) | 2 ( k0 = ωk ) (3.39)

The complex amplitudes of the normal modes are called sometimes the
Holomorphic Coordinates of the real scalar Klein-Gordon field. It is also quite
evident that by introducing the related real canonical coordinates{

Qk ≡ (2mωk)−1/2 (fk + f ∗k)

Pk ≡ − i
(
1
2
mωk

) 1/2
(fk − f ∗k)

2fk = Qk

√
2mωk + iPk

√
2

mωk

(3.40)
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we can write eventually

P0 =
∑
k

Hk =
1

2m

∫
dk
(
P 2
k +m2ω 2

kQ
2
k

)
=

∑
k

1
2
ωk

(
fkf

∗
k + f ∗kfk

)
(3.41)

with
[Pk ] = g s−1 cm

5
2 [Qk ] = cm

5
2

which explicitly shows that a real scalar field is dynamically fully equivalent
to an assembly of an infinite number of decoupled harmonic oscillators of unit
mass and principal angular frequencies ωk = c (k 2 +m2c2/~2) 1/2 .

As a matter of fact, we can rewrite the field and conjugated momentum
expansions (3.26) in the suggestive form

φ(x) =
∑
k

[
fk(t)uk(x) + f ∗k(t)u∗k(x)

]
Π(x) =

∑
k

(iωk/c
2)
[
f ∗k(t)u∗k(x)− fk(t)uk(x)

]
(3.42)

where of course

fk(t) = fk exp{− itωk} f ∗k(t) = f ∗k exp{itωk} (3.43)

uk(x) =
√
c [ 2ωk(2π)3 ]−1/2 exp{ik · x}

and from the standard canonical Poisson’s brackets 1 for the linear oscillator

{Qh , Qk} = 0 {Ph , Pk} = 0

{Qh , Pk} = δ ( h− k)

from (3.40) it is very simple to derive the canonical Hamiltonian equations
for the time dependent holomorphic coordinates fk(t) : namely,

{fh , fk} = 0 = {f ∗h , f ∗k} {fh , f ∗k} = − iδ(h− k) (3.44)

ḟk(t) = {fk(t) , H} = − iωk fk(t) (3.45)

the solution of which is just provided by (3.43).

1We recall the definition of the Poisson’s brackets for two analytic functions F and G
on the phase space of a mechanical system

{F , G} ≡
∑
i

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
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3.3 Klein-Gordon Quantum Field

Once that the dynamical treatment of the free real scalar field has been
developed within the canonical Hamiltonian formulation, the transition to
the quantum theory of the system will directly follow in accordance with the
Bohr-Dirac-Heisenberg correspondence principle – see any book of quantum
mechanics e.g. [18]. According to the rules of correspondence which lead to
the quantum theory of a linear harmonic oscillator, we shall introduce for
each normal mode of the real scalar field the corresponding linear operators
acting on the related Hilbert space and the associated algebra, i.e.

Qk 7−→ Q̂k = Q̂ †k Pk 7−→ P̂k = P̂ †k

P̂k = − i~ d

dQk

{Qk , Pk ′} 7−→ 1

i~
[ Q̂k , P̂k ′ ]

Hk 7−→ Ĥk =
1

2m

(
P̂ 2

k +m2ω 2
k Q̂

2
k

)
(3.46)

and the Poisson’s brackets among the holomorphic coordinates turn into the
commutators among the creation destruction operators

fk 7−→
√
~c ak f ∗k 7−→ a †k

√
~c (3.47)

[ ak , ak ′ ] = 0 [ a†k , a
†
k ′ ] = 0 (3.48)

[ ak , a
†
k ′ ] = δ(k− k ′) (3.49)

As a consequence the scalar field function φ(x) together with its conjugated
momentum Π(x) will turn, after the transition to the quantum theory, into
operator valued tempered distributions, the normal modes expansions of which
can be obtained in a straightforward way from (3.26) and (3.47), that is

φ(x) =
∑
k

[
ak uk(x) + a†k u

∗
k(x)

]√
~c

cΠ(x) = i
∑
k

ωk

c

[
a†k u

∗
k(x)− ak uk(x)

]√
~c (3.50)

uk(x) ≡
√
c [ 2ωk(2π)3 ]−

1
2 exp{ ik · x− iωkt} (3.51)

[φ(t,x) , φ(t,y) ] = 0 = [ Π(t,x) , Π(t,y) ]

[φ(t,x) , Π(t,y) ] = i~δ (x− y) (3.52)
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together with the inversion formulæ – see eq.s (3.33) and (3.34)

(uk , φ ) = ak

√
~c (u∗k , φ ) = − a†k

√
~c (3.53)

This means that the classical expressions (3.39) and (3.41) of the energy and
momentum of the free real scalar field will turn into the quantum operator
expressions

cP0 =
∑
k

1
2

(
P̂ 2

k + ω 2
kQ̂

2
k

)
=

∑
k

1
2
~ωk

(
aka

†
k + a†kak

)
=

∑
k

~ωk a
†
kak + δ(0)

∑
k

1
2
~ωk (3.54)

P =
∑
k

1
2
~k
(
aka

†
k + a†kak

)
=

∑
k

~ka†kak (3.55)

It is worthwhile to spend some few words concerning the divergent quantity

cU0 = δ(0)
∑
k

1
2
~ωk ≡ V

∫
dk

(2π)3
1
2
~ωk

= V ~c
∫ K

0

dk
k2

4π2

√
k2 +m2c2/~2 (3.56)

where V is the volume of a very large box and ~K � mc is a very large
wave-number. The latter is called the vacuum energy or zero-point energy of
the real scalar field. Since we know that a free real scalar field is dynamically
equivalent to an infinite (continuous) set of linear oscillators, we can roughly
understand the divergent quantity U0 to be generated by summing up the
quantum fluctuations of the canonical pair of operators φ(t,x) and Π(t,x) ,

alias Q̂k and P̂k (k ∈ R3) at each point x ∈ V of a very large box in the
three dimensional space.

It turns out to be more appropriate to discuss the vacuum energy density,
i.e. the regularized vacuum energy per unit volume of the quantum real
scalar field. The vacuum state vector or vacuum state amplitude of the actual
quantum mechanical system under investigation is nothing but the ground
state of the system and physically corresponds to the absence of field quanta,
i.e. spin-less massive particles of rest mass m. It is defined by

ak |0〉 = 0 = 〈0 | a†k ∀k ∈ R3 (3.57)
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so that, after setting

c

V
〈0 |P0 |0〉 ≡ 〈 ρ 〉c2 =

~c
4π2

∫ K

0

k2 dk
√
k2 + (mc/~)2

together with ξ ≡ ~K/mc , then we have2

〈 ρ 〉 =
m4c3

4π2~3

∫ ξ

0

x2
√

1 + x2 dx

=
m4c3

16π2~3

[
ξ(1 + ξ2)3/2 − 1

2
ξ(1 + ξ2)1/2 − 1

2
ln
(
ξ +

√
1 + ξ2

)]
=

~K4

16π2c
+
m2cK2

16π2~
− m4c3

32π2~3

[
ln

(
~K
mc

)
− 1

4
+ ln 2 +O

(mc
~K

)2 ]
≈ K 3

16π2

(
~K
c

)
(~K � mc) (3.58)

The cosmological constant puzzle. If we trust in General Relativity and in Quantum
Field Theory up to the Planck scale

MP =
√
~c/GN = 1.220 93(7)× 10 19 GeV/c

2

= 2.176 51(13)× 10−8 kg

1 GeV/c
2

= 1.782 661 845(39)× 10− 27 kg

where GN is the Newtonian gravitational constant

GN = 6.673 84(80)× 10− 11 m3 kg−1 s−2

then we might take K ' `−1
P which eventually gives

〈 ρP 〉 ≈
MP

16π2 ` 3
P

≈ 2× 10 121 (GeV/c2 ) m− 3 ≈ 3× 10 94 kg m− 3 (3.59)

in which `P =
√
~GN/c3 = 1.616 20(10)×10−35 m denotes the Planck length. This mass

density value is a truly enormously large one, if we remember that the mass density of
the ordinary nuclear matter is 1.8 × 10 18 kg m− 3. So it is no surprise that Paul Adrian
Maurice Dirac soon suggested that this zero-point energy must be simply discarded, as it
turns out to be irrelevant for any laboratory experiment in which solely energy differences
are indeed observable. However, soon afterwards Wolfgang Pauli recognized that this
vacuum energy surely couples to Einstein’s gravity and it would then give rise to a large
cosmological constant, so large that the size of the Universe could not even reach the
earth-moon distance. On the contrary, the present day observed value of the so called
dark energy density of the Universe is

ρΛ = ΩΛ ρc =
3H2

0

8πGN
ΩΛ = 1.053 75(13)× 10−5 Ω 3

Λ ( GeV/c 2 ) cm− 3

2See for example [12] eq. (2.272 2.) p.105
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where ΩΛ = 0.685+0.017
−0.016 is the dark energy density fraction, H0 = 100 ΩΛ Km s−1 Mpc−1

is the present day Hubble expansion rate, while

ρc = 3H2
0/8πGN = 1.878 47(23)× 10− 26 h2 kg m− 3

is the critical mass density of the Universe, that is the observed total mass density of
the Universe which in turn entails a flat Euclidean Universe, h = 0.673(12) being the
scale factor for Hubble expansion rate. This leads to the cosmological constant order of
magnitude, viz.

Λ = 3ΩΛH
2
0/c

2 = 8πΩΛGN ρc/c
2 ' 10−52 m−2 (3.60)

which is extremely small but non-vanishing 3. This eventually means that the ratio

〈ρP 〉
ρΛ

= 1.14× 10 121

between the dark energy density and the vacuum energy density of any quantum field in

the Universe is of 121 orders of magnitude! This is the cosmological constant puzzle,

a somewhat paradoxical feature that still deserves some discussion. The solution of the

above apparent paradox lies in the inclusion of the Einstein theory of the gravitational

field, i.e. the General Relativity, where the quantum mechanical matter fields act as the

source of the classical gravitational field, which gives rise to a curved space-time other

than Minkowski space. In other words, it is mandatory to consider the quantum field

theory in a curved space and the related renormalization issue - to this concern see N.D.

Birrell & P.C.W. Davies (1982) Quantum fields in curved space, Cambridge University

Press, Cambridge (UK) chapter 6, § 6.1-2, pp. 150-173.

Leaving aside this intriguing topic, we now turn back to the realm of
Galileian laboratory experiments and endorse the Dirac’s point of view. To
this concern, we shall introduce the useful concept of an operator written
in normal form as well as the concept of the normal product of operators
[5]. The normal form of an operator involving products of creation and
annihilation operators is said to be the form in which in each term all the
creation operators are written to the left of all the annihilation operators.
Consider the simplest example: we write down in normal form the product
of the two Hermitean operators

F (x)G(y) ≡
∑
k

{
F ∗k(x) a†k + Fk(x) ak

}
×

∑
h

{
G∗h(y) a†h +Gh(y) ah

}
3This tiny but non-vanishing measured value of the cosmological constant does actually

provide a striking phenomenological evidence against super-symmetry (SUSY), the existence
of which has been nowadays definitely ruled out by experimental data of high energy
physics, astro-particle physics and cosmology.
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=
∑
k

∑
h

F ∗k(x)G∗h(y) a†k a
†
h + h.c.

+
∑
k

∑
h

(
F ∗k(x)Gh(y) + Fh(x)G∗k(y)

)
a†k ah

+
∑
k

Fk(x)G∗k(y) (3.61)

The sum of terms not involving any ordinary c−number functions is called
the normal product of the original operators. The normal product may also
be defined as the original product reduced to its normal form with all the
commutator functions being taken equal to zero in the process of reduction.
The normal product of the operators F (x) and G(y) is denoted by the symbol

: F (x)G(y) :
def
= F (x)G(y)−

∑
k

Fk(x)G∗k(y)

We now agree by definition to express all dynamical variables which are
bi-linear in the quantum operators with the same arguments, such as the
energy, momentum and angular momentum of the radiation fields, in the
form of normal products. For example, we shall write the energy-momentum
tetra-vector quantum operator

Pν =

∫
dx : T0ν(t,x) :

cP0 =

∫
dx 1

2
: c 2 Π 2(x)− φ(x) Π̇(x) c−2 : (3.62)

=

∫
dx 1

2
: c 2 Π 2 − φ4φ+ (mc/})2φ 2 : =

∑
k

}ωk a
†
kak (3.63)

P = −
∫

dx : Π(x)∇φ(x) : =
∑
k

}k a†kak (3.64)

Now, if we keep the definition of the vacuum state to be given by (3.57)
it follows that the expectation values of all the dynamical variables vanish
for the vacuum state, e.g. 〈Pµ 〉 ≡ 0 . By this method we exclude from the
theory at the outset the so called zero-point quantities of the type of the
zero-point energy, which usually arise in the process of setting up of the
quantum field theories and turn out to be, strictly speaking, mathematically
ill-defined divergent quantities.

As a final remark, from the canonical equal time commutation relations

[φ(x), φ(y) ]x0=y0 = 0 = [ Π(x),Π(y) ]x0=y0 [φ(x),Π(y) ]x0=y0 = i}δ(x−y)
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it immediately follows that

[φ(x), Pµ ] = i}∂µφ(x) [φ(x), Lµν ] = i}{xµ∂νφ(x)− xν∂µφ(x)} (3.65)

as it can be readily checked. It is then also easy to check that the definition
of the conjugate momentum field Π(x) and the Klein-Gordon field equation
can be recast into the canonical Heisenberg form, viz.,

φ̇(x) =
c

i}
[φ(x) , P0 ] = Π(x) c 2

Π̇(x)/c 2 =
1

i}c
[ Π(x) , P0 ] =

(
4−m2c 2/}2

)
φ(x)
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3.4 The Fock Space

The quantum theory of the non-interacting Klein-Gordon scalar field leads
to the concept of spin-less neutral massive particle. As a matter of fact, it
appears to be clear that the non-negative number operators a †k ak do possess
integer eigenvalues Nk = 0, 1, 2, . . . which are interpreted as the numbers
of particles of a given wave number k and a given energy ωk . The energy
or Hamiltonian operator turns out to be positive semi-definite and we can
readily derive, from the canonical commutators (3.52), the continuous and
unbounded spectra and the common eigenstates of the energy-momentum
commuting operators Pµ : namely,

E
({
Nk | k ∈ R3

})
=
∑
k

}ωkNk Nk = 0, 1, 2, . . . (3.66)

P
({
Nk | k ∈ R3

})
=
∑
k

}kNk Nk = 0, 1, 2, . . . (3.67)

3.4.1 The Many-Particle States

The setting up of the eigenstates leads to the well known construction of the
so called Fock space :

Vladimir Alexandrovich Fock
Sankt Petersburg 22.12.1898 – 27.12.1974
Konfigurationsraum und Zweite Quantelung
Zeitschrift der Physik A 75, 622–647 (1932).

Actually, in order to describe N−particle states, consider the state

| k1 k2 . . . kN〉 = (N !)−
1
2a†k1

a†k2
· · · a†kN

| 0 〉 (3.68)

with k1 6= k2 6= · · · 6= kN which satisfies

P µ | k1 k2 . . . kN〉 =
(∑N

=1 k
µ


)
| k1 k2 . . . kN〉 (3.69)

kµ =
(
ωk/c,k

)
(  = 1, 2, . . . , N ) (3.70)

It is very important to gather that, owing to the commutation relation
[ a †h , a

†
k ] = 0 , by its very construction any N−particle state is completely

symmetric under the exchange of any wave numbers, i.e. the neutral spin-less
particles obey the Bose-Einstein statistics.

In particular, the 1-particle energy-momentum eigenstates are given by
|k 〉 = a†k | 0 〉 and satisfy

P µ |k 〉 = }kµ |k 〉 kµ = (ωk/c,k)
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The 1-particle wave functions in the coordinate representation, for a given
wave number, are defined in terms of the matrix elements of the field operator
(3.50) and read

uk (x) ≡ 〈 0 |φ(x) |k 〉 =

√
c

2ωk(2π)3
exp{− iωkt+ ik · x} (3.71)

Notice that they turn out to be normalized in such a way to satisfy the
orthogonality and closure relations

(uk , uh ) ≡
∫

dx u ∗k (x) i
↔
∂0 uh (x) = δ (k− h) (3.72)∑

k

u ∗k (y)uk (x) ≡ (− i )D (−) (x− y) (3.73)

iD (±) (x) =
± 1

(2π)3

∫
dk δ

(
k 2 −m2

)
θ (k0) exp{± ik · x} (3.74)

The 1-particle wave functions (3.71) satisfy by construction the Klein-Gordon
wave equation (

�+m2
)
uk (x) = 0 ∀k ∈ R3

and do thereby represent a complete orthogonal basis, with respect to the
inner product, in the 1-particle Hilbert space

H1 = V1 V1 = { |k 〉 = a †k | 0 〉 k ∈ R 3}

More precisely, eq. (3.71) does explicitly realize the isomorphism between
the Fock space representation H1 of the space of 1-particle states and the
space-time coordinate representation L2(R3) of the 1-particle wave functions
with respect to (3.72).

It turns out that the previously introduced 1-particle energy-momentum
eigenstates |k 〉 = a†k | 0 〉 are improper states and have to be normalized, in
the generalized sense of the tempered distributions, according to

〈h |k 〉 = δ (h− k ) (3.75)

Moreover they satisfy the closure or completeness relation in the 1-particle
Hilbert space H1 that reads∑

k

|k 〉〈k | = I1 (3.76)

It is important to remark that these orthogonality and closure relations, as
well as the normal modes decomposition (3.50), are not manifestly Lorentz
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covariant. As a consequence, the insofar developed quantum procedure for
a real scalar field is set up in a particular class of inertial reference frames
connected by spatial rotations belonging to the group SO(3) .

The N−particle wave functions in the coordinates representation can be
readily obtained in the completely symmetric form

uN (x1, x2, . . . , xN) = (N ! )−1/2
N∏
j=1

ukj
(xj)

≡ 〈 x1 x2 . . . xN |k1 k2 . . . kN〉 (3.77)

Furthermore, we can write the generic normalized element of the N−particle
completely symmetric Hilbert space – the closure of the symmetric product
of 1–particle Hilbert spaces

HN ≡ VN VN = {H1

s
⊗ H1

s
⊗ . . .

s
⊗ H1︸ ︷︷ ︸

N times

} ≡ H
s
⊗n
1 (3.78)

in the form

|ϕN〉 ≡
∑
k1

∑
k2

. . .
∑
kN

ϕN(k1,k2, . . . ,kN) |k1 k2 . . . kN〉

with ∑
k1

∑
k2

. . .
∑
kN

|ϕN(k1,k2, . . . ,kN) | 2 = 1

To end up, we are now able to write the generic normalized element of the
Fock space of the spin-less neutral scalar particle states

F ≡ C⊕H1 ⊕H2 ⊕ . . . ⊕HN ⊕ . . . =
∞⊕
n=0

H
s
⊗n
1 (3.79)

in the form

|Φ 〉 =
∞∑
N=0

CN |ϕN 〉
∞∑
N=0

|CN | 2 = 1

which summarizes the setting up of the Fock space of the particle states, the
structure of which is characterized by the canonical quantum algebra (3.52)
and the energy momentum operators (3.64). From the above construction
of the Fock space of the states of a free real scalar field, it appears quite
evident that all the quantum states can be generated by linear combinations
of repeated applications of the creation operators on the vacuum state. This
property is known as the cyclic property of the vacuum state.
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Many-Particle States. Sometimes, in order to avoid too many dummy δ−factors
in the calculations, it is more convenient to restrict, without any loss of generality, the
normal modes uk(x) to the interior of a space-like symmetric 3-torus of very large side L,
i.e. to choose periodic boundary conditions in the three dimensional ordinary space. Then
we get

uk(x) = [ (2π)3ωk ]−
1
2 exp{ ik · x− itωk} (3.80)

where k = 2πn/L , n ∈ Z3 , ωk =
√

k2 +m2, in such a manner that states an wave
functions are properly normalized in terms of the Kronecker symbols

(uk′ , uk) = 〈k′|k〉 = δnn′

(
L

2π

)3

≡ δkk′ (3.81)

〈k |k〉 = δ(3)(0) −→
(
L

2π

)3

=
Vol

(2π)3

Hence, a generic (N, r)−particle improper state can be written in the admittedly rather
cumbersome notation

|νk1
. . . , νkr

〉N =

r∏
=1

(
νk

!
)− 1

2

(
a†k

)ν k

|0〉
r∑
=1

νk
= N (3.82)

where {k ∈ R3 , νk
∈ N |  = 1, 2, . . . , r} so that we can suitably rewrite the normalization

of the many-particle states in the full Kronecker form, albeit suitably keeping the same
canonical engineering dimensions of the improper continuum case,

N ′〈ν ′k1
. . . , ν ′ks

| νk1
. . . , νkr

〉N =

δNN ′ δ rs
∑

[ perm ]

δk1k ′
p(1)
· · · δk rk ′

p(s)
δ ν 1ν ′

p(1)
· · · δ ν rν ′

p(s)

in which the sum is over the s! permutations of the integers

{1, 2, . . . , s} p−→ { p(1),p(2), . . . ,p(s)}

while the wave vector is omitted in the Kronecker symbol for the particle multiplicity νk

for the sake of brevity and in order to lighten the expressions. From the creation and
destruction parts of the Klein-Gordon quantum field operator

φ(+)(x) =
√
~c
∑
k

a†k u
∗
k(x) = [φ(−)(x) ]† φ(−)(x) =

√
~c
∑
k

ak uk(x) (3.83)

[φ(+)(x) ]∗ =
√
~c
∑
k

a†k uk(x)

which separately satisfy the Klein-Gordon wave equation, we can suitably build up the
self-adjoint number operator

1

~c

(
φ(+) ∗ , φ(−)

)
≡

∑
k

∑
k′

a†k ak′

∫
dxu∗k(t,x)

↔
∂0 uk′(t,x)

=
∑
k

∑
k′

a†k ak′ (uk , uk′) =
∑
k

a†k ak ≡ N (3.84)

115



which admits the set of the many-particle states as a complete and orthogonal basis

N |νk1
. . . , νkr

〉N = N |νk1
. . . , νkr

〉N (3.85)

as one can readily check by direct inspection by making a repeated use of the canonical
commutation relations among particle creation and destruction operators. Moreover, since
any pair of many-particle states with a different number of quanta are always mutually
orthogonal, it is a rather simple exercise to show that the matrix elements of the number
operator are actually non-vanishing in each subspace HN of the Fock space

N ′〈ν ′k1
. . . , ν ′ks

|N | νk1
. . . , νkr

〉N =

N δNN ′ δ rs
∑

[ perm ]

δk1k ′
p(1)
· · · δk rk ′

p(s)
δ ν 1ν ′

p(1)
· · · δ ν rν ′

p(s)
(3.86)

In such a circumstance, one can eventually show that e.g. the positive frequency Wightman
distribution is replaced by

1

~c

(
2π

L

)3r

N 〈νk1
. . . , νkr

|φ(x′)φ(x) | νk1
. . . , νkr

〉N

= −iD(−)(x′ − x) +

r∑
ı=1

νkı

[
ukı

(x′)u∗kı
(x) + u∗kı

(x′)ukı
(x)
]

(3.87)

If the number r of the involved wave numbers and the side L of the 3-torus are very large,
then we can pass to the continuum limit and replace the right-hand side of the above
expression with

1

~c

(
2π

L

)3r

N 〈νk1
. . . , νkr

|φ(x′)φ(x) | νk1
. . . , νkr

〉N (3.88)

= −iD(−)(x′ − x) +

∫
dk nk [uk(x′)u∗k(x) + u∗k(x′)uk(x) ] (3.89)

where nk does now represent the density of the states, i.e., the real number of the 1-particle
states with the wave number between k and k + dk in such a manner that∫

dk nk = N

3.4.2 The Lorentz Covariance Properties

We end up this section by discussing the behavior of the N−particle states
and of the field operators under Lorentz transformations. Firstly we recall
that the above introduced 1-particle states of the basis{

|k 〉 = a†k | 0 〉 |k ∈ R 3
}

in the Hilbert space H1 do not satisfy Lorentz covariant orthogonality and
completeness relations. To remedy this, let us first consider the completeness
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relation and the trivial identity

IH1 =
∑
k

|k 〉〈k | =
∫

dk a†k | 0 〉〈 0 | ak

=

∫
dk

(2π)3 2ωk

[ (2π)3 2ωk ]
1
2 a†k | 0 〉〈 0 | ak [ (2π)3 2ωk ]

1
2

def
=

∫
Dk a†(k) | 0 〉〈 0 | a(k) ≡

∫
Dk | k 〉〈 k |

whence we get∫
Dk ≡

∫
c dk

(2π)3 2ωk

=
1

(2π)3

∫
d4k θ(k0) δ

(
k2 −m2c 2/}2

)
| k 〉 ≡ [ (2π)3 2ωk/c ]

1
2 a†k | 0 〉 = a†(k) | 0 〉

The Lorentz invariant completeness relation for the 1-particle Hilbert space
H1 can also be written in the two equivalent forms∑

k

|k 〉 〈k | = IH1 =

∫
Dk | k 〉〈 k |

Now it is clear that the 1-particle states of the new basis, which will be named
covariant 1-particle states,

H1 =
{
| k 〉 = 2(2π)3

ωk

c
a†k | 0 〉 | k ∈ R3

}
(3.90)

fulfill manifestly Lorentz covariant orthogonality relations

〈 k ′ | k 〉 = 2(2π)3
ωk

c
δ (k− k ′) (3.91)

Consider in fact any complex scalar field in momentum space ϕ ′(k ′) = ϕ(k) , where
k ′µ = Λµν k

ν , which is supposed to be regular on the upper mass shell hyperboloid
{k 2 = m 2 | k0 > 0} . Then we can write∫

D k 〈 p | k 〉ϕ(k) =
1

(2π)3

∫
d4k θ(k0) δ

(
k2 −m2

)
〈 p | k 〉ϕ(k)

=

∫
dk

(2π)3 2ωk
2(2π)3 ωk δ(k− p)ϕ(k, k0 = ωk) = ϕ(p) ( p0 = ωp )

Hence, from the manifest Lorenz invariance of the measure
∫

Dk and of the on-mass-shell

couple of complex scalar fields ϕ(k), ϕ(p) , the manifest Lorentz invariance of the quantity

〈 p | k 〉 immediately follows. �
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Furthermore we can write

φ(x) ≡
∫

Dk
[
a(k) e−ik·x + a†(k) e ik·x

]
k0 =ωk

(3.92)

Π(x) ≡ i

∫
Dk k0

[
a†(k) e ik·x − a(k) e−ik·x

]
k0 =ωk

(3.93)

so that the 1-particle wave functions in the coordinate representation, which
correspond to the 1-particle state | k 〉 and are still defined in terms of the
matrix elements of the field operator (3.50), will coincide in natural units
with the plane waves

u k (x) ≡ 〈 0 |φ(x) | k 〉 = exp{− i k · x} (k0 = ωk ) (3.94)

which are normalized in such a way to satisfy

(u k , uh ) ≡
∫

dx u ∗k (x) i
↔
∂0 uh (x) = (2π)3 2ωk δ(k− h) (3.95)

(u∗k , u
∗
h ) = − (u k , uh ) (u k , u

∗
h ) = (u∗k , uh ) = 0 (3.96)

In turn we have the manifestly covariant inversion formulæ

(u k , φ ) = a(k) a†(k) = (φ , u∗k) = −(u∗k , φ ) (3.97)

It is worthwhile to gather that we have the following canonical engineering
dimensions, both in physical and natural units: namely,

[ |k 〉 ] = [a(k) ] = cm [Dk ] = cm−2 (3.98)

Now it becomes clear that to each element of the restricted Poincaré
group, which is uniquely specified by the ten canonical coordinates(

ω µν , aλ
)

=
(
α,η, aλ

)
= (ω, a)

there will correspond a unitary operator such that

U(ω, a) | 0 〉 = exp

{
i

~
aµPµ −

i

2~
ω ρσLρσ

}
| 0 〉 = | 0 〉 (3.99)

〈 0 |U †(ω, a) = 〈 0 | exp

{
− i

~
aµPµ +

i

2~
ω ρσLρσ

}
= 〈 0 | (3.100)

which means that the vacuum state is Poincaré invariant, as expected, or,
in other words, that IO(1, 3) acts trivially on the one dimensional ray of
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the Fock space generated by the vacuum state. In the case of the Klein-
Gordon neutral field, the explicit expressions for the Hermitean generators
are provided by – see the proof and details at the end of this paragraph

P0 =

∫
dx 1

2
: Π2 (x) + ∇φ(x) ·∇φ(x) +m2φ2 (x) : =

∑
k

ωk a
†
k ak

Pk =

∫
dx : Π(x) ∂kφ(x) : =

∑
k

k a†k ak

L ı =

∫
dx : xı Π(x) ∂φ(x)− x Π(x) ∂ıφ(x) :

=
∑
k

i

2

 k ı a
†
k

↔
∂

∂k 
ak − k  a

†
k

↔
∂

∂k ı
ak


L 0k = x0 Pk −mXk(t) =

i

2

∑
p

ωp a
†
p

↔
∂

∂ p k
ap

Xk(t) =
1

2m

∫
dx x k : Π 2 (x) + ∇φ(x) ·∇φ(x) +m2φ2 (x) :

Moreover, under a passive Poincaré transformation the creation-annihilation
operators undergo the changes

a ′(k) ≡ U(ω, a) a(k)U −1(ω, a) = a(k ′) exp{− i k · a} (3.101)

k ′µ = Λ ν
µ kν k0 = ωk g µν k ′µk

′
ν = k ′2 = k2 = m2 (3.102)

a ′ †(k) ≡ U(ω, a) a†(k)U −1(ω, a) = exp{ i k · a} a†(k ′) (3.103)

which endorses the Lorentz invariance, up to a phase factor, of the creation
and annihilation operators of the Klein-Gordon quantum scalar field.

Proof. To start up, consider an infinitesimal Poincaré transformation

U(δω, δa) a(k)U †(δω, δa) ' a(k) + i
[
δaµPµ − 1

2 δω
ρσLρσ , a(k)

]
From the canonical commutation relations (3.65) it is immediate to show that

[ a(k) , Pµ ] = [ (u k , φ ) , Pµ ] = i (u k , ∂µ φ )

=

∫
Dp pµ

[
a(p) (u k , u p)− a†(p)

(
u k , u

∗
p

) ]
= kµ a(k)

Moreover we have

[ a(k) , Lµν ] = [ (u k , φ ) , Lµν ] =

∫
dx u ∗k(t,x) i

↔
∂0[φ(t,x) , Lµν ]

= −
∫

dx u ∗k(t,x)
↔
∂0

(
xµ ∂ ν φ(t,x)− xν ∂µφ(t,x)

)
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=

∫
Dp pν

[
a†(p)

i∂

∂ pµ
(
u k , u

∗
p

)
+ a(p)

i∂

∂ pµ
(u k , u p)

]
− µ ↔ ν

= −
∫

Dp pν

[
a†(p)

i∂

∂ kµ
(
u k , u

∗
p

)
+ a(p)

i∂

∂ kµ
(u k , u p)

]
− µ ↔ ν

= − i∂

∂ kµ

∫
Dp pν a(p) (u k , u p)− µ ↔ ν

= − i∂

∂ kµ
(kν a(k))− µ ↔ ν = i kµ

∂

∂ k ν
a(k)− i kν

∂

∂ kµ
a(k)

where use has been made of the inversion formulæ. Hence, under an infinitesimal Poincaré
transformation we get

U(δω, δa) a(k)U −1(δω, δa) ' a(k)− i
[
a(k) , δaµPµ − 1

2 δω
ρσLρσ

]
=

{
1− i δaµ kµ − 1

2 δω
µν

(
kµ

∂

∂ k ν
− kν

∂

∂ kµ

)}
a(k)

so that we eventually find

a ′(k)− a(k) ' δa(k) '
{

1
2 ε

µν

(
kν

∂

∂ kµ
− kµ

∂

∂ k ν

)
− i kµ εµ

}
a(k) (3.104)

where I have identified as usual δaµ ≡ εµ , δ ωµν ≡ εµν . The action of an infinitesimal
Lorentz transformation on the wave tetra-vector yields

a(Λ k)− a(k) ' a(k + δk)− a(k) = δkµ
∂

∂ kµ
a(k) = εµν kν

∂

∂ kµ
a(k)

in such a manner that we can finally get the finite transformation rule

U(ω, a) a(k)U −1(ω, a) = exp{− i k · a} a(Λ k)

' (1− i kµ aµ + · · ·)
(

1− ωµν kν
∂

∂ kµ
+ · · ·

)
a(k)

=

{
1− i kµ aµ + 1

2 ω
µν

(
kν

∂

∂ kµ
− kµ

∂

∂ k ν

)}
a(k) + · · ·

and consequently

a ′(k) ≡ U(ω, a) a(k)U −1(ω, a) = a(Λ k) exp{− i k · a} k0 = ωk

that completes the proof. �

It is worthwhile to notice that by repeating the very same steps for the inverse
Poincaré unitary similarity transformation we obtain

a ′(k) ≡ U −1(ω, a) a(k)U(ω, a) = a(Λ−1k) exp{ i k · a} ( k0 = ωk )

with
U −1(ω, a) = U(−ω,− a) = U †(ω, a)
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which implies in turn

a ′(k ′ ) ≡ U −1(ω, a) a(Λ k)U(ω, a)

= a(k) exp{ i k · a} ( k0 = ωk ) (3.105)

showing that for any homogeneous Lorentz active transformation the creation
and annihilation operators are invariant.

Turning now to the 1-particle states, if we define

| k ′ 〉 ≡ a ′ †(k ′)| 0 〉
then we can write the equality

| k ′ 〉 ≡ U −1(ω, a) a †(Λ · k)U(ω, a)| 0 〉
= U −1(ω, a) a †(Λ · k) | 0 〉
= exp{− i k · a} a†(k) | 0 〉 = exp{− i k · a} | k 〉

so that by virtue of the manifestly covariant orthogonality relation (3.91) we
can write

〈 p ′ | k ′ 〉 = 〈 p | k 〉 = δ(p− k ) (2π)3 2ωk

Hence, from the basic formulæ

U(ω, a) | 0 〉 = exp { (i/}) aµPµ − (i/2})ω ρσLρσ} | 0 〉 = | 0 〉
| k ′ 〉 = U †(ω, a) |Λ · k 〉 = exp{− i k · a} | k 〉 ∀ | k 〉 ∈ H1

it follows that the vacuum state transforms according to a one dimensional
trivial representation of the Poincaré group, while the 1-particle Hilbert space
H1 actually carries an irreducible, unitary, infinite dimensional representation
of IO(1, 3) . In turn, owing to the completely symmetric property of the
many-particle states, also the Hilbert spaces (3.78) carry irreducible, unitary,
infinite dimensional representations of the Poincaré group, so that the Fock
space definitely decomposes according to (3.79).

From the transformation law (3.105) of the creation-destruction operators
we readily obtain the following identity between operator valued tempered
distributions

φ ′(x ′ ) ≡ U †(ω, a)φ(x ′ )U(ω, a) = φ(x) (3.106)

which looks the very same as that one for the classical scalar field. Thus
we eventually obtain the Poincaré transformation rule for the Klein-Gordon
operator valued tempered distribution: namely,

φ ′(x ′ ) ≡ U −1(ω, a)φ(x ′ )U(ω, a)

=

∫
Dk ′

[
a ′(k ′ ) exp {−i k ′ · x ′}+ h. c.

]
k ′
0 =ωk ′

=

∫
D(Λk)

[
e ik·a a(k) e− ik·(x+a) + h. c.

]
k0 =ωk

= φ(x)
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in accordance with (3.106). Notice that the above relation, as expected from
the general principles of Quantum Mechanics and Quantum Field Theory, is
equivalent to set

φ(x ′ ) |Υ ′ 〉 = φ(x ′ )U(ω, a) |Υ 〉 = U(ω, a)φ(x) |Υ 〉 (3.107)

for any state vector |Υ 〉 belonging to the Fock space F .

Let us now collect the ten conserved dynamical quantities related to the
spin-less charge-less quantum field

P0 =

∫
dx 1

2
: Π2 (x) + ∇φ(x) ·∇φ(x) +m2φ2 (x) :

Pk =

∫
dx : Π(x) ∂kφ(x) :

L jk =

∫
dx : xj Π(x) ∂kφ(x)− xk Π(x) ∂j φ(x) :

L 0k = x0 Pk −mXk(t) L̇ 0k = 0 ⇐⇒ X(t) = X(0) +
P

m
t

Xk(t) =
1

2m

∫
dx xk : Π 2 (x) + ∇φ(x) ·∇φ(x) +m2φ2 (x) :

Owing to the self-adjointness of the field operators

φ(x) = φ†(x) Π(x) = Π†(x)

all the above ten conserved dynamical quantities turn out to be self-adjoint
operators corresponding to physical observable quantities. For example

P† = −
∫

dx : [∇φ†(x) ] Π †(x) :

= −
∫

dx : [∇φ(x) ] Π(x) :

= −
∫

dx : Π(x)∇φ(x) : (3.108)

thanks to normal ordering. It appears thereby evident that the self-adjoint
operators (Pµ , Lρσ) acting on the Fock space are the generators of a unitary
infinite dimensional representation of the Poincaré group on F . From the
canonical commutation relations (3.52) it is immediate to show that

[φ(x) , Pµ ] = i} ∂µ φ(x) (3.109)

[φ(x) , Lµν ] = i}xµ ∂ ν φ(x)− i}xν ∂µφ(x) (3.110)
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By direct inspection, it is straightforward to verify that, using the canonical
commutation relations (3.52) and the normal ordering prescription, the self-
adjoint operators (Pµ , Lρσ) do actually fulfill the Poincaré Lie algebra (1.47)
so that, in any neighborhood of the unit element ω ρσ = 0 = aµ , we can
safely write

U : F → F U(ω, a) = exp
{
i aµPµ − 1

2
i ω ρσLρσ

}
This is the way in which the infinite dimensional unitary representation of the
Poincaré group on the Fock space does explicitly emerge from the quantum
theory of the real Klein-Gordon field with mass m and spin zero. In fact, for
e.g. an infinitesimal passive Poincaré transformation we have

φ ′ (x) ≡ U(δω, δ a)φ(x)U †(δω, δ a)

= φ(x) + i εµ [Pµ , φ(x) ]− 1
2
i ε ρσ [Lρσ , φ(x) ]

= φ(x) + (εµ + ε µν xν )∂µ φ(x)

= φ(x+ δ x) (3.111)

where we have denoted the infinitesimal parameters by δaµ = εµ and δω ρσ =
ε ρσ as usual.

2. The Angular Momentum Operator of a Scalar Quantum Field. For a spin-less
Klein-Gordon field the angular momentum operator is provided by the Nöther theorem,
up to the normal ordering quantum prescription. It’s of a purely orbital nature and reads

Lµν =
∫

dx : xµ T 0ν (t,x)− x ν T 0µ (t,x) :

where
T 0µ = Π ∂µφ+ 1

2 g0µ

(
| ∇φ |2 +m2φ2 −Π2

)
Π = φ̇

Consider first the constant spatial components of the orbital angular momentum operator

L = (L23, L31, L12) L ı =
∫

d3x : x ı T 0(0,x)− x  T 0ı(0,x) :

By substituting the normal mode expansions

φ(x) =
∑
p

[
ap up(x) + a†p u

∗
p(x)

]
Π(x) =

∑
p

iωp

[
a†p u

∗
p(x)− ap up(x)

]
we obtain

L ı =
∫

d3x : x  Π(0,x)∇ıφ(0,x)− x ı Π(0,x)∇φ(0,x) :

=

∫
d3x

∑
p

∑
k

:
[
ap up(0,x)− a†p u∗p(0,x)

]
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×
[
ak uk(0,x)− a†k u

∗
k(0,x)

]
: x  k ı ωp − {ı ←→ }

=
∑
p

∑
k

k ı ωp a
†
k ap ( i∂/∂k)

∫
dxup(0,x)u∗k(0,x)

−
∑
p

∑
k

k ı ωp a
†
p ak ( i∂/∂k)

∫
dxu∗p(0,x)uk(0,x)

−
∑
p

∑
k

k ı ωp a
†
p a
†
k ( i∂/∂k)

∫
dxu∗p(0,x)u∗k(0,x)

+
∑
p

∑
k

k ı ωp ak ap ( i∂/∂k)
∫

dxup(0,x)uk(0,x)

− { ı ←→  }

Now, from the basic integrals∫
dxup(0,x)uk(0,x) = (2ωp )−1 δ(k + p)∫
dxu∗p(0,x)uk(0,x) = (2ωp )−1 δ(k− p)

we obtain

L ı = −
∑
p

∑
k

1
2 k ı

(
a†p ak − a

†
k ap

)
( i∂/∂k) δ(k− p)

−
∑
p

∑
k

1
2 k ı

(
a†p a

†
k − ap ak

)
( i∂/∂k) δ(k + p)

− { ı ←→  } ( ı 6=  )

where derivatives are understood in the sense of the distributions, in such a manner that
we eventually get

L ı =
∑
k

 1
2 k ı a

†
k

i
↔
∂

∂k
ak − 1

2 k  a
†
k

i
↔
∂

∂k ı
ak


because the remaining integrals do vanish. As a matter of fact, consider for example the
case ı = 1 ,  = 2 , k = (kx, ky, kz) so that∫∫

dp dk kx ap ak
i∂

∂ky
δ(k + p)

= −
∫∫

dp dk δ(k + p) kx ap
i∂

∂ky
ak

= −
∫

dk kx a−k
i∂

∂ky
ak

Now, if we send k into −k in the very last integral we obtain

−
∫

dk kx a−k
i∂

∂ky
ak = −

∫
dk kx ak

i∂

∂ky
a−k

=

∫
dk kx

(
i∂

∂ky
ak

)
a−k =

∫
dk kx a−k

i∂

∂ky
ak
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because [ ak , ap ] = 0 , ∀k ,p ∈ R3, so that consequently

[ ∂ak/∂k
 , ap ] = 0 (  = 1, 2, 3 )

and thereby ∑
p

∑
k

1
2 k ı

(
a†p a

†
k − ap ak

)
( i∂/∂k) δ(k + p) ≡ 0

as previously claimed.

The spatial-temporal components of the relativistic angular momentum operator of a
Klein-Gordon scalar quantum field read

L0k =
∫

dx : x0 T
0k (t,x)− x k T 00 (t,x) :

or equivalently
}Υt = ctP−mcX t

where
}Υ = (L 01, L 02, L 03)

P k =
∫

dx : T 0k (t,x) : = −
∫

dx : Π(t,x)∇kφ(t,x) :

Notice that the operator

X t =
1

2mc2

∫
d3x x : c 2 Π2(t,x) +∇φ(t,x) · ∇φ(t,x) + φ2(t,x)(mc/})2 :

corresponds to the instantaneous position operator of the center of the energy,
the quantum and relativistic generalization of the center of gravity of the Newtonian
Mechanics. It is worthwhile to gather that the operator }Υt = ctP −mcX t is explicitly
time dependent, so that its evolution equation in the Heisenberg picture turns out to be

d

dt
Υt ≡ Υ̇t =

∂

∂t
Υt +

1

i}
[ Υt , H ] =

∂

∂t
Υt +

c

i}
[ Υt , P0 ]

according to the general principles of Quantum Mechanics. Since [P0,P ] = 0 we can
definitely write

}Υ̇t = cP− i

}
[H,X t ]mc = cP−mc Ẋ t

After turning to natural units we find

[H, mX k
t ] = [P0, L 0k ] = 1

2

∫
d3x x k [H, : Π2(x) +∇φ(x) · ∇φ(x) +m2φ2(x) : ]

= i

∫
d3x xk : Π(x)Π̇(x) +∇φ(x) · ∇Π(x) +m2φ(x)Π(x) :

= i

∫
d3x xk : Π(x)(4−m2)φ(x) +∇φ(x) · ∇Π(x) +m2φ(x)Π(x) :

= i

∫
d3x xk : Π(x)4φ(x) +∇φ(x) · ∇Π(x) :

= i

∫
d3x ∇ (xk {: Π(x)∇ φ(x) : ) + : Π(x)∇kφ(x) :} = iP k
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Notice that this result is perfectly consistent with the commutator

[Pµ, L ρσ ] = i} gµρ Pσ − i} gµσ Pρ

for µ = ρ = 0 and σ = k , as required by the Poincaré Lie algebra, as well as the quantum
counterpart of the Nöther theorem, viz.,

Ṗ = Υ̇ = 0

or even

Υ̇ = 0 ⇐⇒ Ẋ =
P

m
⇐⇒ Ẍ = 0

that proves the inertial motion of the center of energy operator and just provides in turn
an explicit expression in terms of the field operators: namely,

X t =
P

m
t+ X 0 = − t

m

∫
d3x x : Π(0,x)∇φ(0,x) :

+
1

2mc 2

∫
d3x x : c 2 Π2(0,x) +∇φ(0,x) · ∇φ(0,x) + φ2(0,x)(mc/})2 :

Let us now substitute the normal modes expansions

Π(0,x) =
∑
k

iωk

[
a†ku

∗
k(0,x)− akuk(0,x)

]
∇φ(0,x) =

∑
k

ik
[
akuk(0,x)− a†ku

∗
k(0,x)

]
φ(0,x) =

∑
k

[
akuk(0,x) + a†ku

∗
k(0,x)

]
with uk(0,x) = [ (2π)3 2ωk ]−1/2 exp{ ik · x}, whence we obtain∫

d3x x : Π2(0,x) :

=

∫
d3x

∑
k

ωk :
[
a†ku

∗
k(0,x)− akuk(0,x)

]
x
∑
p

ωp

[
apup(0,x)− a†pu∗p(0,x)

]
:

= −
∫

d3x
∑
k,p

iωkωp :
[
a†ku

∗
k(0,x)− akuk(0,x)

] [
a†p∇pu

∗
p(0,x) + ap∇pup(0,x)

]
:

Now we find

1
2 i
∑
k,p

√
ωkωp a

†
ka
†
p∇p

∫
d3x

(2π)3
exp{ix · (p + k)}

= 1
2 i

∫
dp
√
ωp a

†
p∇p

∫
dk a†k

√
ωk δ(p + k)

= 1
2 i

∫
dp
√
ωp a

†
p∇p

(
a†−p
√
ωp

)
= 1

2 i

∫
dp

(
ωp a

†
p∇p a

†
−p + 1

2 a
†
p a
†
−p p/ωp

)
= 1

2 i

∫
dp ωp a

†
p∇p a

†
−p
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the other term being evidently null owing to symmetric integration. In a quite analogous
way we immediately get

− 1
2 i
∑
k,p

√
ωkωp akap∇p

∫
d3x

(2π)3
exp{− ix · (p + k)}

= − 1
2 i

∫
dp ωp ap∇p a−p

The remaining two terms yield

1
2 i
∑
k,p

√
ωkωp a

†
kap∇p

∫
d3x

(2π)3
exp{− ix · (p− k)}

= 1
2 i

∫
dp
√
ωp : ap∇p

∫
dp
√
ωk a

†
k : δ(p− k)

= 1
2 i

∫
dp
√
ωp : ap∇p

(√
ωp a

†
p

)
:

= 1
2 i

∫
dk
{
ωk

(
∇k a

†
k

)
ak + 1

2 a
†
k ak k/ωk

}
− 1

2 i
∑
k,p

√
ωkωp a

†
pak∇p

∫
d3x

(2π)3
exp{ ix · (p− k)}

= − 1
2 i

∫
dp
√
ωp a

†
p∇p

∫
dk
√
ωk ak δ(p− k)

= − 1
2 i

∫
dp
(
ωp a

†
p∇p ap + 1

2 a
†
p ap p/ωp

)
so that we definitely obtain in natural units the following result for the first addendum of
the above expression (3.112), viz.,∫

d3x x : Π2(0,x) :

= 1
2 i

∫
dpωp

[
a†p∇p ap −

(
∇p a

†
p

)
ap − a†p∇p a

†
−p + ap∇p a−p

]
Next we find∫

d3x x : φ2(0,x) :

=

∫
d3x

∑
k,p

:
[
akuk(0,x) + a†ku

∗
k(0,x)

]
x
[
apup(0,x) + a†pu

∗
p(0,x)

]
:

= i

∫
d3x

∑
k,p

:
[
akuk(0,x) + a†ku

∗
k(0,x)

] [
a†p∇p u

∗
p(0,x)− ap∇p up(0,x)

]
:

= 1
2 i
∑
k,p

(ωkωp)
−1/2

a†ka
†
p∇p

∫
d3x

(2π)3
exp{−ix · (k + p)}

− 1
2 i
∑
k,p

(ωkωp)
−1/2

akap∇p

∫
d3x

(2π)3
exp{ ix · (k + p)}
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+ 1
2 i
∑
k,p

(ωkωp)
−1/2

a†pak∇p

∫
d3x

(2π)3
exp{ ix · (k− p)}

− 1
2 i
∑
k,p

(ωkωp)
−1/2

a†kap∇p

∫
d3x

(2π)3
exp{−ix · (k− p)}

= 1
2 i

∫
dp ω−1/2

p a†p∇p

(
ω−1/2
p a†−p

)
+ H.c.

+ 1
2 i

∫
dp ω−1/2

p a†p∇p

(
ω−1/2
p ap

)
− 1

2 i

∫
dp ω−1/2

p : ap∇p

(
ω−1/2
p a†p

)
:

= 1
2 i

∫
dp ω−1

p a†p∇p a
†
−p + H.c.

+
i

2

∫
dpω−1

p

[
a†p∇p ap −

(
∇p a

†
p

)
ap
]

so that

m2

∫
d3x x : φ2(0,x) :

=

∫
dp

im2

2ωp

[
a†p∇p a

†
−p − ap∇p a−p + a†p∇p ap −

(
∇p a

†
p

)
ap

]
Finally we have to calculate∫

d3x x : ∇φ(0,x) · ∇φ(0,x) :

=

∫
d3x x :

∑
k,p

[
akuk(0,x)− a†ku

∗
k(0,x)

]
(k · p)

[
a†pu

∗
p(0,x)− apup(0,x)

]
:

= i

∫
d3x :

∑
k,p

[
akuk(0,x)− a†ku

∗
k(0,x)

]
(k · p)

[
a†p∇p u

∗
p(0,x) + ap∇p up(0,x)

]
:

= 1
2 i
∑
k,p

(k · p)(ωkωp)−1/2 : aka
†
p : ∇p

∫
d3x

(2π)3
exp{ ix · (k− p)} + H.c.

+ 1
2 i
∑
k,p

(k · p)(ωkωp)−1/2akap∇p

∫
d3x

(2π)3
exp{ ix · (k + p)} + H.c.

=

∫
dp

ip2

2ωp

[
a†p∇p a

†
−p − ap∇p a−p + a†p∇p ap −

(
∇p a

†
p

)
ap

]
Summing up altogether we eventually obtain

Υ =
i

2c

∫
dp ωp

[
a†p∇p ap −

(
∇p a

†
p

)
ap
]

X t =
P

m
t− }Υ

mc
=
∑
p

{
}t

p

m
a†p ap −

i}ωp

2mc 2

[
a†p∇p ap −

(
∇p a

†
p

)
ap
]}

which actually endorses the inertial motion of the center of the energy.
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3.5 Special Distributions

We have already met the positive and negative frequency scalar distributions

D (±) (x) = ± 1

i

∫
d4k

(2π)3
exp{± ik · x} δ

(
k 2 −m2c2/~2

)
θ (k0)

The latter ones are characterized by

i

~c
〈 0 |φ(x)φ(y) | 0 〉 = D (−) (x− y) =

i

~c
∑
k

uk(x)u∗k(y)

D (+) (x− y) = − D (−) (y − x) = − i

~c
∑
k

u∗k(x)uk(y)

[D (±) (x) ] ∗ = D (∓) (x)

From the normal modes expansion (3.50) and the canonical commutation
relations (3.52) we obtain the commutator between two real scalar free field
operator at arbitrary points, which is known as the Pauli-Jordan distribution

i

~c
[φ(x) , φ(y) ] ≡ D (x− y) =

i

~c
∑
k

(
uk(x)u∗k(y)− u∗k(x)uk(y)

)
where

D (x)
def
= i

∫
dk

(2π)3
exp{− ik · x} δ

(
k2 −m2

)
sgn(k0)

≡ D (−) (x) + D (+) (x) (3.112)

where the sign distribution is defined to be

sgn(k0) = θ(k0)− θ(−k0) =

{
+1 for k0 > 0
−1 for k0 < 0

The Pauli-Jordan distribution is a Poincaré invariant solution of the Klein-
Gordon wave equation(

�x +m2c2/~2
)
D (x− y) = 0

with the initial conditions

lim
x0→ y0

D (x− y) = 0 lim
x0→ y0

∂

∂x0

D (x− y) = δ (x− y)
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Two regions R1 and R2 that are causally disconnected

in such a manner that

lim
x0→ y0

[ Π(x) , φ(y) ] = lim
x0→ y0

~∂
i∂x0

D (x− y) = − i~ δ (x− y)

in accordance with the canonical equal-time commutation relations.
The Pauli-Jordan distribution is real and odd

D∗(x) = D (x) D (−x) = −D (x)

and enjoys as well the very important property of vanishing for space-like
separations, that is

D (x− y) = 0 for (x0 − y0)2 < (x− y)2 (3.113)

The above feature is known as the micro-causality property.

A further very important distribution related to causality is the causal
Green function or Feynman propagator. It is defined as follows:

DF (x− y) =

{
〈0 |φ(x)φ(y) |0〉 for x0 > y0
〈0 |φ(y)φ(x) |0〉 for x0 < y0
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= θ(x0 − y0)〈0 |φ(x)φ(y) |0〉
+ θ(y0 − x0)〈0 |φ(y)φ(x) |0〉
≡ 〈0 |T φ(x)φ(y) |0〉 (3.114)

the last line just defining the chronological product of operators in terms of
the time ordering symbol T that prescribes the place for the operators that
follow in the order with the latest to the left. It is easy to check, by applying
the Klein-Gordon differential operator �x +m2 to the Feynman propagator
and taking (3.52) into account, that the causal Green function is a solution
of the non-homogeneous equation

(�x +m2c2/~2 )DF (x− y) = − i~c δ(4)(x− y)

so that its Fourier representation reads

DF (x− y) =
i~c

(2π)4

∫
exp{− ik · (x− y)}
k2 − (mc/~)2 + iε

d4k (3.115)

Proof. Consider first the time derivative

∂

∂x0
DF (x− y) = δ(x0 − y0)〈0 |φ(x)φ(y) |0〉+ θ(x0 − y0)〈0 |Π(x)φ(y) |0〉

− δ(y0 − x0)〈0 |φ(y)φ(x) |0〉+ θ(y0 − x0)〈0 |φ(y) Π(x) |0〉
= θ(x0 − y0)〈0 |Π(x)φ(y) |0〉+ θ(y0 − x0)〈0 |φ(y) Π(x) |0〉
+ δ(x0 − y0)〈0 | [φ(x0,x) , φ(x0,y) ] |0〉
= θ(x0 − y0)〈0 |Π(x)φ(y) |0〉+ θ(y0 − x0)〈0 |φ(y) Π(x) |0〉

owing to the equal time canonical commutation relations. Next we find

∂ 2

∂x2
0

DF (x− y) = δ(x0 − y0)〈0 |Π(x)φ(y) |0〉 − δ(y0 − x0)〈0 |φ(y) Π(x) |0〉

+ θ(x0 − y0)〈0 |Π̇(x)φ(y) |0〉+ θ(y0 − x0)〈0 |φ(y) Π̇(x) |0〉
= δ(x0 − y0)〈0 | [ Π(x0,x) , φ(x0,y) ] |0〉
+ θ(x0 − y0)〈0 |Π̇(x)φ(y) |0〉+ θ(y0 − x0)〈0 |φ(y) Π̇(x) |0〉
= θ(x0 − y0)〈0 |Π̇(x)φ(y) |0〉+ θ(y0 − x0)〈0 |φ(y) Π̇(x) |0〉
− iδ(x0 − y0) δ(x− y)

thanks again to the equal time canonical commutation relations. Thus we eventually
obtain

(� x +m2)DF (x− y) = θ(x0 − y0)〈0 |{φ̈(x)−∇2φ(x) +m2φ(x)}φ(y) |0〉
+ θ(y0 − x0)〈0 |φ(y){φ̈(x)−∇2φ(x) +m2φ(x)}|0〉
− iδ(x0 − y0) δ(x− y) = − iδ(x− y)
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for the operator valued Hermitean scalar field distribution φ(x) = φ†(x) does satisfy the
Klein-Gordon wave equation. Moreover, from the integral representation of the Heaviside
step distribution

θ (z0) = lim
ε→ 0+

1

2πi

∫ ∞
−∞

dp0

p0 − iε
exp{ ip0 z0} (3.116)

and from the normal modes expansion of the Hermitean Klein-Gordon field

φ(x) =
∑
k

[
ak uk(x) + a†k u

∗
k(x)

]√
~c

uk(x) ≡ [ (2π)3 2ωk/c ]−1/2 exp{− iωkt+ ik · x}

by making use of the canonical commutation relations (3.52) and turning to natural units
we can write

〈 0 |T φ(x)φ(y) | 0 〉 =
1

2πi

∫ ∞
−∞

dk0 exp{i(k0 − ωk)(x0 − y0)}

×
∑
k

(2π)− 3 [ 2ωk(k0 − iε) ]−1

× exp{ik · (x− y)}

+
1

2πi

∫ ∞
−∞

dk0 exp{− i(k0 − ωk)(x0 − y0)}

×
∑
k

(2π)− 3 [ 2ωk(k0 − iε) ]−1

× exp{ik · (x− y)}

Changing the integration variable from k0 to k ′0 = − k0 in the first integral of the right
hand side of the previous equality we obtain

DF (x− y) = − 1

2πi

∫ ∞
−∞

dk0 exp{− i(k0 + ωk)(x0 − y0)}

×
∑
k

(2π)− 3 [ 2ωk (k0 + iε) ]−1

× exp{ik · (x− y)}

+
1

2πi

∫ ∞
−∞

dk0 exp{− i(k0 − ωk)(x0 − y0)}

×
∑
k

(2π)− 3 [ 2ωk (k0 − iε) ]−1

× exp{ik · (x− y)}

and a translation with respect to the k0 integration variable yields

〈T φ(x)φ(y)〉 =
i

(2π)4

∫
dk exp{− ik · (x− y)} [ 2ωk ]−1

×
(

1

k0 − ωk + iε
− 1

k0 + ωk − iε

)
=

∫
dk

(2π)4
e− ik·(x−y) i

k2 −m2 + iε
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which proves the Fourier representation (3.115). �

The latter one just involves the (+iε) prescription in momentum space that
corresponds to causality in coordinate space. As a matter of fact, if we
define the creation φ (+)(x) and destruction φ (−)(x) parts of the Hermitean
Klein-Gordon field operator according to

φ (−)(x) =
∑
k

ak uk(x) (3.117)

φ (+)(x) =
∑
k

a†k u
∗
k(x) (3.118)

it turns out that we have

〈T φ(x)φ(y)〉0 = θ(x0 − y0)〈φ(−)(x)φ(+)(y)〉0
+ θ(y0 − x0)〈φ(−)(y)φ(+)(x)〉0
= i θ(y0 − x0)D (+) (x− y)− i θ(x0 − y0)D (−) (x− y)

(3.119)

which shows that, first, a particle is created out of the vacuum by the creation
part of the free real scalar field operator and then, later, it is annihilated by
the destruction part of the free real scalar field operator: the opposite never
occurs, what precisely endorses the causality requirement in coordinate space.

3.5.1 Euclidean Formulation

The causal Green’s function DF (x) enjoys a nice and quite useful feature:
the opportunity to turn to the Euclidean formulation. In the non-relativistic
quantum mechanics the substitution

t ←→ − i~β =
−i~
kBT

where kB = 8.617 343(15) × 10−5 eV K−1 denotes the Boltzmann constant,
allows to make the transition from the evolution operator to the canonical
ensemble operator

e− iHt/~ ←→ e−βH

Hence the Feynman propagating kernel

G(t; r, r ′) = 〈 r|e− iHt/~|r ′ 〉

is turned into the Boltzmann heat kernel

G(β; r, r ′) = 〈 r|e−βH |r ′ 〉
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the latter being positive definite. Notice that the Fourier representation of
the Boltzmann heat kernel for a free particle is given by

G(β; r− r ′) =
1

(2π~)3

∫
dp exp

{
i

~
p · (r− r ′)− βp2

2m

}
so that its value at coincident points r = r′ is nothing but

G(β; 0) = λ−3T λT =
h√

2πmkBT

the latter being the thermal wave-length of the particle. This can be suitably
generalized to the quantum field theory. As a matter of fact, consider once
again the Fourier representation (3.115) and change the energy integration
variable as k0 = − i k4 so that

DF (x) =
i~c

(2π)4

∫ ∞
−∞

d(− ik4)
∑
k

exp{− k4x0 + ik · x}
−k24 − k2 −m2c2/~2

(3.120)

where the +iε prescription has been dropped since the denominator is now
positive definite. If we further set

ct = x0 ≡ − i x4 = − i β~c

then we finally get

− DF (− ix4,x) =
~c

(2π)4

∫
dkE exp{i kEµ xEµ}

(
k 2
E +m2c2/~2

)−1
≡ DE (xE ) (3.121)

where we use the notation

xE = xEµ = (x, x4) kE = kEµ = (k, k4) (j, k = 1, 2, 3)

kE · xE = kEµ xEµ = k1x1 + k2x2 + k3x3 + k4x4∫
dkE =

∫ ∞
−∞

dk4
∑
k

The location of the poles of the Feynman propagator in the complex energy
plane, that corresponds to the causal +iε prescription, is such that the above
substitutions lead to a positive definite denominator (k 2

E +m2c2/~2 )
−1

which
does not require any prescription. It is precisely this crucial aspect that
encodes the causality requirement in momentum space.
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Notice that in the mass-less case at the spatial origin we get

1

~c
lim
m→0

DE(0, β~c) =

(
kBT

2π~c

)2

(3.122)

so that we can define a further relativistic thermal wave-length

`T ≡
hc

kBT
' 32.5 nm at T = 300 K (3.123)

In configuration space we turn to the Euclidean formulation, according to
which the Action and the Lagrangian in the Minkowski space are transformed
into the purely imaginary Euclidean Action and Lagrangian. As a matter of
fact, if we change the time integration variable according to x0 = −ix4, then
we readily obtain turning to natural units

S [φ ] 7→ SE [φE ]

=
i

2

∫
dxE

(
∂µφE (xE )∂µφE (xE ) +m2 φ2

E (xE )
)

(3.124)

with the Euclidean indexes always lower case so that

∂µφE ≡
∂φE
∂xEµ

(µ = 1, 2, 3, 4)

If we assume the asymptotic behavior for the Euclidean scalar field

lim
xE→∞

φE (xE )
√
x 2
E = 0 (3.125)

then we can also write

SE [φE ] =
i

2

∫
dxE φE (xE ) (− ∂ 2

E +m2 )φE (xE )

=
i

2

∫
dkE φ̃E (kE )(k2E +m2 ) φ̃E (− kE ) (3.126)

in which I have set by definition

φE (xE ) ≡ 1

(2π)4

∫
dkE φ̃E (kE ) exp{i kEµ xEµ }
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3.6 Problems

1. The complex scalar field. Consider the field theory of a complex
valued scalar field with the classical Lagrange density

L(x) = ∂µΦ∗(x)∂ µΦ(x)−m2 Φ∗(x)Φ(x)

It is easier to analyze the theory by considering Φ(x) and Φ∗(x) as the
independent variables in configuration space rather than the real and
imaginary parts of the complex scalar field function.

(a) Find the Hamiltonian and the canonical equations of motion

Solution. The Action is given by

S [ Φ ] =

∫
dx L [ Φ(x) ] Φ(x) = u(x) + iv(x)

which leads to the conjugated canonical momenta

δS

δ Φ̇(x)
≡ Π(x) = Φ̇∗(x)

δS

δ Φ̇∗(x)
≡ Π∗(x) = Φ̇(x)

and to the classical Hamiltonian functional

H [ Π,Φ ] =

∫
dx
(

Π(x) Φ̇(x) + Π∗(x) Φ̇∗(x)− L(x)
)

=

∫
dx
(
|Π(x) |2 + |∇Φ(x) |2 +m2 |Φ(x) |2

)
The Poisson brackets are evidently given by

{Φ(t,x) , Π(t,y)} = δ (x− y) = {Φ∗(t,x) , Π∗(t,y)}

all the others being equal to zero, so that the Hamilton equations read{
Φ̇(x) = {Φ(x) , H} = Π∗(x)

Φ̈(x) = Π̇∗(x) = {H , Π∗(x)}{
Φ̇∗(x) = {Φ∗(x), H} = Π(x)

Φ̈∗(x) = Π̇(x) = {H,Π(x)}
whence we immediately find the Klein-Gordon wave equations

Φ̈(x) = ∇2Φ(x)−m2 Φ(x) (�+m2 )Φ(x) = 0
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(b) Find the diagonal Hamiltonian operator introducing creation and
annihilation operators. Show that the charged scalar quantum field
contains two types of massive spinless particles of rest mass m.

Solution. The normal modes decomposition of the complex scalar free
field can be easily obtained by a straightforward generalization of the
treatment for the real scalar free field (3.50). The result is evidently

Φ(x) =
∑
k

[
ak uk(x) + b†k u

∗
k(x)

]
Π(x) = Φ̇†(x) =

∑
p

iωp

[
− bp up(x) + a†p u

∗
p(x)

]
uk(x) ≡ [ 2ωk(2π)3 ]−1/2 exp{− ix0ωk + ik · x}

where ωk = ( k2 + m2 ) 1/2 together with the canonical commutation
relations

[ Φ(t,x) , Φ(t,y) ] = 0 = [ Π(t,x) , Π(t,y) ]

[ Φ(t,x) , Π(t,y) ] = iδ (x− y)

It is clear that the main difference with respect to the real case is the
appearance of two kinds of creation and destruction operators, as the
reality conditions no longer hold true, which satisfy the algebra

[ ak , ap ] = [ bk , bp ] = 0

[ ak , bp ] = [ a†k , bp ] = 0

[ ak , a
†
p ] = [ bk , b

†
p ] = δ (k− p)

Then the normal ordered Hamiltonian and momentum operator takes
the diagonal form

H [ Π,Φ ] =

∫
dx : |Π(x) |2 + |∇Φ(x) |2 +m2 |Φ(x) |2 :

=
∑
k

ωk

(
a†kak + b†kbk

)
= P0

P = −
∫

dx : Π(x)∇Φ(x) + Π†(x)∇Φ†(x) :

=
∑
k

k
(
a†kak + b†kbk

)
It follows therefrom that the complex scalar free field describe two kinds
of particles with the very same value m of the rest mass.
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(c) Rewrite the conserved Noether charge

Q = iq

∫
dx
[

Φ†(x)Π†(x)− Φ(x)Π(x)
]

in terms of creation and annihilation operators and evaluate the charge
of the particles of each type.

Solution. From the invariance of the classical Lagrangian under U(1)
phase transformations Φ(x) 7→ Φ′(x) = eiqθΦ(x) we immediately get
the Noether current

∆Φ(x) = iqΦ(x) δθ =⇒ T = −iq
δL

δ∂µΦ(x)
T Φ(x) = − qΦ(x) i∂ µΦ∗(x)

J µ(x) = qΦ∗(x) i
↔
∂ µ Φ(x)

Moreover, from the normal modes expansion and the normal ordering
prescription we readily obtain

Q = iq

∫
dx : Φ†(x)Π†(x)− Φ(x)Π(x) :

= q

∫
dx
∑
k ,p

[
bp up(x) + a†p u

∗
p(x)

]
i
↔
∂0

[
ak uk(x) + b†k u

∗
k(x)

]
= q

∑
k

(
a†kak − b

†
kbk

)
which is understood so that each particle normal mode carries one unit
of positive charge, whereas each antiparticle normal mode carries one
unit of negative charge, the sign of the charge being conventional.

2. Poincaré covariance

The four energy-momentum operators Pµ (µ = 0, 1, 2, 3) together with
the six angular momentum operators Lµν = −Lνµ are the generators of
the Poincaré group, for the infinite dimensional unitary representation
acting on the Fock space of an Hermitean scalar quantum field φ(x) .

(a) Show that [φ(x) , Lµν ] = i(xµ∂ν − xν ∂µ)φ(x)

Solution. We have

T 0
µ (x) = Π(x) ∂µ φ(x)− δ 0µ L(x)
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and the equal–time canonical commutation relations

[φ(t,x) , L(t,y) ] = Π(t,y) [φ(t,x) , Π(t,y) ] = iΠ(t,x) δ (x− y)

[φ(t,x) ,Π(t,y) ∂ν φ(t,y) ] = i
(
∂ν φ(t,y) + δ 0ν Π(t,y)

)
δ (x− y)

Then we obtain for x0 = y0 = t

[φ(x) , Lµν ] =

∫
dy yµ [φ(t,x) , T 0

ν (t,y) ]− µ ↔ ν

= i xµ ∂ν φ(t,x)− i xν ∂µ φ(t,x)

and thereby

i

2
[φ(x) , Lµν ] δ ω µν = xν ∂µφ(x) εµν = δ xµ ∂µφ(x)

It follows that the finite passive Lorentz transformations for the spin-
less and charge-less Klein-Gordon quantum field read

φ ′(x ′) = U †(ω)φ(Λx)U(ω) = φ(x)

where

U(ω) = exp

{
− i

2
ω µν Lµν

}
(b) Show that [Lµν , Pρ ] = − i gµρ Pν + i g νρ Pµ .

Solution.

Let us first calculate the commutator [Lµν , P0 ] . To this aim, for any
analytic functional of the scalar field φ(x) and conjugated momentum
Π(x) operators we have

[F (φ(x),Π(x)) , Pµ ] = i ∂µ F

In fact, for example,

[φ2 (x) , Pµ ] = 2φ(x) [φ(x) , Pµ ] = 2φ(x) i∂µ φ(x) = i∂µ φ
2 (x)

and iterating we obviously get ∀n ∈ N

[φn (x) , Pµ ] = i∂µ φ
n (x)

[ Πn (x) , Pµ ] = i∂µ Πn (x)
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so that the above statement holds true. Then we find

[Lµν , P0 ] =

∫
dx
(
xµ [T 0

ν(x) , P0 ]− xν [T 0
µ(x) , P0 ]

)
=

∫
dx
(
xµ i∂0 T

0
ν(x)− xν i∂0 T

0
µ(x)

)
=

∫
dx
(
− xµ i∂ T


ν(x) + xν i∂ T


µ(x)

)
=̇ i

∫
dx
(
gµ T


ν(x)− g ν T 

µ(x)
)

= i

∫
dx
(
Tµν(x)− gµ0 T 0

ν(x)− Tνµ(x)− g ν 0 T 0
µ(x)

)
= − i gµ0 Pν + i g ν 0 Pµ

in which, as usual, a boundary term has been neglected. Furthermore
we find

[Lµν , P ] =

∫
dx
(
xµ [T 0

ν(x) , P ]− xν [T 0
µ(x) , P ]

)
=

∫
dx
(
xµ i∂ T

0
ν(x)− xν i∂ T 0

µ(x)
)

=̇ − i
∫

dx
(
gµ T

0
ν(x)− g ν T 0

µ(x)
)

= − i gµ Pν + i g ν  Pµ

up to a boundary term, which completes the proof.

(c) A fully detailed check of the canonical commutation relations

[Lµν , Lρσ ] = − i gµρ Lνσ + i g ν ρ Lµσ + i gµσ Lνρ − i g ν σ Lµρ

is straightforward although somewhat tedious and can be found in [21],
7.8, pp. 144 - 147.

3. Special distributions in space-time coordinates.

(a) Evaluate the scalar distribution

i

~c
〈0 |φ(x)φ(y) |0〉 =

i

~c
[φ(−)(x) , φ(+)(y) ] ≡ D (−)(x− y)

explicitly in terms of Bessel functions.
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Solution. Let us consider the positive and negative parts of the Pauli-
Jordan distribution (3.112) in the four dimensional Minkowski space

D (±)(x) ≡ ±1

(2π)3 i

∫
exp{± ik · x)}δ (k2 −m2) θ(k0) d4k

=
±1

(2π)3 2i

∫
dk (k2 +m2)−1/2

× exp{± ix0(k2 +m2)1/2 ∓ ik · x}

≡ ±1

4iπ2 r

∫ ∞
0

dk
k sin(kr)

(k2 +m2)1/2

× exp
{
± ict

√
k2 +m2

}
=

± i
4π2 r

· d

dr

∫ ∞
0

dk
cos(kr)

(k2 +m2)1/2

× exp
{
± ix0 (k2 +m2)1/2

}
where r ≡ | x | , k = | k | , whence it is clear that the positive and
negative parts of the Pauli-Jordan commutator are complex conjugate
quantities

[D (±)(x) ]∗ = D (∓)(x)

Then we can write

D (+)(x) =
i

8π2 r
· d

dr

∫ ∞
−∞

dk
cos(kr)

(k2 +m2)1/2

× exp
{
ix0 (k2 +m2)1/2

}
=

i

8π2 r
· d

dr

∫ ∞
−∞

dk (k2 +m2)−1/2

× exp
{
ikr + it(k2 +m2)1/2

}
Sometimes the distribution D(−)(x − y) is also called the Wightman
distribution of positive frequency and denoted by W+(x−y). Consider
now the integral

I(t, r) =

∫ ∞
−∞

dk (k2 +m2)−1/2

× exp{ikr + it(k2 +m2)1/2} (t > 0)

and perform the change of variable k = m sinh η , so that (k2+m2)1/2 =
m cosh η . Then we obtain

I(x0, r) =

∫ ∞
−∞

dη exp{im(x0 cosh η + r sinh η)}
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Here x0 > 0 so that two cases should be distinguished, i.e. 0 < x0 < r
and x0 > r . By setting λ ≡ (x0)2 − x2 it is convenient to carry out
respectively the substitutions{

x0 =
√
−λ sinh ξ , r =

√
−λ cosh ξ , 0 < x0 < r

x0 =
√
λ cosh ξ , r =

√
λ sinh ξ , x0 > r

in such a way that we can write

I(x0, r) = θ(−λ)

∫ ∞
−∞

dη exp{im
√
−λ sinh(ξ + η)}

+ θ(λ)

∫ ∞
−∞

dη exp{im
√
λ cosh(ξ + η)}

= θ(−λ)

∫ ∞
−∞

dη exp{im
√
−λ sinh η}

+ θ(λ)

∫ ∞
−∞

dη exp{im
√
λ cosh η} (x0 > 0)

Now we can use the integral representations of the cylindrical Bessel
functions of real and imaginary arguments [12] eq.s 8.4211. p. 965
and 8.4324. p. 969 that yield for λ = (ct− r)(ct+ r)

I(t, r) = θ(t)
[

2θ(−λ)K0(m
√
−λ) + θ(λ)πiH

(1)
0 (m

√
λ)
]

+ θ(−t)
[

2θ(−λ)K0(m
√
−λ)− θ(λ) π iH

(2)
0 (m

√
λ)
]

= 2θ(−λ)K0(m
√
−λ)

+ πi θ(λ)
[

sgn(t)J0(m
√
λ) + iN0(m

√
λ)
]

= I(t, λ)

and finally

D (−)(x) =
i

8π2 r

∂

∂ r
I(t, r) =

1

4 i π2

∂

∂λ
I(t, λ)

We note that in the neighborhood of the origin the cylindrical Bessel
functions of real and imaginary arguments may be represented in the
form

J0(z) = 1−
(z

2

)2
+O(z4)

N0(z) =
2

π

[
1−

(z
2

)2 ]
ln
z

2
+

2

π
C +O(z2)

K0(z) = −
[

1 +
(z

2

)2 ]
ln
z

2
− C +O(z2)
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where C is the Mascheroni’s constant. By replacing the differentiation
with respect to x with differentiation with respect to λ and taking
into account the discontinuity of the function I(t, λ) on the light-cone
manifold λ = 0 we obtain the following expression for the positive and
negative frequency parts of the canonical commutator: namely,

D (−)(x) =
1

4π
sgn(t) δ(λ) + i θ(−λ)

m

4π2
√
−λ

K1(m
√
−λ)

+ i θ(λ)
m

8π
√
λ

[
N1(m

√
λ) + i sgn(t) J1(m

√
λ)
]

D (+)(x) =
1

4π
sgn(t) δ(λ)− i θ(−λ)

m

4π2
√
−λ

K1(m
√
−λ)

− i θ(λ)
m

8π
√
λ

[
N1(m

√
λ)− i sgn(t) J1(m

√
λ)
]

so that the Pauli-Jordan commutator and the Feynman propagator are
respectively expressed by

D(x) = D (+)(x) +D (−)(x)

=
1

2π
sgn(t) δ(λ)− m

4π
√
λ
θ(λ) sgn(x0) J1(m

√
λ)

DF (x) = iθ(− t)D (+)(x)− iθ(t)D (−)(x)

=
1

4πi
δ(λ) +

mθ(−λ)

4π2
√
−λ

K1(m
√
−λ)

+ θ(λ)
m

8π
√
λ

[
N1(m

√
λ) + i J1(m

√
λ)
]

in full agreement with the textbook by N.N. Bogoliubov and D.V.
Shirkov (1959) Introduction to the Theory of Quantized Fields, John
Wiley & Sons, New York (U.S.) §15.1, pp. 150-151, eq.s (15.10),
(15.11), (15.13) and (15.14).

From the series expansions of the Basset and Bessel functions

K1(z) =
1

z
+
z

2

[
ln
z

2
+

1

2
C− 1

2
ψ(2)

]
+O(z3 ln z)

J1(z) =
z

2

[
1 +

z2

8
+O(z4)

]
N1(z) = − 2

πz
+
z

π

(
ln
z

2
+ C

)
+O(z)

we can readily derive the simple and nice expression for the Wightman
distributions of a mass-less scalar field viz.,

iD
(−)
0 (x) =

i

4π
sgn(t) δ(λ) +

1

4π2λ
=

1

4π2[x2 − iεsgn(t) ]
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(b) Evaluate the scalar causal 2-point Green function of order n in
the D−dimensional Minkowskian space, which is defined to be

G(D)
n (z) =

i

(2π)D

∫
exp{− ik · z}

(k2 −m2 + iε)n
dDk

explicitly in terms of Bessel functions.

Solution. It is very instructive to first compute the integral

IDn (z) ≡ i

(2π)D

∫
exp{− ik · z}

(k2 −m2 + iε)n
dDk

=
i(2m)1−n

(2π)D (n− 1)!

(
dn−1

dmn−1

∫
exp{− ik · z}
k2 −m2 + iε

dDk

)
where z = (z0, z1, . . . , zD−1) and k = (k0, k1, . . . , kD−1) are coordinate
and conjugate momentum in a D-dimensional Minkowskian space, so
that k · z = k0z0 − k1z1 − · · · − kD−1zD−1 = k0z0 − k · z , while n is
a sufficiently large natural number that will be better specified further
on. Turning to a D-dimensional Euclidean space, after setting z0 =
izD , k

0 = ikD we immediately obtain

IDn (z) ≡ (−1)n

(2π)D

∫
exp{ikE · zE}

(k2E +m2)n
dDkE

with kE = (k, kD) , zE = (z, zD) . The spherical polar coordinates of
kE are k, φ, θ1, θ2, . . . , θD−2 and we have

k1 = k cos θ1
k2 = k sin θ1 cos θ2

k3 = k sin θ1 sin θ2 cos θ3
· · · · · · · · ·

kD−1 = k sin θ1 sin θ2 · · · sin θD−2 cosφ
kD = k sin θ1 sin θ2 · · · sin θD−2 sinφ

with 0 ≤ θi ≤ π for i = 1, 2, . . . , D − 2 and 0 ≤ φ ≤ 2π while k =
|kE| = (k2 + k2D)1/2 ≥ 0 . It turns out that

∂ (k1, k2, · · · , kD)

∂ (k, φ, θ1, · · · , θD−2)
= kD−1(sin θ1)

D−2(sin θ2)
D−3 · · · (sin θD−2)

If we choose the Euclidean momentum Ok1 axis along zE we evidently
obtain kE · xE = kzE cos θ1 ≡ kzE cos θ and thereby we immediately
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obtain

IDn (z) = (−1)n (2π)−D
∫ ∞
0

dk kD−1 (k2 +m2)−n

×
∫ π

0

dθ (sin θ)D−2 exp{ikzE cos θ}

× (2π)
D−2∏
j=2

∫ π

0

dθj (sin θj)
D−j−1

Now we have∫ π

0

dθj (sin θj)
D−j−1 = 2

∫ 1

0

dtj (1− t2j) (D−j−2)/2

=

∫ 1

0

dy y−1/2(1− y) (D−j)/2−1

= B(1/2, D/2− j/2)

=
√
π

Γ(D/2− j/2)

Γ(D/2− j/2 + 1/2)

so that

D−2∏
j=2

∫ π

0

dθj (sin θj)
D−j−1

=
π(D−3)/2 Γ(1)Γ(3/2)Γ(2) · · ·Γ(D/2− 1)

Γ(3/2)Γ(2) · · ·Γ(D/2− 1)Γ(D/2− 1/2)

=
π(D−3)/2

Γ(D/2− 1/2)

and thereby

IDn (z) =
2(−1)n (4π)−D/2

Γ(D/2− 1/2)
√
π

∫ ∞
0

dk kD−1 (k2 +m2)−n

×
∫ π

0

dθ (sin θ)D−2 exp{ikzE cos θ}

Next we find ∫ π

0

dθ (sin θ)D−2 exp{ikzE cos θ}

= 2

∫ π/2

0

dθ (sin θ)D−2 cos(kzE cos θ)

= 2

∫ 1

0

(1− t2)(D−3)/2 cos(tkzE) dt
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The value of the latter integral is reported in [12] eq. 3.7717. p. 464
and turns out to be

√
π

(
2

kzE

)D/2−1
Γ

(
D − 1

2

)
JD/2−1(kzE) (<eD > 1)

so that we further obtain

IDn (z) = (−1)n (4π)−D/2 2D/2 z
−D/2+1
E

×
∫ ∞
0

kD/2 (k2 +m2)−nJD/2−1(kzE) dk

and from [12] eq. 6.5654. p. 710 we come to the expression

IDn (z) = (−1)n (4π)−D/2 2D/2 z
−D/2+1
E

× mD/2−n zn−1E

2n−1Γ(n)
KD/2−n(mzE)

=
2 (−1)n

(4π)D/2 Γ(n)

(
2m

zE

)D/2−n
KD/2−n(mzE)

with 0 < <eD < 4n− 1 .

Another much more quick method to get the same result is in terms of
the Mellin’s transform

IDn (z) =
(−1)n

Γ(n) (2π)D

∫
dDkE exp { i kEµ zEµ}

×
∫ ∞
0

dt tn−1 exp {−t k2E − tm2}

=
(−1)n

Γ(n)

∫ ∞
0

dt tn−1 exp{− tm2}

× 1

(2π)D

∫
dDkE exp

{
− t
(
kE − i

zE
2t

)2
− z2E

4t

}
=

(−1)n

(4π)D/2 Γ(n)

∫ ∞
0

dt tn−1−D/2 exp {− tm2 − z2E/4t}

=
2 (−1)n

(4π)D/2 Γ(n)

(
2m√
−λ

)D/2−n
KD/2−n

(
m
√
−λ

)
where zE = (z2 + z24)1/2 = (z2 − z20)1/2 = (−λ)1/2 , z2 < 0 . In the
case n = 1 , D = 4 we recover the Feynman propagator outside the
light-cone

DF (z) = − I41 (zE) =
m

4π2
√
−λ

K1

(
m
√
−λ

)
(z2 < 0)
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and from the series representation of the Basset function of order one

K1(z) =
1

z
+
z

2

[
ln
z

2
+

1

2
C− 1

2
ψ(2)

]
+O(z3 ln z)

we obtain the leading behavior of the causal Green’s function in the four
dimensional Minkowski space near the outer surface of the light-cone

DF (z) ≈ − 1

4π2λ
+
m2

8π2
ln (m |λ |1/2) (λ = z2 < 0)

On the other side of the light-cone, i.e. for z2 > 0 , we have to use the
integral representation(

1

k2 −m2 + iε

)n
=

(− i)n

Γ(n)

∫ ∞
0

dt tn−1 exp {i t (k2 −m2 + iε)}

so that

IDn (z) =
1

(2π)D

∫
dDk exp {− i kµ z µ}

× (− i)n

Γ(n)

∫ ∞
0

dt tn−1 exp {i t (k2 −m2 + i0)}

=
(− i)n

Γ(n)

∫ ∞
0

dt tn−1 exp

{
− im2

(
t+

z2

4m2 t

)}
× 1

(2π)D

∫
dDk exp

{
i t
(
k − z

2t

)2}
=

(− i )n

(4π)D/2 Γ(n)

∫ ∞
0

dt tn−D/2−1 exp

{
− im2

(
t+

λ

4m2 t

)}
with λ = z2 > 0 . Now we have [12] formula 3.47111. p. 384∫ ∞
0

d t t ν−1 exp

{
1

2
iµ

(
t+

β 2

t

)}
= π i exp

{
− 1

2
π iν

}
β ν H

(1)
−ν (βµ)

with =mµ > 0 , =m (β 2µ) ≥ 0 . Hence we obtain

IDn (z) =
π (− 1)n+1

(4π)D/2 Γ(n)
exp

{
1

4
πiD

} (
2m√
λ

)D/2−n
H

(2)
D/2−n(m

√
λ)

For n = 1 , D = 4 we recover the Feynman propagator with a time-like
argument

DF (z) =
m

8π
√
λ

[
N1(m

√
λ) + iJ1(m

√
λ)
]

(z2 = λ > 0)
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in agreement with the very last expression of Problem 2. From the series
representations of the Bessel functions we obtain the leading behaviors

J1(z) =
z

2

[
1 +

z2

8
+O(z4)

]
N1(z) = − 2

πz
+
z

π

(
ln
z

2
+ C

)
+O(z) (3.127)

whence

DF (z) ≈ − 1

4π2λ
+
m2

8π2
ln (m |λ |1/2) (λ = z2 > 0)

Finally, consider the causal Green’s function in the four dimensional
Minkowski space, that means n = 1 , D = 4 . To this concern it is
convenient to set

z ≡ |z | k = |k | k · z = kz cos θ

and thereby

DF (z0, z) =
i

z (2π)3

∫ ∞
−∞

dk k sin(kz)

∫ ∞
−∞

dk0
exp{− iz0k0}

k20 − k2 −m2 + iε

The last integral has two simple poles in the complex energy plane

k0 = ω(k)− iε k0 = −ω(k) + iε ω(k) =
√
k2 +m2

For z0 > 0 we have to close the contour in the lower half-plane of the
complex energy, that yields

DF (z0, z) =
θ(z0)

iz (2π)2

∫ ∞
−∞

dk k exp{ikz} exp{− i(z0 − i0)ω(k)}
2ω(k)

=
θ(z0)

8izπ2

∫ ∞
−∞

dk k√
k2 +m2

exp
{
ikz − i(z0 − i0)

√
k2 +m2

}
Conversely, for z0 < 0 we have to close the contour in the upper half-
plane =m (k0) > 0 that gives

DF (z0, z) =
θ(−z0)
8izπ2

∫ ∞
−∞

dk k√
k2 +m2

× exp
{
−ikz + i(z0 + i0)

√
k2 +m2

}
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As a consequence, for z0 = 0 we obtain

DF (0, z) =
1

8zπ2

∫ ∞
−∞

dk k sin(kz)√
k2 +m2

=
1

4zπ2

(
− d

dz

)∫ ∞
0

dk cos(kz)√
k2 +m2

=
m

4zπ2
K1(mz)

and thanks to the Lorentz invariance

DF (z) =
m

4π2
√
−z2

K1

(
m
√
−z2

)
(z2 < 0)

in accordance with the previously obtained result. Finally, when m = 0
we find

lim
m→ 0

DF (z0, z) =
1

8izπ2
×∫ ∞

−∞
dk
[
θ(z0) exp{ik(z − z0)}+ θ(−z0) exp{−ik(z − z0)}

]
=

1

4πi
δ(z20 − z2) =

1

4πi
δ(λ)

and consequently we eventually come to the singular behavior in the
neighborhood of the light-cone

DF (z) ≈ 1

4πi
δ(λ)− 1

4π2λ
+
m2

8π2
ln (m |λ |1/2) (z2 = λ ∼ 0)
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Chapter 4

The Spinor Field

4.1 The Dirac Equation

We have already obtained the Poincaré invariant and parity-even kinetic term
(2.59) for the Dirac wave field as well as the other parity-even local invariant
(2.58) quadratic in the Dirac spinor fields. Then, it is easy to set up the most
general Lagrange density for the free Dirac field, which satisfies the general
requirements listed in Sect. 2.2 : namely,

LD = ψ (x)

(
1
2
γ µ i

↔
∂µ −

Mc

~

)
ψ (x) (4.1)

Beside this form of the Dirac Lagrangian, in which the kinetic term contains

the left-right derivative operator
↔
∂ , we can also use the equivalent form, up

to a tetra-divergence term,

−
LD = ψ (x) γ µ i ∂µψ (x)− (Mc/~)ψ (x)ψ (x)

=̇ LD + 1
2
i ∂µ

(
ψ (x) γ µ ψ (x)

)
(4.2)

Notice that the spinor fields in the four dimensional Minkowski space have
canonical dimensions [ψ ] =

√
eV cm−1 in physical units, that is [ψ ] =

cm−3/2 = eV 3/2 in natural units. The free spinor wave equation can be
obtained as the Euler-Lagrange field equation from the above Lagrangian by
treating ψ(x) and ψ (x) as independent fields. This actually corresponds to
take independent variations with respect to <eψα(x) and =mψβ(x) , in which
the spinor component indexes run over the values α, β = 1L, 2L, 1R, 2R .
Then we obtain the celebrated Dirac equation

(i∂/−M)ψ(x) = 0 (4.3)
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where I have employed the customary notation

i∂/ ≡ γ µ i∂µ

Paul Adrian Maurice Dirac (1928)
The Quantum Theory of the Electron
Proceedings of the Royal Society, Vol. A117, p. 610

Taking the Hermitean conjugate of the Dirac equation

0 = i∂µψ
†(x)γ µ† +Mψ †(x) = i∂µψ

†(x)γ0 γ µ γ0 +Mψ †(x) (4.4)

and after multiplication by γ0 from the right we come to the adjoint Dirac
equation

i∂µ ψ̄ (x)γ µ +M ψ̄ (x) ≡ ψ̄ (x)(
←
i∂/ +M ) = 0 (4.5)

The Dirac equation (4.3) can also be written à la Schrödinger in the form

i~
∂ψ

∂t
= Hψ H = αkpk + βM ≡ α · p c+ βMc2 (4.6)

where H denotes the 1-particle Hamiltonian self-adjoint operator with αk =
γ0γk , p k = − i~∂k . Owing to the transformation rule (2.78) it is immediate
to verify the Lorentz covariance of the Dirac equation, that means

(i∂/ ′ −M)ψ ′(x ′ ) =
(
γ µ Λ ν

µ i∂ν −M
)

Λ 1
2

(ω)ψ(x)

(i∂/ ′ −M)ψ ′(x ′ ) =
(

Λµ
κ Λ 1

2
(ω)γ κΛ−11

2

Λ ν
µ i∂ν −M

)
Λ 1

2
(ω)ψ(x)

=
(
δ νκ Λ 1

2
(ω)γ κΛ−11

2

i∂ν −M
)

Λ 1
2

(ω)ψ(x)

= Λ 1
2

(ω) (i∂/−M)ψ(x) = 0 (4.7)

4.1.1 Normal Modes Expansion

To solve the Dirac equation, let us first consider the plane wave stationary
solutions

ψp(x) = Γ(p) exp {− i p · x} (4.8)

where the spinor Γ(p) fulfills the algebraic equation

(p/−M) Γ(p) = 0 ⇔ (α · p + βM − p0) Γ(p) = 0 (4.9)
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H being the Hermitean matrix (4.6), which admits nontrivial solutions iff

det ‖ p/−M ‖= 0 (4.10)

This determinant, which is truly independent from the specific representation
of the Clifford algebra, can be most easily computed in the so called ordinary
or standard or even Dirac representation, that is

γ 0
D ≡ β =

 1 0
0 −1

 γ kD =

 0 σk
−σk 0

 (4.11)

If we choose the momentum rest frame p = 0 we find solutions iff

det ‖ p/−M ‖= (p0 −M)2(p0 +M)2 = 0 (4.12)

and using Lorentz covariance

det ‖ p/−M ‖= (p2 −M2)2 = 0

which drives to the two pairs of degenerate solutions with frequencies

p0± = ±
(
p2 +M2

) 1
2 ≡ ±ωp (4.13)

As a consequence, it follows that we have two couples of plane wave stationary
solutions (4.8) with two possible polarization states with r = 1, 2 :

ψ p , r (x) =

{
Γ− , r (p) e− ipx

Γ+ , r (−p) e ipx
[ pµ = (ωp,p) , r = 1, 2 ] (4.14)

with

(p/−M) Γ− , r (p) = 0 (p/+M) Γ+ , r (−p) = 0 ( p0 = ωp )

Actually, it is a well established convention to set

Γ− , r (p) ≡ [ (2π)3 2ωp ]−
1
2 ur (p) = [ (2π)3 2ωp ]−

1
2 ur (p)

Γ+ , r (−p) ≡ [ (2π)3 2ωp ]−
1
2 vr (p) = [ (2π)3 2ωp ]−

1
2 vr (p)

together with

up , r (x) =
√
c [ (2π)3 2ωp ]−1/2 ur (p) exp{− itωp + ip · x)}

vp , r (x) =
√
c [ (2π)3 2ωp ]−1/2 vr (p) exp{+ itωp − ip · x)}
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The so called spin-amplitudes or spin-states do fulfill

(ωpγ
0 − γkpk −M)ur(p) = 0 ( r = 1, 2 ) (4.15)

(ωpγ
0 − γkpk +M) vr(p) = 0 ( r = 1, 2 ) (4.16)

which is nothing but that the degenerate solution of the eigenvalue problem

H ur(p) = ωp ur(p) H vr(−p) = −ω−p vr(−p) ( r = 1, 2 ) (4.17)

together with the orthogonality and closure relations

c u †r(p)us(p) = 2ωp δrs = c v †r(p) vs(p) (4.18)∑
r=1,2

[
ur(p)⊗ u †r (p) + vr(−p)⊗ v †r (−p)

]
= 2ωp/c (4.19)

whence it follows that the spin states have engineering dimensions [ur ] =
[ vr ] = cm−1/2 in physical units. Instead of using the tensor product notation,
the closure relation can also be written by means of the spinor indexes α, β =
1L, 2L, 1R, 2R: namely,∑

r=1,2

[
u r , α(p)u ∗r , β(p) + v r , α(−p) v ∗r , β(−p)

]
= 2ωp δαβ (4.20)

As an internal consistency check, notice en passant that by setting β = α
and summing over the spinor index α = 1L, 2L, 1R, 2R we get∑

α

∑
r=1,2

[
u r , α(p)u ∗r , α(p) + v r , α(−p) v ∗r , α(−p)

]
=

∑
r=1,2

∑
α

u ∗r , α(p)u r , α(p) +
∑
r=1,2

∑
α

v ∗r , α(−p) v r , α(−p)

= 2 · 2ωp + 2 · 2ω−p = 2ωp · 4

where use has been made of the orthonormality relations (4.18). As a further
remark, notice that the very same relations (4.18) are such to recover∫

dx u†q , s (x)up , r (x) = δ rs δ (p− q) =

∫
dx v†q , s (x) vp , r (x) (4.21)

while the closure relations (4.19) and (4.20) indeed ensure the completeness
relation∑

p , r

(
up , r (x)⊗ u†p , r (y) + vp , r (x)⊗ v †p , r (y)

)
x0 = y0

= δ (x− y) (4.22)
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in which the notation has been introduced for brevity∑
p , r

def
=
∑
r=1,2

∫
dp

Proof. From the explicit form of the spinor plane wave functions we obtain∑
r=1,2

∫
dp [ (2π)3 2ωp ]−1 u r , α (p)u>∗r , β (p) exp{ip · (x− y)}

+
∑
r=1,2

∫
dp [ (2π)3 2ωp ]−1 v r , α (p) v>∗r , β (p) exp{− ip · (x− y)}

=

∫
dp

(2π)3 2ωp
exp{ ip · (x− y)}

×
∑
r=1,2

[
u r , α (p)u>∗r , β (p) + v r , α (−p) v>∗r , β (−p)

]
=

∫
dp

(2π)3
exp{ip · (x− y)} δαβ = δαβ δ(x− y)

�

It is worthwhile to notice that, from the covariance (4.7) of the Dirac
equation, the transformation property of the spin-states readily follows. For
instance, from eq. (2.78) we find

( p/ ′ −M )u ′r (p ′ ) =
(

Λ ν
µ p ν γ

µ −M
)

Λ 1
2
ur (p)

=
(

Λ ν
µ p ν Λµ

ρ Λ 1
2
γ ρ Λ−1

1
2

−M
)

Λ 1
2
ur (p)

= Λ 1
2

(p/−M)ur (p) = 0 (4.23)

Hence, the Lorentz covariance of the Dirac equation actually occurs, provided
the following relationships hold true for the spin-states

u ′r (p ′ ) = Λ 1
2
ur (p) ⇔ ur (p) = Λ−11

2

u ′r (Λ p) (4.24)

v ′r (p ′ ) = Λ 1
2
vr (p) ⇔ vr (p) = Λ−11

2

v ′r (Λ p) (4.25)

It is not difficult to prove the further equality: namely,

ūr(p)us(p) = (2Mc/~) δrs = − v̄r(p) vs(p) (4.26)

u †r(p) vs(−p) = 0 ūr(p) vs(p) = 0

v †r(p)us(−p) = 0 v̄r(p)us(p) = 0 (r, s = 1, 2) (4.27)
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Proof. From eq. (4.15) we obviously get

u †s (p) (ωpγ
0 − γkpk −M)ur(p) = 0 (∀ r, s = 1, 2)

and taking the adjoint equation

u †s (p) (ωpγ
0 + γkpk −M)ur(p) = 0 (∀ r, s = 1, 2)

so that adding together

ūs(p)ur(p) =
M

ωp
u †s (p)ur(p) = 2M δrs

In a quite analogous way one can readily prove that

v̄s(p) vr(p) = − M

ωp
v †s (p) vr(p) = − 2M δrs

Moreover, from eq.s (4.15) and (4.16) we obtain

v†s(−p) (ωpγ
0 − γkpk −M)ur(p) = 0 (∀ r, s = 1, 2)

u†s(p) (ωpγ
0 + γkpk +M) vr(−p) = 0 (∀ r, s = 1, 2)

and taking the Hermitean conjugated of the very last equality

v†s(−p) (ωpγ
0 − γkpk +M)ur(p) = 0 (∀ r, s = 1, 2)

so that, by subtracting up the first equality, we get

v†s(−p)ur(p) = 0 (∀ r, s = 1, 2)

and analogously
u†s(p) vr(−p) = 0 (∀ r, s = 1, 2)

which completes the proof. �

Notice that from the above orthogonality properties of the spin-states the
following orthogonality relations hold true between the positive and negative
frequency of the spinor wave functions∫

dx u†q , s (x) vp , r (x) = 0 =

∫
dx v †q , s (x)up , r (x) (4.28)

It follows therefrom that the most general solution of the Dirac equation
can be written in the form

ψ(x) =
∑
p , r

[
cp , r up , r (x) + d ∗p , r vp , r (x)

]
(4.29)

ψ̄(x) =
∑
p , r

[
c ∗p , r ūp , r (x) + dp , r v̄p , r (x)

]
(4.30)

which is nothing but the normal modes expansion of the free Dirac spinor
classical wave field, where cp , r and dp , r are arbitrary complex coefficients.
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4.1.2 Spin States

In the chiral representation (2.64) for the gamma matrices we can build up
a very convenient set of spin-states as follows. Consider the matrices

p/±M =


±M 0 ωp − pz −px + ipy

0 ±M −px − ipy ωp + pz
ωp + pz px − ipy ±M 0
px + ipy ωp − pz 0 ±M

 (4.31)

where we have set p = (p1, p2, p2) = (px, py, pz) . Notice that we can define the
two projectors on the 2-dimensional spaces spanned by the positive energy
and negative energy spin-states respectively: namely,

E±(p) ≡ (M ± p/) /2M ( p0 = ωp ) (4.32)

which satisfy by definition

E 2
± = E± E+ E− = 0 = E− E+

tr E± = 2 E+ + E− = I

Moreover we have

E †±(p) = E±( p̃) p̃ µ = pµ (4.33)

It is worthwhile to realize that, owing to the basic equations (4.15) and (4.16),
we readily get

E+ u r (p) =
2M + p/−M

2M
u r (p) = u r (p) ( r = 1, 2)

which tell us that u r (p) , r = 1, 2 , are the pair of orthogonal eigenstates with
unit eigenvalue of the projector onto the positive energy space of states with
given momentum p . A quite analogous relationship holds true, of course, for
the negative energy space of states, i.e.

E− v r (p) =
2M − p/−M

2M
v r (p) = v r (p) ( r = 1, 2)

Now, if we introduce the constant bispinors

ξ1 ≡


1
0
1
0

 ξ2 ≡


0
1
0
1

 η1 ≡


0
1
0
−1

 η2 ≡


−1
0
1
0


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which are the common eigenvectors of the γ0 matrix

γ0 ξr = ξr γ0 ηr = − ηr (r = 1, 2)

and of the spin matrix 1
2

Σ3 = i
4

[ γ1 , γ2 ]

(Σ3 − 1) ξ1 = (Σ3 − 1) η2 = 0 (Σ3 + 1) ξ2 = (Σ3 + 1) η1 = 0

and do indeed satisfy by direct inspection

ξ>r γ
k ξs = 0 = η>r γ

k ηs ∀ r, s = 1, 2 ∨ k = 1, 2, 3

then we can suitably define{
ur (p) ≡ 2M (2ωp + 2M)−1/2 E+ ξr
vr (p) ≡ 2M (2ωp + 2M)−1/2 E− ηr

( r = 1, 2 ) (4.34)

the explicit form of which is given by

u1(p) = (2ωp + 2M)−1/2


M + ωp − pz
−px − ipy

M + ωp + pz
px + ipy


u2(p) = (2ωp + 2M)−1/2


−px + ipy

M + ωp + pz
px − ipy

M + ωp − pz


v1(p) = (2ωp + 2M)−1/2


−px + ipy

M + ωp + pz
−px + ipy

−M + pz − ωp


v2(p) = (2ωp + 2M)−1/2


−M − ωp + pz

px + ipy
ωp +M + pz
px + ipy

 (4.35)

their orthonormality and completeness relations being in full accordance with
formulæ (4.18), (4.19) and (4.27). In fact we have for instance

v †r(p) vs(p) = (2ωp + 2M)−1 η>r (M − p̃/)(M − p/)ηs
= (2ωp + 2M)−1 η>r

(
M2 − 2Mγ0ωp + ω 2

p + p2
)
ηs

= (2ωp + 2M)−1 η>r
(

2ω 2
p + 2Mωp

)
ηs

= 2ωp
1
2
η>r ηs = 2ωp δrs
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in which I have made use of the property

η>r γ
k γ0 ηs = − η>r γk ηs = 0 ∀ r, s = 1, 2 ∨ k = 1, 2, 3

Finally, taking the normalization (4.26) into account together with

E+ ur (p) = ur (p) E− vr (p) = vr (p) (r = 1, 2)

it is immediate to obtain the so called sums over the spin-states, that is

1

2M

∑
r=1, 2

{
ur (p)⊗ ūr (p) = E+(p)
vr (p)⊗ v̄r (p) = −E−(p)

(4.36)

or even for α, β = 1L, 2L, 1R, 2R ,∑
r=1, 2

{
ur , α (p) ūr , β (p) = ( p/+M )αβ
vr , α (p) v̄r , β (p) = ( p/−M )αβ

( p0 = ωp ) (4.37)

Hence, from the orthonormality relations (4.26) we can immediately verify
that we have∑

r=1, 2

ur (p)⊗ ūr (p)us (p) = 2M us (p) = 2ME+ us (p)∑
r=1, 2

vr (p)⊗ v̄r (p) vs (p) = − 2M vs (p) = − 2ME− vs (p)
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4.2 Nöther Currents

From Nöther theorem and from the Lagrange density (4.1) we obtain the
canonical energy-momentum tensor of the free Dirac spinor wave field which
turns out to be real though not symmetric

T µ
ν (x) ≡ (δLD /δ ∂µ ψ) ∂ν ψ + ∂ν ψ̄ (δLD /δ ∂µ ψ̄)− δ µν LD

=
i

2

(
ψ̄ (x) γ µ ∂ν ψ (x)− ∂ν ψ̄ (x) γ µ ψ (x)

)
(4.38)

Tµν (x) 6= T νµ (x)

where we have taken into account that the Dirac Lagrangian vanishes if
the equations of motion hold true as it occurs in the Nöther theorem. The
corresponding canonical total angular momentum density tensor for the Dirac
field can be obtained from the general expression (2.98) and reads

M λµν (x)
def
= xµ T λν (x)− x ν T λµ (x) + S λµν (x)

= xµ T λν (x)− x ν T λµ (x) + 1
2
ψ̄ (x) {σ µν , γ λ}ψ (x)

As a matter of fact we have

δL/δ ∂µψ (x) = 1
2
ψ̄ (x) i γ µ δL/δ ∂µ ψ̄ (x) = − 1

2
i γ µ ψ (x)

(− i)(S λκ )ψ (x) = − i σ λκ ψ (x) i ψ̄ (x) (S λκ ) = i ψ̄ (x)σ λκ

where

σ λκ ≡ i

4

[
γ λ , γ κ

] (
σ λκ

)†
= γ0 σ λκ γ0

is the spin tensor for the Dirac field. Hence from the general expression (2.98)
we get

S µλκ (x)
def
=

δL
δ ∂µ uA (x)

(− i)
(
S λκ

)
AB

uB (x)

= δL/δ ∂µ ψ (x) (− i)
(
S λκ

)
ψ (x)

+ i ψ̄ (x)
(
S λκ

)
δL/δ ∂µ ψ̄ (x)

= 1
2
ψ̄ (x) {γ µ , σ λκ }ψ (x)

Notice that

M 0jk (x) = x j T 0k (x)− x k T 0j (x) + ψ † (x)σ j k ψ (x) (4.39)

M 0k0 (x) = x k T 00 (x)− x 0 T 0k (x) (4.40)
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It is rather easy to check, using the Dirac equation, that the continuity
equations actually hold true

∂µ T
µν = 0 (4.41)

∂µM
µλκ = 0 ⇐⇒ T λκ − T κλ = ∂µ S

µκλ (4.42)

which lead to the four conserved energy-momentum Noether charges

Pµ =

∫
dx T 0

µ (x0,x) = 1
2

∫
dx ψ † (x) i

↔
∂µ ψ (x)

=

∫
dx ψ † (x) i∂µ ψ (x) (4.43)

while from the spatial integration of eq. (4.39) we obtain the three conserved
Nöther charges corresponding to the spatial components of the relativistic
total angular momentum

M jk =

∫
dxM 0

jk(t,x) =̇∫
dx
[
x j ψ

† (x) i ∂ k ψ (x)− { j ↔ k }+ ψ † (x)σjk ψ (x)
]

(4.44)

in which we have discarded, as customary, the boundary term

i

2

∫
dx ∂ k

(
x j ψ

†(t,x)ψ(t,x)
)
− { j ↔ k } = 0

Furthermore, from the spatial integration of eq. (4.40) we find

M k0 =

∫
dxM 0k0 (t,x) =

∫
dx x k T 00 (t,x)− x 0 P k (4.45)

in such a way that the constancy in time of the latter space-time components
of the relativistic total angular momentum leads to the definition of the
velocity for the center of the energy, viz.,

X k
t

def
=

∫
dx

x k

cP0

T 00 (t,x)

which corresponds to the relativistic generalization of the center of mass and
travels at a constant speed

Ṁ 0k = 0 ⇔ Ẋ t = c
P

P0

(4.46)
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It follows that the so called center of momentum frame P = 0 just coincides
with the inertial reference frame in which the center of the energy is at rest.

It is very important to realize that owing to the lack of symmetry for
the canonical energy-momentum tensor of the Dirac field 1 its spin angular
momentum tensor is not constant in time. Actually we find, for instance,

∂µ S
µjk (x) = T kj − T jk 6= 0 (4.47)

and consequently the corresponding Noether charges are not conserved in
time so that

S ij(t) =

∫
dx S 0

ij (t,x) = 1
2
ε ijk

∫
dx ψ † (t,x) Σ k ψ (t,x) (4.48)

where

Σ k ≡
 σk 0

0 σk

 (4.49)

However, if the spinor wave field ψ does not depend upon some of the spatial
coordinates (x1, x2, x3) = (x, y, z) it is possible to achieve the continuity
equation for some of the components of the spin angular momentum density
tensor so that the corresponding Nöther charges – i.e. its spatial integrals –
keep constant in time. For example, if ψ(t, z) = ψ (t, 0, 0, z) then we get

2i T 12 = ψ̄ (t, z) γ1
↔
∂yψ (t, z) = 0 = ψ̄ (t, z) γ2

↔
∂xψ (t, z) = 2i T 21

and consequently

∂µM
µ
12 = ∂µ S

µ
12 = 0 (4.50)

Hence it follows that the component of the spin vector along the direction of
propagation, which is named the helicity, is conserved in time: namely,

dh

d t
= 0 h

def
=

∫ ∞
−∞

dz 1
2
ψ † (t, z) Σ3 ψ (t, z) (4.51)

After insertion of the normal modes expansions (4.30) one gets

h = 1
2

∫ ∞
−∞

dp
[
c ∗p , 1 c p , 1 − c ∗p , 2 c p , 2 − d p , 1 d ∗p , 1 + d p , 2 d

∗
p , 2

]
(4.52)

1The lack of symmetry in the canonical energy-momentum tensor of the Dirac field can
be removed using a trick due to Frederik J. Belifante, On the spin angular momentum of
mesons, Physica 6 (1939) 887-898, and L. Rosenfeld, Sur le tenseur d’impulsion-énergie,
Mémoires de l’Academie Roy. Belgique 18 (1940) 1-30, see Problem 1.
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Proof. By passing in (4.49) to the momentum representations (4.30) and carrying out the
integration over the Oz real line we obtain

h =

∫ ∞
−∞

dz 1
2 ψ
† (t, z) Σ 3 ψ (t, z)

=

∫ ∞
−∞

dz
∑
p , r

[
c ∗p , r u

†
p , r (t, z) + d p , r v

†
p , r (t, z)

]
× 1

2 Σ 3

∑
q , s

[
c q , s u q , s (t, z) + d ∗q , s v q , s (t, z)

]
in which we have set p = (0, 0, p) ,q = (0, 0, q) , ω p =

√
(p2 +M2) together with

u p , r (t, z) = [ 4πω p ]−1/2 ur (p) exp{ipz − itω p} (r = 1, 2)

v q , s (t, z) = [ 4πω q ]−1/2 vs (q) exp{itω q − iqz} (s = 1, 2)

the normalization being now consistent with the plane waves independent of the transverse
x> = (x1 , x2) spatial coordinates. From (4.27) and the commutation relation

[ω pγ
0 − p γ3 , Σ3 ] = 0 (4.53)

together with the definition (4.34){
u r(p) ≡ (2ω p + 2M)−1/2

(
M + ω pγ

0 − p γ3
)
ξ r

v r(p) ≡ (2ω p + 2M)−1/2
(
M − ω pγ0 + p γ3

)
η r

(r = 1, 2)

it can be readily derived that

( Σ3 − 1 )u1(p) = ( Σ3 − 1 ) v2(p) = 0

( Σ3 + 1 )u2(p) = ( Σ3 + 1 ) v1(p) = 0

u †r (p) Σ3 vs(− p) = 0 v †r (− p) Σ3 us(p) = 0 (r, s = 1, 2) (4.54)

Hence the spin component along the direction of propagation, which is named helicity of
the Dirac spinor wave field, turns out to be time independent and takes the form

h =

∫ ∞
−∞

dp

4ω p

∑
r=1, 2

[
c ∗p , r c p , r u

†
r (p) Σ3 ur(p) + d p , r d

∗
p , r v

†
r (p) Σ3 vr(p)

]
= 1

2

∫ ∞
−∞

dp
[
c ∗p , 1 c p , 1 − c ∗p , 2 c p , 2 − d p , 1 d ∗p , 1 + d p , 2 d

∗
p , 2

]
which proves equation (4.52) and shows that particles and antiparticles exhibit opposite

helicity. �

Finally, the Dirac Lagrangian is manifestly invariant under the internal
symmetry group U(1) of the phase transformations

ψ ′(x) = e iqθ ψ(x) ψ̄ ′(x) = ψ̄(x) e− iqθ 0 ≤ θ < 2π

where q denotes the particle electric charge, e.g. q = − e (e > 0) for the
electron. Then from eq. (2.105) the corresponding Nöther current becomes

J µ(x) = q ψ̄(x) γ µ ψ(x) (4.55)
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and will be identified with the electric current carried on by the spinor field,
which transforms as a true four vector under the space inversion (2.55) or,
more generally, under the improper orthochronus Lorentz transformations of
L↑− , that means

J ′0(x0,−x) = J0(x) J ′(x0,−x) = −J(x)

If instead we consider the internal symmetry group U(1) of the chiral
phase transformations

ψ ′(x) = exp{− iθ γ5}ψ(x) ψ̄ ′(x) = ψ̄(x) exp{− iθ γ5} 0 ≤ θ < 2π

then the free Dirac Lagrange density is not invariant, owing to the presence
of the mass term, so that the Nöther theorem (2.89) yields in this case

∂µ J
µ
5 (x) = ∂µ

(
ψ̄(x) γ µ γ5 ψ(x)

)
= 2iM ψ̄(x)γ5 ψ(x) (4.56)

Notice that the axial vector current J µ
5 (x) is a pseudo-vector since we have

the transformation law under parity or spatial inversion (2.55)

J 0 ′
5 (x0,−x) = − J 0

5 (x) J k ′
5 (x0,−x) = J k

5 (x)

It follows therefrom that the chiral phase transformations are a symmetry
group of the classical free Dirac theory only in the massless limit.
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4.3 Dirac Quantum Field

The above discussion eventually leads to the energy-momentum vector of the
free Dirac wave field that reads

Pµ =

∫
dx T 0

µ (x0,x) =

∫
dx ψ † (x) i∂µ ψ (x) (4.57)

and inserting the normal mode expansions (4.30) we obtain

Pµ =

∫
dx

∑
q , s

[
c ∗q , s u

†
q , s (x) + dq , s v

†
q , s (x)

]
×

∑
p , r

pµ

[
cp , r up , r (x) − d ∗p , r vp , r (x)

]
(4.58)

where we have set pµ ≡ (ωp , −p) . Taking the orthogonality relations (4.21)
and (4.28) into account we come to the expression

P µ =
∑
p , r

pµ
(
c ∗p , r cp , r − dp , r d

∗
p , r

)
(4.59)

Now the key point: as we shall see in a while, in order to quantize the
relativistic spinor wave field in such a manner to obtain a positive semi-definite
energy operator, then we must impose canonical anti-commutation relations.
As a matter of fact, once the normal mode expansion coefficients turn into
creation and destruction operators, that means

cp , r , c
∗
p , r 7→ cp , r , c

†
p , r dp , r , d

∗
p , r 7→ dp , r , d

†
p , r

had we assumed the canonical commutation relations

[ dp , r , d
†
q , s ] = δrs δ(p− q)

as in the scalar field case, then we would find

P µ =
∑
p , r

pµ
(
c †p , r cp , r − d †p , r dp , r

)
− 4U0 g

µ0

where U0 is again the divergent zero-point energy (3.56)

cU0 = δ(0)
∑
p

1
2
~ωp = V ~

∫
ωp dp

2(2π)3

=
V ~c
4π2

∫ K

0

dp p2
√
p2 +M2c2/~2 (4.60)
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whereas V is the volume of a very large box and ~K � Mc is a very large
wave-number, the factor two being due to spin. This means, however, that
even assuming normal ordering prescription to discard U0 , still the spinor
energy operator P0 is no longer positive semi-definite.

Turning back to the classical spinor wave field, it turns out that it is not
convenient to understand the normal mode expansion coefficients

dp , r

(
r = 1, 2 , p ∈ R3

)
as ordinary complex numbers. On the contrary, we can assume all those
coefficients to be anti-commuting numbers, also named Graßmann numbers

Hermann Günther Graßmann (Stettino, 15.04.1809 – 26.09.1877)
Die Lineale Ausdehnungslehre, ein neuer Zweig del Mathematik
(Linear Extension Theory, a New Branch of Mathematics (1844)

{dp , r , dq , s} = 0 = {dp , r , d
∗
q , s} (∀ r, s = 1, 2 p,q ∈ R3 )

in which {a, b} = ab+ ba . Notice en passant that in the particular case r = s
and p = q we find d 2

q , s = 0 = d ∗ 2q , s . Internal consistency then requires that
also the normal mode expansion coefficients cp , r (r = 1, 2 , p ∈ R3 ) must
be taken Graßmann numbers, in such a manner that the whole classical Dirac
spinor relativistic wave field becomes Graßmann valued so that

{ψ (x) , ψ (y)} = {ψ (x) , ψ̄ (y)} = {ψ̄ (x) , ψ̄ (y)} = 0 (4.61)

Under this assumption, the canonical quantization of such a system is
then achieved by replacing the Graßmann numbers valued coefficients of the
normal mode expansion by creation annihilation operators acting on a Fock
space and postulating the canonical anti-commutation relations, that means

{cp , r , c †q , s} = δ rs δ (p− q) = {dp , r , d
†
q , s}

(∀ r, s = 1, 2 p,q ∈ R3 )

all the other anti− commutators vanishing (4.62)

As a consequence, the Dirac spinor quantum wave field becomes an operator
valued tempered distribution acting on a Fock space and reads

ψ (x) =
∑
p , r

[
cp , r up , r (x) + d †p , r vp , r (x)

]√
~c (4.63)

ψ †(x) =
∑
p , r

[
c †p , r u

>∗
p , r (x) + dp , r v

>∗
p , r (x)

]√
~c (4.64)
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where it has been suitably stressed that the symbol † is indeed referred to the
Hermitean conjugation of operators acting on a Fock space. The canonical
anti-commutation relations (4.62) actually imply

{ψα(t,x) , ψβ(t,y)} = 0 = {ψ †α(t,x) , ψ †β(t,y)} (4.65)

{ψα(t,x) , ψ †β(t,y)} = ~c δ (x− y) δαβ (4.66)

(α, β = 1L, 2L, 1R, 2R )

Proof. Taking the normal modes expansions into account we actually get

{ψα(t,x) , ψ †β (t,y)} =

{∑
p , r

[
cp , r up , r , α (t,x) + d †p , r vp , r , α (t,x)

]
,

∑
q , s

[
c †q , s u

>∗
q , s , β (t,y) + dq , s v

>∗
q , s , β (t,y)

]}
=

∑
p , r

[
up , r , α (t,x)u †p , r , β (t,y) + vp , r , α (t,x) v †p , r , β (t,y)

]
where use has been made of the canonical anti-commutation relations (4.62) among the
creation and destruction operators of the spinor operator field. Now, by taking into account
the closure relation (4.22) we immediately get the result

{ψα(t,x) , ψ †β (t,y)} = δαβ δ(x− y)

and the related anti-commutator

{ψ (t,x) , ψ (t,y)} = γ0 δ(x− y)

�

Then, if we adopt once again the normal product to remove the divergent
and negative zero-point energy contribution to the cosmological constant,
we come to the operator expression for the energy-momentum of the Dirac
spinor quantum free field: namely,

E =

∫
dx : ψ † (x) i∂0 ψ (x) :

=
1

~c

∫
dx : ψ † (x)H ψ (x) :

=
∑
p , r

~ωp

[
c †p , r cp , r + d †p , r dp , r

]
(4.67)

P =
1

c

∫
dx : ψ † (x) (− i∇ )ψ (x) :

=
∑
p , r

~p
[
c †p , r cp , r + d †p , r dp , r

]
(4.68)
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Normal Product of Anti-commuting Fields. As a matter of fact we have, for instance,

ψ †α (y) i∂0 ψβ (x) =
∑
p , r

[
c †p , r u

†
p , r , α (y) + dp , r v

†
p , r , α (y)

]
×

∑
q , s

ωq

[
cq , uq , s , β (x)− d †q , s vq , s , β (x)

]
=

∑
p , r

∑
q , s

ωq

[
c †p , r cq , u

†
p , r , α (y)uq , s , β (x)

− c †p , r d
†
q , u

†
p , r , α (y) vq , s , β (x)

+ dp , r cq , s v
†
p , r , α (y)uq , s , β (x)

+ d †q , s dp , r v
†
p , r , α (y) vq , s , β (x)

]
−

∑
q , s

ωq v
†
q , s , α (y) vq , s , β (x)

≡ : ψ †α (y) i ψ̇β (x) : −
∑
q , s

ωq v
†
q , s , α (y) vq , s , β (x)

Thus we can eventually write

: ψ †α (y) ψ̇β (x) : = ψ †α (y) ψ̇β (x)−
∑
q , s

iωq v
†
q , s , α (y) vq , s , β (x) = − : ψ̇β (x)ψ †α (y) :

that can be easily generalized to any local bilinear in the anti-commuting spinor fields. �

It is important to remark that the canonical anti-commutation relations

{dp , r , d
†
q , s} = δ rs δ (p− q) {dp , r , dq , s} = 0

(∀ r, s = 1, 2 p,q ∈ R3 )

do guarantee the positive semi-definiteness of the energy operator P0 , while
the remaining anti-commutators (4.62) can be derived from the requirement
that the energy-momentum operators Pµ realize the self-adjoint generators
of the space-time translations of a unitary representation of the Poincaré
group. As a matter of fact, from a repeated use of the algebraic identity
[ab, c] = a {b, c} − {a, c} b we obtain

[Pµ , ψ (x) ] =∑
p , r

pµ

[ (
c †p , r cp , r + d †p , r dp , r

)
,
∑
q , s

cq , s uq , s (x)
]

+

∑
p , r

pµ

[ (
c †p , r cp , r + d †p , r dp , r

)
,
∑
q , s

d †q , s vq , s (x)
) ]

=

∑
p , r

pµ
∑
q , s

uq , s (x)
(
c †p , r {cp , r , cq , s} − {c †p , r , cq , s} cp , r

)
+
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∑
p , r

pµ
∑
q , s

uq , s (x)
(
d †p , r {dp , r , cq , s} − {d †p , r , cq , s} dp , r

)
+

∑
p , r

pµ
∑
q , s

vq , s (x)
(
c †p , r {cp , r , d †q , s} − {c †p , r , d †q , s} cp , r

)
+

∑
p , r

pµ
∑
q , s

vq , s (x)
(
d †p , r {dp , r , d

†
q , s} − {d †p , r , d †q , s} dp , r

)
= − i∂µψ (x) =

∑
p , r

pµ

[
− cp , r up , r (x) + d †p , r vp , r (x)

]
(4.69)

if and only if the canonical anti-commutation relations (4.62) hold true. A
quite close calculation for the total angular momentum operator eventually
yields

[ψ (x) , Pµ ] = i~∂µψ (x) (4.70)

}−1[ψ (x) , Mµν ] =
(
xµ i∂ν − xν i∂µ + gjµ gkν σ

jk
)
ψ (x) (4.71)

From Nöther theorem and canonical anti-commutation relations (4.62) it
follows that the classical vector current (4.55) is turned into the quantum
operator

J µ (x) ≡ : q ψ̄ (x) γ µ ψ (x) : (4.72)

which satisfies the continuity operator equation

∂µJ
µ (x) =

1

i~
[Pµ , J

µ (x) ] = 0 (4.73)

As a consequence we have the conserved charge operator

Q ≡
∫

dx : q ψ † (x)ψ (x) : = q
∑
p , r

(
c †p , r cp , r − d †p , r dp , r

)
(4.74)

whence it is manifest that the two types of quanta of the Dirac field do carry
opposite charges 2. According to the customary convention for the Dirac
spinor describing the electron positron field, we shall associate to particles
the creation annihilation operators of the c−type and the negative electric
charge q = − e (e > 0), whilst the creation-annihilation operators of the d-
type and the positive electric charge +e will be associated to the antiparticles,
so that the electric charge operator becomes

Q =
∑
p , r

(− e)
(
c †p , r cp , r − d †p , r dp , r

)
(4.75)

2On the contrary, the quanta of the charge self-conjugated Majorana bispinor field are
neutral in such a manner that particles and antiparticles actually coincide, see Problem 3.
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Finally, it turns out that also the helicity (4.52) of the Dirac field, which
is a constant of motion, will be turned by the quantization procedure into
the normal ordered operator expression

h =
1

2

∫ ∞
−∞

dz : ψ † (t, z) Σ 3 ψ (t, z) :

=
1

2

∫ ∞
−∞

dp
∑
r=1 , 2

[
c †p , r c p , r u

†
r (p) Σ3 ur (p)

− d †p , r d p , r v
†
r (p) Σ3 vr (p)

]
(2ωp)

−1 (4.76)

where
{c p , r , c †q , s} = δ rs δ (p− q) = {d p , r , d †q , s}

(∀ r, s = 1, 2 p, q ∈ R )

and all other anti-commutators vanish.
It is convenient to choose our standard spin-states, i.e. the orthogonal

and normalized solutions of eq.s (4.15) and (4.16), in which we have to put
p = (0, 0, p) . Then the helicity operator eventually becomes

h = 1
2

∫∞
−∞ dp [ c †p , 1 c p , 1 − c

†
p , 2 c p , 2 + d †p , 1 d p , 1 − d

†
p , 2 d p , 2 ] (4.77)

The above expression actually clarifies the meaning of the polarization
indexes r, s = 1, 2 . Hence, from the expressions (4.67), (4.68), (4.75) and
(4.77), it follows that the operators c †p , r and cp , r do correspond respectively
to the creation and annihilation operators for the particles of momentum
p , mass M with p2 = M2 , electric charge − e , and positive helicity equal
to 1

2
(r = 1) or negative helicity equal to − 1

2
(r = 2) . Conversely, the

operators d †p , r and dp , r will correspond respectively to the creation and
annihilation operators for the antiparticles of momentum p , mass M with
p2 = M2 , electric charge + e , and positive helicity equal to 1

2
(r = 1) or

negative helicity equal to − 1
2

(r = 2) .

The cyclic Fock vacuum is defined by

cp , r | 0 〉 = 0 dp , r | 0 〉 = 0 ( ∀ r = 1, 2 p ∈ R3 ) (4.78)

while the 1-particle energy-momentum, helicity and charge eigenstates will
correspond to

|p r −〉 ≡ c †p , r | 0 〉 ( r = 1, 2 p ∈ R3 ) (4.79)
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whereas the 1-antiparticle energy-momentum, helicity and charge eigenstates
will be

|p r+ 〉 ≡ d †p , r | 0 〉 ( r = 1, 2 p ∈ R3 ) (4.80)

Owing to the canonical anti-commutation relations (4.62), it is impossible
to put two particles or two antiparticles in the very same quantum state as
e.g.

c †p , r c
†
p , r | 0 〉 = − c †p , r c †p , r | 0 〉 = 0

d †p , r d
†
p , r | 0 〉 = − d †p , r d †p , r | 0 〉 = 0

As a consequence the many-particle states do obey Fermi-Dirac statistics and
the occupation numbers solely take the two possible values

Np , r ,± = 0, 1 ( r = 1, 2 p ∈ R3 )

which drives to the Pauli exclusion principle valid for all identical particles with
half-integer spin. In other words, it turns out that the exclusion principle
is no longer an assumption in Relativistic Quantum Field Theory albeit a
direct necessary consequence of the canonical anti-commutation relations.
This statement, which goes under the name of the Spin-Statistics theorem,
does actually guarantee the stability of Matter Systems. The generic and
properly normalized quantum state with N−particles and N−antiparticles
of definite momentum and polarization, that corresponds to an element of
the basis of the Fock space, will be written in the form

(
N !N !

)− 1
2

N∏
a=1

N∏
b=1

c †(pa , ra ) d †(pb , rb ) | 0 〉 (4.81)

By virtue of (4.62) those states are completely anti-symmetric with regard
to the exchange of any pairs (pa , ra ) and (pb , rb ) and correspond to the
presence of N particles and N antiparticles.

As a last but not least development, we can obtain the wave functions
for particles and antiparticles in the form of some suitable matrix elements.
From the general normal mode expansion of the quantized Dirac field (4.64)

ψ (x) =
∑
p , r

[
cp , r up , r (x) + d †p , r vp , r (x)

]
ψ̄ (x) =

∑
p , r

[
c †p , r ūp , r (x) + dp , r v̄p , r (x)

]
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we readily find for instance

〈 0 |ψ (x)|q s −〉 = 〈 0 |ψ (x) c †q , s | 0 〉

= 〈 0 |
∑
p , r

[
cp , r up , r (x) + d †p , r vp , r (x)

]
c †q , s | 0 〉

and from the canonical anti-commutation relations (4.62) we eventually get

〈 0 |ψ (x) |q s −〉 =
∑
p , r

〈 0 | {cp , r , c †q , s} | 0 〉up , r (x) = uq , s (x)

which represents the wave function for an incoming particle of spin 1
2

and
negative charge − e . In a quite analogous way we find

〈 0 | ψ̄ (x)|q s + 〉 =
∑
p , r

〈 0 | {dp , r , d
†
q , s} | 0 〉 v̄p , r (x) = v̄q , s (x)

which represents the wave function for an incoming antiparticle of spin 1
2

and
positive charge e . To find out the wave functions for the outgoing quanta we
shall consider the matrix elements

〈− s q | ψ̄ (x) | 0 〉 = 〈 0 | cq , s ψ̄ (x) | 0 〉 = ūq , s (x)

that represents the wave function for an outgoing particle of spin 1
2

and
negative charge − e , while

〈+ s q |ψ (x) | 0 〉 = 〈 0 | dq , s ψ (x) | 0 〉 = vq , s (x)

does correspond to the wave function for an outgoing antiparticle of spin 1
2

and negative charge + e .

4.4 Covariance of the Quantum Dirac Field

Consider the structure of the generators of the Poincaré transformations, that
appears in the form of normal ordered bi-linear operator expressions, which
can be readily obtained from the Nöther theorem using e.g. the classical
Lagrange density (4.2): namely,

Pµ =

∫
dx : ψ † (x) i∂µ ψ (x) :

M λν =

∫
dx : ψ † (x)[xλi∂ ν − x νi∂ λ + σ λν ]ψ (x) : (4.82)
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It can be verified by direct inspection that, owing to the anti-commutation
relations (4.62) and (4.66), those operator expressions indeed generate the
local infinitesimal (passive) Poincaré transformations for the operator valued
quantum Dirac spinor field

δψ(x) = i [Pµ , ψ (x) ] εµ − 1
2
i [Mρσ , ψ (x) ] ε ρσ

=
[
εµ ∂µ + 1

2
εµν (xν ∂ µ − xµ ∂ ν + iσ µν )

]
ψ (x) (4.83)

whilst for a finite transformation we can write

ψ ′(x)− ψ(x) = U(a, ω)ψ(x)U †(a, ω)− ψ(x) ≈ δψ(x)

which precisely corresponds to the local change of the Dirac field operator
under a change of inertial reference frame, where

U(a, ω) ≡ exp

{
i

}
aµPµ −

i

2}
ω ρσMρσ

}
(4.84)

Moreover it is straightforward albeit tedious to verify that, by virtue of the
canonical anti-commutation relations, the operators (4.82) do indeed fulfill
the Lie algebra (1.44) of the Poincaré group – for the explicit check see [21]
8.6, pp. 163 - 165. Alternatively, had we started from the symmetric classical
Lagrangian (4.1), we come to the infinitesimal local variation of the spinorial
operator valued tempered distribution

δψ(x) = i [Pµ , ψ(x) ] εµ − 1
2
i [Mρσ , ψ(x) ] ε ρσ

=
[
εµ ∂µ + 1

2
εµν
(
x ν ∂ µ − xµ ∂ ν + i δ µ δ

ν
` σ

`
) ]
ψ(x) (4.85)

which is an equivalent though not identical form exhibiting the unitary nature
of the quantum Poincaré transformation.

The covariant 1-particle states and creation annihilation operators can be
defined in analogy with the construction (3.90) and take the form

| p r −〉 = [ (2π)3 2ωp ]
1
2 c †p , r | 0 〉 ≡ c †r(p) | 0 〉 (4.86)

∀ p ∈ R3 ∀ r = 1, 2

| q s + 〉 = [ (2π)3 2ωq ]
1
2 d †q , s | 0 〉 ≡ d †s(p) | 0 〉 (4.87)

∀ q ∈ R3 ∀ s = 1, 2

which satisfy

〈± s q | p r ±〉 = δ rs (2π)3 2ωp δ(p− q)
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The normal mode decomposition of the Dirac field with respect to the new
set of covariant creation-annihilation operators becomes

ψ (x) =
∑
r=1,2

∫
Dp

[
cr(p)ur(p) e− ipx + d †r(p) vr(p) e ipx

]
p0=ωp

(4.88)

ψ̄ (x) =
∑
r=1,2

∫
Dp

[
c†r(p) ūr(p) e ipx + dr(p) v̄r(p) e− ipx

]
p0=ωp

(4.89)

where pµ = (ωp , −p) together with∫
D p =

∫
dp/(2π)3 2ωp = (2π)−3

∫
d4p θ(p0) δ( p

2 −M2)

while the spin-states satisfy the algebraic equations

(p/−M)ur(p) = 0 = (p/+M) vr(p) r = 1, 2 ∨ p0 = ωp

If we define{
〈 0 |ψ (x) | p r −〉 ≡ up,r (x) = ur(p) e− ipx

〈+ r p |ψ (x) | 0 〉 ≡ vp,r (x) = vr(p) e ipx
r = 1, 2 p0 = ωp (4.90)

then we can write the inversion formulæ

(up,r , ψ) ≡
∫

dx ūp,r(t,x) γ0 ψ(t,x) = cr(p) (4.91)

(ψ , vp,r) ≡
∫

dx ψ̄(t,x) γ0 vp,r (t,x) = dr(p) (4.92)

As a matter of fact we have for instance

(up,r , ψ) =

∫
dx u>∗p,r (t,x)ψ(t,x)

=
∑
s=1,2

∫
Dq

[
cs(q) (up,r , us,q) + d †s(q) (up,r , vs,q)

]
=

∑
s=1,2

∫
dq cs(q) δ(p− q) δrs = cr(p) r = 1, 2 p0 = ωp

The inversion formulas are based upon the existence of an inner product
which turns out to be time-independent and Poincaré invariant for, otherwise,
the notion of creation and destruction operators would be time and frame
dependent and thereby meaningless. As a matter of fact, for a pair of classical
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complex spinor fields ψ,Ψ ∈ τ 1
2
0

⊕
τ 0 1

2
that satisfy the Dirac equation, the

quantity

(ψ , Ψ ) =

∫
dx ψ∗α(t,x) Ψα(t,x)

turns out to be time independent and Poincaré invariant, owing to Nöther
theorem and the equality (2.107), as well as positive semi-definite when ψ =
Ψ . Hence, due to the IO(1,3) invariance of the measure Dq , from the previous
relationship

(u p, r , ψ) =
∑
s=1,2

∫
Dq
[
c s(q) (u p, r , u s, q) + d †s(q) (u p, r , v s, q)

]
= c r(p)

it is evident that consistency requires the complex or Graßmann valued
Fourier coefficients c r(p), d r(p) to be inertial frame independent entities, for
any classical Dirac spinor ψ. Of course, the very same Relativity argument
holds true after transition to the Quantum Theory, because the canonical
commutation and anti-commutation relations must be Poincaré invariant as
it does. As a consequence we can suitably set the infinitesimal local variation

δc r( p ) =

[
− iεµ pµ + 1

2
εµν

(
p ν

∂

∂ pµ
− pµ ∂

∂ pν

)]
cr(p) (4.93)

which exactly corresponds to the infinitesimal form of the passive Poincaré
transformation (3.104) of the destruction operators of the Klein-Gordon
scalar quantum field. Thus, turning to the finite transformation, we are
definitely allowed to write

U(ω, a) c r( p )U −1(ω, a) = exp{− i p · a} c r(Λ p)

= (1− i pµ aµ + · · ·)
(

1− ωµν pν
∂

∂ pµ
+ · · ·

)
c r( p )

=

{
1− i pµ aµ + 1

2
ωµν

(
pν

∂

∂ pµ
− pµ

∂

∂ pν

)}
c r( p ) + · · ·

and thereby{
c ′r( p ) ≡ U(ω, a) c r( p )U −1(ω, a) = c r(Λ p) exp{− i p · a}
d ′r( p ) ≡ U(ω, a) d r( p )U −1(ω, a) = d r(Λ p) exp{− i p · a}

with r = 1, 2 and p0 = ωp , that endorse the invariance of the creation and
destruction operators of a quantum Dirac field under homogeneous Lorentz
transformations. Of course, for the inverse Poincaré unitary transformation
we get instead{

c ′r( p
′ ) ≡ U −1(ω, a) c r( Λ p )U(ω, a) = c r(p) exp{ i p · a}

d ′r( p
′ ) ≡ U −1(ω, a) d r( Λ p )U(ω, a) = d r(p) exp{ i p · a} (4.94)
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∀ r = 1, 2 ∨ p ∈ R3 with p0 = }ωp/c

It is clear that the transformation law for the covariant 1-particle states
and corresponding creation annihilation operators will be determined by the
unitary operators associated to the Poincaré transformations. If we denote as
usual the Lorentz matrices by Λ(ω) = Λ(α,η) and by U(ω, a) = U(α,η, aν)
the related unitary operators (4.84) of the infinite dimensional irreducible
representation of Poincaré group acting on the Fock space F , where (α,η)
are the canonical angular and rapidity coordinates of the restricted Lorentz
group L↑+ = O(1, 3)++ , then we evidently get

U(a, ω) | 0 〉 = | 0 〉 〈 0 |U †(a, ω) = 〈 0 |U−1(a, ω) = 〈 0 | (4.95)

owing to the normal ordering prescription, whence we get the transformation
laws for the 1-particle states

U(ω, a) | p r −〉 = U(ω, a) c†r(p) | 0 〉
= U(ω, a) c†r(p)U

−1(a, ω)U(ω, a) | 0 〉 = U(ω, a) c†r(p)U
†(a, ω) | 0 〉

= exp{ i p · a} c†r(Λ p) | 0 〉 = exp{ i p · a} |Λ p r −〉

so that

U(ω, a) | p r ∓〉 = exp{ i p · a} |Λ p r ∓〉 (4.96)

〈± s Λ q |Λ p r ±〉 = δ rs (2π)3 2ωp δ (p− q) = 〈± s q | p r ±〉

∀ r = 1, 2 ∨ p ∈ R3 with p0 = }ωp/c

It is a fundamental assumption of the local Quantum Field Theory that if a
Poincaré transformation takes the event from xµ = (ct,x) to x ′µ = (ct ′,x ′)
with x ′ = Λ(x + a) and any arbitrary Fock state |Υ 〉 into the new state
|Υ ′ 〉 ≡ U(ω, a) |Υ 〉 , where U is a unitary operator, then the components of
ψ(ct ′,x ′) |Υ ′ 〉 must be related by a linear transformation to the
components of U(ω, a)ψ(ct,x) |Υ 〉: namely,

ψα(x ′) |Υ ′ 〉 = Aαβ U(ω, a)ψβ(x) |Υ 〉

where α, β = L1, L2, R1, R2 are the the spinor indexes while Aαβ complex
number to be further specified. To this concern, one important remark is in
order: the Dirac spinor field is a local quantum field, i.e. an operator valued
tempered distribution which contains both an operator part as well as a
c−number part involving the spinor plane wave functions. Thus, when we
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write ψ(ct ′,x ′) we understand that the whole space-time dependent part –
which is of a c−number kind – of the local quantum field is evaluated at the
point x ′µ = (ct ′,x ′) : namely,

ψ(ct ′,x ′) =
∑
p , r

[
cp , r u

′
p , r (x ′) + d †p , r v

′
p , r (x ′)

]
Hence, the field operator must transform according to

ψ(ct ′,x ′)U(ω, a) |Υ 〉 = AU(ω, a)ψ(ct,x) |Υ 〉 ∀ |Υ 〉 ∈ F

or

ψ ′(x ′) ≡ U †(ω, a)ψ(x ′)U(ω, a) = Aψ(x) (4.97)

where A is a 4×4 matrix – which commutes by definition with the unitary
operator U(ω, a) – that specifies the algebraic transformation properties of
the spinor, the components of which, like those of a vector or tensor, are
indeed reshuffled in the symmetry operation.

Thus, from the unitary similarity transformation (4.94) for the creation-
destruction operators and the transformation rule (4.25) for the spin states,
we can eventually write

ψ ′(x ′) ≡ U −1(ω, a)ψ (x ′)U(ω, a)

=
∑
r=1,2

∫
D p ′

[
U †(ω, a) cr (p ′)U(ω, a)u ′r (p ′) e− ip

′·x ′

+ U †(ω, a) d †r (p ′)U(ω, a) v ′r (p ′) e ip
′·x ′
]
p ′
0 =ωp ′

=
∑
r=1,2

∫
D(Λp)

[
cr (p) Λ 1

2
(ω)ur (p) e− ip ·x

+ d †r (p) Λ 1
2
(ω) vr (p) e ip ·x

]
p0 =ωp

= Λ 1
2

∑
r=1,2

∫
Dp
[
cr (p)ur (p) e− ip ·x + d †r (p) vr (p) e ip ·x

]
p0 =ωp

= Λ 1
2
(ω)ψ (x) (4.98)

which means that the requirement of the covariance for the Dirac equation
satisfied by the operator valued tempered distribution ψ(x) does actually
implies

A = Λ 1
2
(ω)
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which holds true for any Poincaré transformations working contextually upon
space-time events and quantum states of the system in some given inertial
reference frame. This is the way for the Poincaré covariance is implemented
in relativistic quantum field theory by unitary operators acting upon
the Fock space of quantum states, in spite of the presence of the 4×4 matrix
Λ 1

2
(ω) belonging the representation τ 0 1

2
⊕ τ 1

2
0 of the Lorentz group, which

is not unitary. In particular, from the finite transformation rule it is simple
to check e.g. that the mass operator is Lorentz invariant, i.e.

ψ ′(x ′)ψ ′(x ′) = ψ(x)ψ(x)

As a final remark, notice that the density

%(x) = ψ†(t,x)ψ(t,x)

does represent the positive semi-definite probability density in the old Dirac
theory, i.e. the relativistic quantum mechanics of the electron. Conversely,
the corresponding operator valued local density

%̂(x) = q : ψ†(t,x)ψ(t,x) :

has not a definite sign for it represents the charge density of the quantized
spinor field, see equation (4.74).

Beside the transformation laws of the quantized Dirac field under the
continuous Poincaré group, a very important role in the Standard Model
of the fundamental interactions for Particle Physics is played by the charge
conjugation, parity and time reversal discrete transformations, the so called
CPT symmetries, on the quantized spinor matter fields. We shall analyze in
details the latter ones at the end of the present chapter.
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4.5 Special Distributions

From the canonical anti-commutation relations (4.62) and the normal mode
expansion (4.30) of the Dirac field, the so called canonical anti-commutator at
arbitrary points between two free Dirac spinor field operators can be readily
shown to be equal to zero

{ψα (x) , ψβ (y)} = 0 = {ψ̄α (x) , ψ̄β (y)} (α, β = 1L, 2L, 1R, 2R )

On the contrary, the canonical anti-commutator at arbitrary points between
the free Dirac field and its adjoint does not vanish: it can be easily calculated
to be

{ψα (x) , ψ̄β (y)} ≡ Sαβ (x− y)

=
∑
p , r

[uα ,p , r (x) ūβ ,p , r (y) + vα ,p , r (x) v̄β ,p , r (y) ]

= − i ( i∂/x +M )αβD (x− y) (4.99)

where D (x− y) is the Pauli-Jordan distribution (3.112).

Proof. From the normal modes expansions (4.64) of the spinor fields

ψα (x) =
∑
p , r

[
(2π)32ωp

]− 1
2

×
[
cp , r uα , r (p) e− i p x + d †p , r vα , r (p) e i p x

]
p0 =ωp

ψ̄β (y) =
∑
q , s

[
(2π)32ωq

]− 1
2

×
[
c †q , s ū β , s (q) e i q y + dq , s v̄ β , s (q) e− i q y

]
q0 =ω q

and the canonical anti-commutation relations (4.62) one finds

{ψα (x) , ψ̄β (y)} =

∫
Dp

∑
r= 1,2

[
uα , r (p) ū β , r (p) e− i p (x−y)

+ vα , r (p) v̄ β , r (p) e i p (x−y)
]
p0 =ωp

Taking into account the sums over the spin states (4.37)∑
r= 1,2

{
u β , r (p) ūα , r (p) = ( p/+M )αβ
v β , r (p) v̄α , r (p) = ( p/−M )αβ

( p0 = ωp )

we readily come to the expression, by omitting the spinor indexes for the sake of brevity,

{ψ (x) , ψ̄ (y)} ≡ S (x− y)
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=

∫
dp

(2π)3

(
p/+M

2ωp
e− ip (x−y) − e ip (x−y) M − p/

2ωp

)
p0 =ωp

= (i∂/x +M)

∫
Dp

(
e− ip (x−y) − e ip (x−y)

)
p0 =ωp

= (i∂/x +M)

∫
d4 p

(2π)3
e− ip (x−y) δ (p2 −M2) sgn(p0)

= − i (i∂/x +M)D (x− y) (4.100)

where use has been made of the formulæ (4.36). �

The canonical anti-commutator at arbitrary points (4.100) is a solution
of the Dirac equation which does not vanish when (x − y) is a space-like
interval with x0 6= y0 . In fact, at variance with the real scalar field case in
which

D (x− y) ≡ 0 ∀ (x0 − y0)2 < (x− y)2 (x0 6= y0) (4.101)

we find instead the non-vanishing equal time anti-commutator

S (0,x− y) = γ0 δ (x− y) (4.102)

and more generally the spinor micro-causality property

γ0 S (x− y) = Ḋ(x− y) (x− y)2 < 0 (4.103)

in agreement with (4.66).

The causal Green’s function or Feynman propagator for the Dirac field is

〈 0 |T ψα (x) ψ̄β (y) | 0 〉 =

{
〈 0 |ψα (x) ψ̄β (y) | 0 〉 for x0 > y0

−〈 0 | ψ̄β (y)ψα (x) | 0 〉 for x0 < y0

≡ i S c
αβ (x− y) = S F

αβ (x− y)

Actually we have

S F (x− y) = (i∂/x +M) DF (x− y) (4.104)

where DF (x− y) is the Feynman propagator of the real scalar field.

Proof. From the very definition as the vacuum expectation value of the chronological
product of spinor fields we can write

S F (x− y) = θ (x0 − y0)
〈
ψ (x) ψ̄ (y)

〉
0
− θ (y0 − x0)

〈
ψ̄ (y)ψ (x)

〉
0

= θ (x0 − y0)
∑
p , r

[ (2π)3 2ωp ]−1 ur (p)⊗ ūr (p)

× exp{− iωp (x0 − y0) + ip · (x− y)}

− θ (y0 − x0)
∑
p , r

[ (2π)3 2ωp ]−1 vr (p)⊗ v̄r (p)

× exp{+ iωp (x0 − y0) − ip · (x− y)} (4.105)
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Hence, from the sums over the spin-states (4.36) we obtain

S F (x− y) = θ (x0 − y0)

∫
Dp

[
(M + p/) e− i p (x−y)

]
p0 =ωp

+ θ (y0 − x0)

∫
Dp

[
(M − p/) e i p (x−y)

]
p0 =ωp

= θ (x0 − y0) (i∂/x +M)

∫
Dp e− i p(x−y)

⌋
p0 =ωp

+ θ (y0 − x0) (i∂/x +M)

∫
Dp e i p(x−y)

⌋
p0 =ωp

and if we recall the definitions

± iD(±)(x− y) =

∫
Dp e± i p (x−y)

⌋
p0 =ωp

=

∫
dp

(2π)3 2ωp
exp{±iωp (x0 − y0)∓ ip · (x− y)}

we can readily establish the equality

S F (x− y) = θ (x0 − y0) (i∂/x +M)
1

i
D (−) (x− y)

+ i θ (y0 − x0) (i∂/x +M) D (+) (x− y)

= (i∂/x +M) i θ
(
y0 − x0

)
D (+) (x− y)− (i∂/x +M) i θ

(
x0 − y0

)
D (−) (x− y)

− γ0 δ
(
x0 − y0

) [
D (−) (x− y) +D (+) (x− y)

]
= (i∂/x +M) DF (x− y)

where I did make use of the Pauli-Jordan distribution property

D (x) = D (+) (x) +D (−) (x) , D (0,x) = 0

and of the relation (3.119)

DF (x− y) = i θ
(
y0 − x0

)
D (+) (x− y)− i θ

(
x0 − y0

)
D (−) (x− y)

that was what we had to prove. �

The Fourier representation of the Feynman’s spinor propagator reads

S F (x− y; M) = (i∂/x +M)DF (x− y; M)

=
i

(2π)4

∫
d4p

p/+M

p2 −M2 + iε
exp{− ip · (x− y)}

=
1

(2π)4

∫
d4p

 i

p/−M

 exp{− ip · (x− y)}

with

i ( p/+M )αβ
p2 −M2 + iε

def
=

 i

p/−M


αβ

(4.106)
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and consequently

(i∂/x −M)S F (x− y) = i~c δ(x− y) (4.107)

It is convenient to write the adjoint form of the non-homogeneous equation
for the Feynman propagator of the spinor field. To this concern, let us first
obtain the Hermitean conjugate of equation (4.107) viz.,

i δ (x− y) = i (∂/∂xµ)S †F (x− y) γ µ † +M S †F (x− y)

= i (∂/∂xµ)S †F (x− y) γ0 γ µ γ0 +M S †F (x− y) (4.108)

Multiplication by γ0 from left and right yields

i δ (x− y) = i γ0 (∂/∂xµ)S †F (x− y) γ0 γ µ + γ0M S †F (x− y) γ0

def
= S̄ F (y − x) (

←
i∂/x +M ) (4.109)

where

S̄ F (y − x) = γ0 S †F (x− y) γ0

=
− i

(2π)4

∫
dp

p/+M

p2 −M2 − iε
exp{− ip · (y − x)} (4.110)

4.6 Euclidean Fermions

Also for the above fermion propagator we can safely perform the very same
replacements

ip0 = p4 ix0 = x4 (4.111)

as in the scalar field case, in such a manner to obtain a positive semi-definite
denominator in the Fourier transform, that is

S F
αβ (−ix4,x) = i (2π)−4

∫
dp

∫ ∞
−∞

dp4

exp{ip4x4 + ipx}
p24 + p2 +M2

( γ0 p4 − iγ k pk + iM )αβ

It follows that if we define the Hermitean Euclidean Dirac Matrices

γ4 ≡ γ0 γk ≡ iγk = − iγ k (k = 1, 2, 3) (4.112)

γµ = (γk , γ4) = γ †µ
{
γµ , γν

}
= 2δµν (4.113)
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or even more explicitly

γ1 =

 0 −iσ1
iσ1 0

 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 (4.114)

γ2 =

 0 −iσ2
iσ2 0

 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (4.115)

γ3 =

 0 −iσ3
iσ3 0

 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 (4.116)

γ4 =

 0 1
1 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (4.117)

Then we can write

S F
αβ (−ix4,x) =

i

(2π)4

∫
dpE

exp{ipE · xE}
p2E +M2

(γµ pEµ + iM )αβ

=
i

(2π)4

∫
dpE exp{ipE · xE}

 1

p/E − iM


αβ

= (∂/E −M )αβ DE (xE)

≡ −S E
αβ (xE) (4.118)

where we understand

p = (p1, p2, p3) = (px, py, pz) = ~pE = (p̄1, p̄2, p̄3)

together with

γ4p4 + γk p̄k = γµ pEµ ≡ p/E

i∂/E ≡ γµ i∂µ = γk i∂k + γ4 i∂4

This suggests that the proper classical variables for setting up of an Euclidean
formulation of the Dirac spinor field theory, in analogy with what we have
already seen in the scalar field case, should be two Euclidean bispinors ψE
and ψ̄E obeying

{ψE (x) , ψE (y)} = {ψ̄E (x) , ψ̄E (y)} = {ψE (x) , ψ̄E (y)} = 0 (4.119)

183



for all points x and y of the four-dimensional Euclidean space R4 .
The last of these relations is crucial, for it implies that ψ̄E does not

necessarily coincide with the adjoint of ψE times some matrix γ4 . Thus, if
we want to set up a meaningful Euclidean formulation for the Dirac spinor
field theory, then we can treat ψE and ψ̄E as totally independent classical
Graßmann valued fields . This independence is the main novelty of the
Euclidean fermion field theory; the rest of the construction is straightforward.

For instance, we use the definition of the Hermitean Euclidean gamma
matrices to derive the O(4) transformation law for ψE in the usual way3,
while define ψ̄E to transform like the transposed of ψE . Next we define

γ5 = γ1γ2γ3γ4 = γ †5 = − γ5

Thus ψ̄E ψE is a scalar, ψ̄Eγ5ψE a pseudo-scalar, ψ̄EγµψE a vector etc.

The Euclidean Action for the free Dirac field is given by

SE [ψE, ψ̄E ] =

∫
d4xE ψ̄E(xE) (∂/E +M) ψE(xE) (4.120)

Here the overall sign is purely conventional: we could always absorb it into ψE
if we wanted to – remember that we are free to change ψE without touching
ψ̄E. Conversely, the lack of the factor i in front of the derivative term is
not at all conventional: it is there just to ensure that the Euclidean fermion
propagator, which is named 2-point Schwinger’s function, is proportional to
(ip/E −M)/(p2E + M2) ; if it were not for this i , then we would have tachyon
poles after transition back to the momentum space.

It is worthwhile to notice that the above Dirac Euclidean Action can
be obtained from the corresponding one in the Minkowski space, after the
customary standard replacements (4.111) and (4.112)

x4 = i x0 γk ≡ − iγk (k = 1, 2, 3) γ4 ≡ γ0

ψ (x) 7→ ψE (xE) ψ̄ (x) 7→ ψ̄E (xE)

As a matter of fact we readily obtain

iS [ψ, ψ̄ ] 7→ −SE [ψE, ψ̄E ]

= −
∫

d 4xE ψ̄E (xE) (∂/E +M ) ψE (xE) (4.121)

3Remember that the orthogonal group O(4) of the rotations in the Euclidean space R4

is a semi-simple Lie group O(4) = O(3)L ×O(3)R .
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Furthermore, the Euclidean Dirac operator (∂/E +M ) is precisely that
one which gives, according to the definition (4.118), the 2-point Schwinger
function inversion formula4

(∂/E +M )αβ S
E
βη (xE) = δ (xE) δαη

Finally, it is worthwhile to remark that the Euclidean Action for the free
Dirac field is not a real quantity. As we shall see, this fact will not cause any
troubles in the analytic continuation to the Minkowski space.

To end up we have

S 0
E [φE ] =

∫
dxE

[
1
2
∂µφE ∂µφE + 1

2
m2 φ2

E

]
=̇

∫
dxE

1
2
φE (xE)

(
− ∂ 2 +m2

)
φE (xE) (4.122)

S 0
E [ ψ̄ , ψE ] =

∫
dxE ψ̄ (xE) (∂/E +M )ψE (xE) (4.123)

in such a manner that we can summarize the useful relationships

DF (− ix4 , x) → −DE (xE) (4.124)

DE (xE) =
1

(2π)4

∫
dkE

exp{ ikE · xE }
k 2
E +m2

(4.125)(
− ∂ 2

E +m2
)
DE (xE) = δ (xE) (4.126)

S F
αβ (−ix4,x) → −SEαβ (xE) (4.127)

SEαβ (xE) =

∫
dpE

(2π)4
exp{ ipE · xE }

 i

− p/E + iM


αβ

(4.128)

(∂/E +M )αβ S
E
βη (xE) = δ (xE) δαη (4.129)

4The n−point Green functions in the Euclidean space are usually named the n−point
Schwinger functions.
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4.7 The C, P and T Transformations

The charge conjugation C is the discrete internal symmetry transformation
under which the particles and antiparticles are interchanged. The parity
transformation P or spatial inversion is the discrete space-time symmetry
transformation such that

xµ = (t, r) 7→ x ′µ = (t,− r) = P xµ

Under P the handedness of the particles motion is reversed so that, for
example, a left handed electron e−L is transformed into a right handed positron
e+R under the combined CP symmetry transformation. Thus, if CP were an
exact symmetry, the laws of Nature would be the same for matter and for
antimatter.

The experimental evidence actually shows that most phenomena in the
particles Physics are C and P symmetric and thereby also CP symmetric.
In particular, these symmetries are respected by the electromagnetic and
strong interactions as well as by classical gravity. On the other hand, the
weak interactions violate C and P in the strongest possible way. Hence, while
weak interactions do violate C and P symmetries separately, the combined
CP symmetry is still preserved. The CP symmetry is, however, violated in
certain rare processes, as discovered long ago in neutral K mesons decays
and recently observed in neutral B decays. Thus, only the combined discrete
CPT symmetry transformation, where T denotes the time inversion

xµ = (t, r) 7→ x ′µ = (− t, r) = T xµ

is an exact symmetry for all laws of Nature, just like for the invariance under
the restricted Poincaré continuous group. In the sequel we will examine in
some detail the C , P and T transformations for the quantized Dirac field.

4.7.1 The Charge Conjugation

We have seen before that the quantization of the free Dirac wave field leads
to the appearance of particle and antiparticles, which are characterized by
the very same mass and spin although opposite charge. The latter one may
have a different interpretation depending upon the physical context: namely,
it could be electric, barionic, leptonic et cetera. In any case, the existence of
the charge conjugation invariance just implies

1. the existence of the antiparticles

2. the equality of all the quantum numbers, but charge, for a particle
antiparticle pair
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We are looking for a unitary charge conjugation operator in the theory of the
quantized Dirac field, the action of which will be given by

ψ c (x) = C ψ (x) C † C † = C −1 (4.130)

Charge conjugation is conventionally defined as the operation in which
particles and antiparticles are interchanged, up to an arbitrary overall phase
factor. It follows thereby that if we set

C cp , r C −1 = eiη dp , r C dp , s C −1 = e− iη cp , s (4.131)

∀ r, s = 1, 2 p ∈ R3

then the repeated application of the charge conjugation operation yields

C
(
C cp , r C −1

)
C −1 = eiη C dp , r C −1 = cp , r

so that we can always assume the following properties: namely,

C 2 = I =⇒ C = C † = C −1 (4.132)

It turns out that the standard spin-states (4.35) do fulfill the remarkable
relationship

ur(p) = − i γ2 v∗r(p)

vr(p) = − i γ2 u∗r(p)

Hence, the transformation law (4.130) can be rewritten as

ψ c (x) =
∑
p , r

eiη
[
dp , r up , r (x) + c †p , r vp , r (x)

]
= e i(η−π/2)

∑
p , r

[
dp , r γ

2 v ∗p , r (x) + c †p , r γ
2 u∗p , r (x)

]
= e i(η−π/2) γ 2

(
ψ † (x)

)>
(4.133)

Hence, if we choose η = π/2 then we obtain the transformation rule

ψ c (x) = γ 2
(
ψ † (x)

)>
= −

(
ψ † (x) γ 2

)>
= −

(
ψ̄ (x) γ 0 γ 2

)>
(4.134)

which perfectly corresponds to the quantum mechanical counterpart of the
classical transformation (2.79). Moreover we readily find

ψ̄ c (x) = ψ c † (x) γ 0 =
(
− γ 2 ψ (x)

)>
γ 0 =

(
− γ 0 γ 2 ψ (x)

)>
(4.135)
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Working out the transformations of bilinears is a little bit tricky and it helps
to write the spinor indices explicitly. For instance, the mass scalar operator
becomes

: ψ̄ c (x)ψ c (x) : = :
(
− γ 0 γ 2 ψ (x)

)> (
ψ̄ (x) γ 0 γ 2

)>
:

= − : γ 0
αβ γ

2
β δ ψδ (x) ψ̄η (x) γ 0

ηω γ
2
ωα :

= + : ψ̄η (x) γ 0
ηω γ

2
ωα γ

0
αβ γ

2
β δ ψδ (x) :

= + : ψ̄ (x) γ 0 γ 2 γ 0 γ 2 ψ (x) :

= − : ψ̄ (x) (γ 0 )2(γ 2 )2 ψ (x) :

= + : ψ̄ (x)ψ (x) : (4.136)

where the change of sign in the third line is just owing to the spinor field
canonical anti-commuation relations. Hence the femion mass scalar operator
is invariant under charge conjugation, i.e.

: ψ̄ c (x)ψ c (x) : = : ψ̄ (x)ψ (x) :

while, in a quite analogous way, one can show that the electric current density
changes its sign : namely,

: ψ̄ c (x)γ µψ c (x) : = − : ψ̄ (x)γ µψ (x) :

4.7.2 The Parity Transformation

Suppose it is possible, with a suitable modification of some experimental
apparatus, to realize the space inversion and to obtain the parity transformed
state of a Dirac particle or antiparticle. This means that, from the point of
view of the Dirac quantum field, we look for a unitary operator P satisfying

P cp , r P † = e iη c−p , r P dp , r P † = e iθ d−p , r (4.137)

0 ≤ η ≤ 2π 0 ≤ θ ≤ 2π

where η, θ are free arbitrary phases, in such a manner that, for example, the
quantum state d †p , r|0〉 is turned into eiθ d †−p , r|0〉 . Inserting the normal mode
expansion (4.30) we come to the relations

ψ ′(x ′) = P ψ (t,−x)P †

=
∑
p , r

[
P cp , r P † up , r (t,−x) + P d †p , r P † vp , r (t,−x)

]
=

∑
p , r

[
e iη c−p , r up , r (t,−x) + e− iθ d †−p , r vp , r (t,−x)

]
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Now change variables according to p 7−→ −p , by taking into account that
ωp = ω−p and that the previously introduced standard spin-states (4.35) do
satisfy

ur (−p) = γ0 ur (p) v r (−p) = − γ0 v r (p)

Then we obtain

P ψ (t,−x)P † = γ0
∑
p , r

[
e iη cp , r up , r (t,x)− e− iθ d †p , r vp , r (t,x)

]
and if we set θ = −η ± π we come to the parity transformation law of the
Dirac field operator, viz.,

ψ ′ (x ′) = P ψ (t,−x)P † = e iη γ0 ψ (x) (0 ≤ η < 2π) (4.138)

which corresponds to the transformation law (2.55) of the classical Dirac
wave field under spatial inversion. Furthermore, it can be readily verified
from the expressions (4.67) and (4.68) that we have

P P µP † = Pµ (4.139)

If we choose η = 2πk (k ∈ Z) then the relative parity of the particle-
antiparticle system is equal to minus one and, contextually, the square of
the parity operator (or space inversion operator) P is equal to the identity
operator, that is

P 2 = I P † = P = P −1 (η = 2πk , k ∈ Z)

As a consequence we can write for instance

P ψ (t,−x)P = γ0 ψ (t,x) P ψ † (t,−x)P = ψ̄ (t,x) (4.140)

P ψ̄ (t,−x)P = P ψ † (t,−x) γ0P = P ψ † (t,−x)P γ0 = ψ̄ (t,x) γ0

P (ψ̄ ψ)(t,−x)P = + (ψ̄ ψ)(t,x) (4.141)

P (ψ̄ γ5 ψ)(t,−x)P = − (ψ̄ γ5 ψ)(t,x) et cetera (4.142)

4.7.3 The Time Reversal

Let us turn now to the implementation of time reversal transformation. It
is known5 that the time reversal transformation in quantum mechanics is

5See E.P. Wigner, Group Theory and Its Application to Quantum Mechanics of Atomic
Spectra, translated by J.J. Griffin, Academic Press, New York, 1959, Appendix to Chapter
20, p. 233. See also V. Bargmann, J. Math. Phys. 5 (1964) 862.
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achieved by means of anti-linear and anti-unitary operators T : H → H ,
where H is a Hilbert space, which satisfy

T (a |α 〉+ b | β 〉) = a∗ T |α 〉+ b∗ T | β 〉 a, b ∈ C α, β ∈ H

〈α | T †T β 〉 = 〈 T α | T β 〉 = 〈 β |α 〉 ∀α, β ∈ H

so that invariance under time reversal requires that

[ T , cP0 ] = [ T , H ] = 0

where cP0 = H denotes the infinitesimal generator of the time translations
of the system.

Time Reversal Symmetry. A mechanical system is said to exhibit symmetry under time
reversal if, at least in principle, its time evolution may be reversed in such a manner that all
physical processes run backwards in time, with the initial and final states interchanged.
In Classical Mechanics, for an isolated system with time independent constraints, the
time reversal symmetry follows in a straightforward way from the second order degree
in time of the classical Lagrange-Newton equations. Things are considerably more tricky
and complicated in non-relativistic Quantum Mechanics, because the symmetry between
the two directions of the time development actually implies that to every state |Υ〉 there
corresponds a time-reversed state T |Υ〉 and that the transformation T does indeed preserve
the values of all the probabilities, thus leaving invariant the absolute value of any scalar
product between any pair of states. If the time development of the system is provided by

|Υ(t)〉 = e−(i/~)Ht |Υ(0)〉 H = H † ∀ |Υ(0)〉 ∈ H

time reversal symmetry demands that the time-reversed initial state T |Υ(0)〉 evolves into

T |Υ(− t)〉 = T e(i/~)Ht |Υ(0)〉 = e−(i/~)Ht T |Υ(0)〉

If the theory must be invariant under time reversal, from the last two equations we get
the condition

T e(i/~)Ht = e−(i/~)Ht T

For a unitary T the above condition would be equivalent to {T , H} = 0 . If such an
operator T existed, every stationary state |ΥE〉 of the system with energy E would be
accompanied with another time-reversed stationary state T |ΥE〉 of energy −E (the so
called Kramers degeneracy). This doubling of the energy spectrum is in a manifest conflict
with the existence of a lower bound to the energy and thereby with the stability of the
mechanical system itself: hence, T can not be unitary but necessarily anti-linear and anti-
unitary. Then we get

T |ΥE(t)〉 = T e−(i/~)Ht |ΥE〉 = T e−(i/~)Et |ΥE〉
= e(i/~)Et T |ΥE〉 = e(i/~)Ht T |ΥE〉 = |ΥE(−t)〉 ∀ |ΥE〉 ∈ H

which entails in turn

T e(i/~)Ht = e(i/~)Ht T =⇒ [H , T ] = 0
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The physical significance of T as the time reversal operator requires that,
while spatial relations must be unchanged, all the momenta and angular
momenta must be reversed. Hence, we shall postulate the conditions

T P T † = −P {T , P} = 0 (4.143)

T L ρσ T † = −L ρσ {T , L ρσ} = 0 (4.144)

T S ρσ T † = −S ρσ {T , S ρσ} = 0 (4.145)

Since the anti-unitary time reversal operator T is defined to reverse the
sign of all momenta and spins we therefore require

T cp , r T † = exp{ iηp , r} c−p ,−r (4.146)

T dp , r T † = exp{ iζp , r} d−p ,−r (4.147)

T c †p , r T † = exp{− iηp , r} c †−p ,−r (4.148)

T d †p , r T † = exp{− iζp , r} d †−p ,−r (4.149)

where the notation −r refers to the change of handedness of the polarization,
which implies the change of sign of the helicity eigenvalues ±1

2
~ : namely,

c−p ,−1 = c−p , 2 c−p ,−2 = c−p , 1 et cetera

Although the phase factors exp { i ηp , r} and exp { i ζp , r} are arbitrary, it
is always possible to choose them in such a manner that the (Dirac spinor)
fields undergo utmost simple transformation laws under time reversal. Hence
we can suitably choose the arbitrary phase factors to be equal to 1, viz.,

ηp , r = ζp , r = 2nπi (n ∈ Z , ∀p ∈ R3 , r = 1, 2)

This means that, in order to obtain the time reversed spinor field operator
T ψ(x) T † , we have to perform on the complex conjugated c-number part
(i.e. not operator part) of the spinor some anti-unitary operation in such a
way that eventually we come to the transformation rule

ψ ′(x ′) = ψ ′(− t,x) = T ψ(− t,x) T †

By inserting once again the the normal mode expansion (4.30) we get, up to
some trivial substitutions in the integrands,

T ψ(− t,x) T † =
∑
p , r

c−p ,−r u
∗
r (p)

× [ (2π)3 2ωp ]−1/2 exp{i (−t)ωp − ip · x}
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+
∑
p , r

d †−p ,−r v
∗
r(p)

× [ (2π)3 2ωp ]−1/2 exp{it ωp + ip · x}
=

∑
p , r

cp , r u
∗
−r(−p)

× [ (2π)3 2ωp ]−1/2 exp{− itωp + ip · x}
+

∑
p , r

d †p , r v
∗
−r(−p)

× [ (2π)3 2ωp ]−1/2 exp{ itωp − ip · x}

In arriving at this equation, the anti-unitarity nature of T has been exploited
and has resulted in complex conjugation. It is easily seen that the right-hand
side of this equation becomes a local expression for the field at time t if a
4× 4 matrix Θ can be found such that

u ∗−r (−p) = Θur (p) (4.150)

v ∗−r (−p) = Θ vr (p) (4.151)

The closure relation (4.19) and the orthonormality relation (4.18) imply that
Θ must be unitary. Furthermore, the above relations (4.150) and (4.151) are
consistent with the spin-states eigenvalue equations (4.17) only if Θ satisfies
the conditions

[ Θ , H ] = 0(
α k
)∗

Θ = −Θα k (k = 1, 2, 3) β ∗Θ = Θ β

As a matter of fact we have, for example,

H ur (p) =
(
αk pk + βM

)
ur (p) = ωp ur (p)(

−αk∗ pk + β ∗M
)
u∗r (−p) = ωp u

∗
r (−p)(

−αk∗ pk + β ∗M
)

Θur (p) = ωp Θur (p)

Θ
(
αk pk + βM

)
ur (p) = ΘH ur (p) = ωp Θur (p)

In the spinorial-chiral-Weyl representation (2.64), the matrix

Θ = − γ1 γ3 = − i
 σ2 0

0 σ2

 = − iΣ2

is a solution. It has the important property

Θ Θ∗ = − I Θ Θ† = I
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which can be proved to hold true independently of the representation of the
Dirac matrices. Actually, it turns out that the spin states (4.35) do actually
fulfill equations (4.150) and (4.151) for Θ = −iΣ2 .

It follows that the Dirac particle-antiparticle spinor quantum wave field
is transformed under time reversal according to

ψ ′(x ′) = T ψ (− t,x) T † = Θψ (t,x)

T ψ † (− t,x) T † = ψ † (t,x) Θ † (4.152)

It is now rather easy to derive the action of the time reversal operator on
various bilinears. First of all we have

ψ
′
(x ′) = T ψ̄ (− t,x) T † = T ψ † (− t,x) T † γ0∗

= ψ † (t,x) Θ † γ0∗

= ψ̄ (t,x) γ1 γ3 (4.153)

Then the transformation law for the scalar mass bi-linear under time reversal
becomes

T ψ̄ (− t,x)ψ (− t,x) T † = ψ̄ (t,x) γ1 γ3
(
− γ1 γ3

)
ψ (t,x)

= + ψ̄ (t,x)ψ (t,x) (4.154)

A quite analogous calculation gives for instance

T ψ̄ (− t,x) γ µ ψ (− t,x) T † =

{
ψ† (t,x)ψ (t,x) for µ = 0

− ψ̄ (t,x)γ k ψ (t,x) for µ = 1, 2, 3

Summary of C , P and T transformations

The transformation properties of the various Dirac field bi-linear functional
expressions under charge conjugation, parity and time reversal symmetries
are summarized6 in the following table

ψψ iψγ5ψ ψγµψ ψγµγ5ψ i∂µ

C +1 +1 −1 +1 −1
P +1 −1 (−1)µ −(−1)µ (−1)µ

T +1 −1 (−1)µ (−1)µ (−1)µ

6See Ref. [6] here below, Ch. 3, §3.6, p. 71.
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which holds true both for classical and quantum Dirac spinor fields, where
use has been made of the customary notation

(−1)µ =

{
1 for µ = 0

− 1 for µ = 1, 2, 3

From the above table it immediately follows that the Dirac Lagrangian L =
ψ (iγµ∂µ −M)ψ is invariant under C, P and T separately. Actually, it
has been rigorously proved, under quite general conditions, that it is not
possible to build up any Lorentz invariant quantum field theory, governed
by a Hermitean Hamiltonian, that violates CPT – see Raymond Frederick
Streater & Arthur Strong Wightman (1964) PCT, Spin, Statistics and all
that, Princeton University Press (New York, Benjamin).
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4.8 Problems

4.8.1 Belifante Energy-Momentum Tensor

In general, for a relativistic wave field with spin angular momentum, the
canonical energy-momentum tensor is not symmetric. Show that one can
always find a term B λµν anti-symmetric under λ → µ or ν such that the
Belifante tensor

Θµν(x) = T µν(x)− ∂λ B λµν(x)

is symmetric and the corresponding total angular momentum density can be
written in the purely orbital form

M µλκ (x) = xλ Θµκ (x)− xκ Θµλ (x)

Solution. One can always decompose the canonical energy-momentum
tensor of the Dirac wave field into its symmetric and anti-symmetric parts

T µν (x) = 1
4

[
ψ̄ (x) γ µ i

↔
∂ ν ψ (x) + ψ̄ (x) γ ν i

↔
∂ µψ (x)

]
+ 1

4

[
ψ̄ (x) γ µ i

↔
∂ ν ψ (x)− ψ̄ (x) γ ν i

↔
∂ µψ (x)

]
in which

T µν (x)− T ν µ (x) = 1
2

[
ψ̄ (x) γ µ i

↔
∂ ν ψ (x)− ψ̄ (x) γ ν i

↔
∂ µψ (x)

]
= ∂λ S

λνµ (x)

in accordance with eq. (4.42), where the third rank tensor of the spin angular
momentum density of the Dirac field is defined by the Noether theorem and
reads

S λµν(x) ≡ 1
2
ψ̄ (x) {γ λ , σ µν}ψ (x)

which enjoys by construction

S λµν(x) + S λν µ(x) = 0 S λµν(x) = S µνλ(x)

If we introduce the auxiliary quantity

B λµν(x) ≡ 1
2

[
S λµν (x)− S µλν (x)− S νλµ (x)

]
which is evidently related to a non-vanishing spin angular momentum density
tensor, it can be readily checked that it fulfills by definition

B λµν + B µλν = 0 ∂λ B λµν(x) = 1
2
∂λ S

λµν (x)
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In fact we have

2∂λ B λµν(x) = ∂λ S
λµν (x)− ∂λ S µλν (x)− ∂λ S νλµ (x)

= ∂λ S
λµν (x) + ∂λ S

µνλ (x) + ∂λ S
νµλ (x)

= ∂λ S
λµν (x) + ∂λ S

λµν (x) + ∂λ S
λνµ (x)

= 2∂λ S
λµν (x) + ∂λ S

λνµ (x) = ∂λ S
λµν (x)

Then the symmetric energy-momentum tensor for the Dirac field is obtained
by setting

Θµν (x)
def
= 1

2

[
T µν (x) + T ν µ (x)

]
= 1

4

[
ψ̄ (x) γ µ i

↔
∂ ν ψ (x) + ψ̄ (x) γ ν i

↔
∂ µψ (x)

]
= T µν (x) + 1

2
∂λ S

λµν (x)

= T µν (x) + ∂λ B λµν (x)

which apparently satisfies the continuity equation because

∂µΘ µν (x) = ∂µT
µν (x) + ∂λ∂µ B λµν (x) = ∂µT

µν (x) = 0

The symmetric energy-momentum tensor of a non vanishing spin field is
also called the Belifante-Rosenfeld form of the energy-momentum tensor. It
actually enjoys the trace property

Θµ
µ(x) = T µ

µ(x) = ψ(x) i∂/ ψ(x) = M ψ(x)ψ(x)

which entails the trace-less property in the scale invariant mass-less case.
Furthermore, the third rank tensor of the total angular momentum
density for the Dirac field can always be written in the purely
orbital form. In fact we have

M µκλ (x) = xκ Θ µλ (x)− xλ Θ µκ (x)

= xκ T µλ (x) + 1
2
xκ ∂ ρ S

ρµλ (x)

− xλ T µκ (x)− 1
2
xλ ∂ ρ S

ρµκ (x)

= xκ T µλ (x)− xλ T µκ (x)

− 1
2

[
S κµλ (x)− S λµκ (x)

]
− 1

2
∂ ρ

[
xλ S ρµκ (x)− xκ S ρµλ (x)

]
and taking the symmetry properties of the spin angular momentum density
tensor suitably into account

M µκλ (x) = xκ Θ µλ (x)− xλ Θ µκ (x)
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= xκ T µλ (x)− xλ T µκ (x) + S µλκ (x)

+ 1
2
∂ ρ

[
xκ S λρµ (x)− xλ S κρµ (x)

]
it becomes apparent that the continuity equations hold true, viz.,

∂µM
µκλ (x) = ∂µ

(
xκ Θµλ (x)− xλ Θµκ (x)

)
= ∂µ

(
xκ T µλ (x)− xλ T µκ (x) + S µλκ (x)

)
− 1

2
∂ ρ ∂µ

(
xλ S κρµ (x)− xκ S λρµ (x)

)
= ∂µ

(
xκ T µλ (x)− xλ T µκ (x) + S µλκ (x)

)
= 0

It follows therefrom that the generators of the Lorentz group for the quantized
Dirac field can even be recast in a purely orbital form

M κλ ≡
∫

dx : M 0κλ (t,x) :

=

∫
dx : xκ Θ 0λ (t,x)− xλ Θ 0κ (t,x) :

= 1
4

∫
dx xκ : ψ †(t,x) i

↔
∂ λψ (t,x) + ψ̄ (t,x) γ λ i

↔
∂ 0ψ (t,x) :

− 1
4

∫
dx xλ : ψ †(t,x) i

↔
∂ κψ (t,x) + ψ̄ (t,x) γ κ i

↔
∂ 0ψ (t,x) :

4.8.2 Mass-less Neutrino and Anti-Neutrino Fields

The quantum theory of a mass-less left-handed or right-handed Weyl spinor
fields leads to the description of the neutrino and anti-neutrino particles, in
the limit of a negligible neutrino mass. Discuss the corresponding canonical
quantum theory.

Solution. The classical Weyl spinor fields are two-component complex spinor
wave fields which undergo, by definition, the following transformation rule
for a change of inertial reference frame x ′ = Λ · (x+ a) : namely,

ψ ′L(x ′) = ΛL ψL(x) ΛL = exp{1
2
iσ · (α− iη)}

ψ ′R(x ′) = ΛR ψR(x) ΛR = exp{1
2
iσ · (α+ iη)}

The real Lagrange densities for the left-handed and right-handed mass-less
Weyl spinors are very simple and read

LL = 1
2
ψ†L(x)σ µ i ∂µ ψL(x) + c. c. (4.155)

LR = 1
2
ψ†R(x) σ̄ µ i ∂µ ψR(x) + c. c. (4.156)
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where
σµ = ( I , σ1, σ2, σ3 ) = σ †µ = σ̄ µ

I being the 2 × 2 identity matrix. The Euler-Lagrange field equations drive
immediately to the Weyl equation for left-handed and right-handed mass-less
spinors

σ µ i∂µ ψL(x) = 0 i∂µ ψ
†
L(x)σ µ = 0 (4.157)

σ̄ µ i∂µ ψR(x) = 0 i∂µ ψ
†
R(x) σ̄ µ = 0 (4.158)

or equivalently in physical units

i~
∂

∂ t
ψL(t,x) = i~cσ ·∇ψL(t,x) (4.159)

i~
∂

∂ t
ψR(t,x) + i~cσ ·∇ψR(t,x) = 0 (4.160)

that indicates how we are allowed to identify à la Schrödinger

HL = i~cσ ·∇ = − cp · σ HR = − i~cσ ·∇ = cp · σ

as the Weyl Hamiltonian. After setting

ψL(x) = (2π)−3/2
∫

d4p ψ̃L(p) e−i p ·x

ψR(x) = (2π)−3/2
∫

d4p ψ̃R(p) e−i p ·x

we come to the decoupled spinorial equations

(p0 + σ · p) ψ̃L(p) = 0 (p0 − σ · p) ψ̃R(p) = 0

These homogeneous algebraic equations admit nontrivial solutions iff

det (p0 ± σ · p) = p20 − p2 = 0 ⇔ p0 = ±|p| = ± p

whence we readily obtain the algebraic equations for positive energy particles
of momentum p for the left and right spinors respectively p+ pz px − ipy

px + ipy p− pz

 ψ̃L(p,p) = 0 (4.161) p− pz −px + ipy
−px − ipy p+ pz

 ψ̃R(p,p) = 0 (4.162)
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which clearly drive to the relations

ψ̃R(p,p) = ψ̃L(p,−p) = ψ̃L(− p,p) = ψ̃R(− p,−p)

ψ̃L(p,p) = ψ̃R(p,−p) = ψ̃R(− p,p) = ψ̃L(− p,−p)

For example, one can easily write two linearly dependent left-handed spinor
solutions with the positive energy for the Weyl equation, e.g. ,

ψ̃L(p,p) =

 − px + ipy
p+ pz

 ψ̃ ′L(p,p) =

 − p+ pz
px + ipy

 (4.163)

which are proportional because

ψ̃ ′L(p,p) =
px + ipy
p+ pz

ψ̃L(p,p)

The linearly dependent right-handed spinor solutions for the positive energy
Weyl equation are obtained after sending p into −p , that yields

ψ̃R(p,p) =

 px − ipy
p− pz


ψ̃ ′R(p,p) = (−1)

 p+ pz
px + ipy

 (4.164)

Furthermore, it is easy to check that the following relations hold true

ψ̃ ′R(p,p) = − iσ2ψ̃∗L(p,p) ψ̃ ′L(p,p) = − iσ2ψ̃∗R(p,p) (4.165)

Of course the negative energy solutions of the left Weyl equation (4.157)
do involve right-handed spin states and correspond to the antiparticles, the
converse holding true for the right Weyl’s equation (4.158). As a matter of
fact, if we send p into − p in eq. (4.163), i.e. if we turn to the antiparticle
spin states, we get for instance

ψ̃L(p,p) 7→ { p ↔ − p} 7→ ψ̃L(− p,p) ∝ ψ̃ ′R(p,p)

Thus, to our purposes, it is utmost convenient to take by definition the
following properly normalized spin states

uL(p) = ( p+ pz)
− 1

2

 − px + ipy
p+ pz

 ≡ u( p)

vL(p) = i ( p− pz)−
1
2

 − px + ipy
− p+ pz

 ≡ u(− p)

uR(p) = ( p+ pz)
− 1

2

 p+ pz
px + ipy

 = iσ2u
∗
L(p) ≡ v( p)

vR(p) = i ( p− pz)−
1
2

 pz − p
px + ipy

 = − iσ2v∗L(p) ≡ v(− p)
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which satisfy the orthogonality relations

u†L(p)uL(p) = v†L(p) vL(p) = 2p u†L(p) vL(p) = 0

u†L(p)uR(p) = 0 v†L(p) vR(p) = 0

u†R(p)uR(p) = v†R(p) vR(p) = 2p u†R(p) vR(p) = 0

(4.166)

Then we can suitably define the mass-less Weyl spinor wave functions

u± p (x) ≡ [ (2π)3 2 |p | ]−
1
2 u(± p) e∓ i p ·x ( p0 = |p | )

v± p (x) ≡ [ (2π)3 2 |p | ]−
1
2 v(± p) e∓ i p ·x ( p0 = |p | )

which are solutions of the Weyl’s equations

σ µ i∂µ u± p (x) = 0 (∀p ∈ R3 , p0 = |p | )
σ̄ µ i∂µ v± p (x) = 0 (∀p ∈ R3 , p0 = |p | )

and do satisfy from (4.166) the orthogonality relations∫
dx (u± p (t,x))† u± q (t,x) = δ(p− q)∫

dx u†p (t,x)u− q (t,x) = 0∫
dx (v± p (t,x))† v± q (t,x) = δ(p− q)∫

dx v†p (t,x) v− q (t,x)

Hence we can write the normal modes decomposition of the left-handed Weyl
spinor quantum field in the form

ψL(x) =
∑
p

[ cp up (x) + d†p u− p (x) ] (4.167)

ψR(x) =
∑
p

[ dp vp (x) + c†p v− p (x) ] (4.168)

the creation and destruction operators satisfying the usual canonical anti-
commutation relations

{cp , c†q} = {dp , d†q} = δ(p− q) (4.169)

all the remaining anti-commutators being equal to zero.
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Since the generators of the rotations group for both the irreducible Weyl
spinor representations τ 1

2
0 and τ 0 1

2
are S jk = 1

2
ε jk` σ` it follows that the

corresponding Pauli-Lubanski (1.55) operator reads

W0 = P · S = p · 1
2
~σ

Wj = 1
2
pσj − 1

2
iεjk` pk σ`

which entails

g µνWµWν = 1
4
pj pk σjσk − 1

4
( pσj − iεjk` pk σ`) ( pσj − iεjrs pr σs)

= − 1
2
p2 + 1

4
( δ krδ `s − δ ksδ `r) pk pr σ` σs = 0

where the 2 × 2 identity matrix has been understood. Then, thanks to the
light-like nature of the Pauli-Lubanski operator, we can identify the helicity
operator to be

h ≡ W0

|p |
=
|W|
p

= 1
2
~n · σ n ≡ p̂ = p/p

together with the Weyl’s Hamiltonian operators

HR = cp · σ = −HL

in such a manner that we find HL = − pch , HR = pch and consequently

HL uL(p) = pc uL(p) huL(p) = − 1
2
~uL(p)

HR uR(p) = pc uR(p) huR(p) = 1
2
~uR(p)

HL vL(p) = − pc vL(p) hvL(p) = 1
2
~ vL(p)

HR vR(p) = − pc vR(p) hvR(p) = − 1
2
~ vR(p)

It follows thereby that, mandatory, the positive energy solutions of the mass-
less left Weyl spinor have negative helicity h = −1

2
, while the negative energy

solutions exhibit positive helicity h = 1
2
, the situation being reversed for the

mass-less right Weyl spinors. Hence, it turns out that the particles with
negative helicity correspond to the left-handed mass-less spinors, while the
antiparticles to the right-handed mass-less spinors. Thus, the spin of left-
handed mass-less Weyl spinor is always opposite to the direction of motion,
while the spin of the right-handed mass-less Weyl spinor is always towards
the direction of motion.

In Nature, whenever the masses of neutrinos and anti-neutrinos can be
neglected 7, neutrinos are left-handed, i.e. with negative helicity, while anti-
neutrinos are right-handed with positive helicity. Moreover, the mass-less

7According to J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)
data from tritium beta decay experiments lead to the upper bound m(νe) = m(ν̄e) < 2 eV,
while the present limits for heavier flavors are m(νµ) = m(ν̄µ) < 170 KeV and m(ντ ) =
m(ν̄τ ) < 18.2 MeV.
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Weyl fields are charged fields. In fact, the Weyl Lagrangian (4.156) turns
out to be invariant with respect to the phase transformations

ψL(x) 7→ ψ ′L(x) = e i`θψL(x)

ψR(x) 7→ ψ ′R(x) = e−i`θψR(x)

ψ†L(x) 7→ (ψ ′L(x))
†

= e−i`θψ†L(x)

ψ†R(x) 7→ (ψ ′R(x))
†

= e i`θψ†R(x)

where ` is the so called lepton number of the Weyl spinor field while 0 ≤
θ ≤ 2π . Hence, from Noether’s theorem, it follows that the left-handed and
right-handed vector currents

J µL (x) = ` ψ†L(x)σµψL(x) J µR(x) = (− `)ψ†R(x) σ̄µψR(x)

do satisfy the continuity equation

∂µJ
µ
L (x) = ∂µJ

µ
R(x) = 0

As a consequence, the lepton number operator can be expressed in the form

QL = `

∫
dx : ψ†L(x)ψL(x) :

= `
∑
p

[
c†p cp − d†p dp

]
= −QR

In Nature there are three leptonic numbers `e, `µ, `τ , one for each flavor. The
assignments are `ı = +1 ( ı = e, µ, τ ) for particles, e.g. electrons e− and left-
handed neutrinos νe , while − `ı = −1 for antiparticles like, for instance, the
anti-muons µ+ and the right-handed anti-neutrinos ν̄µ .

Notice that the charge conjugation transformation for the quantum fields
is nothing but the exchange between the particle and antiparticle creation
and destruction operators. For example, in the case of the mass-less right-
handed quantum Weyl spinor we have

ψ c
R(x) =

∑
p

[ cp vp (x) + d†p v− p (x) ]

and from the relations (4.165) we immediately obtain

vp (x) = −iσ2u∗p (x) v− p (x) = −iσ2u∗− p (x)

up (x) = iσ2v
∗
p (x) u− p (x) = iσ2v

∗
− p (x)
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that yields

ψ c
R(x) = −iσ2

∑
p

[ cp u
∗
p (x) + d†p u

∗
− p (x) ] = −iσ2

(
ψ†L(x)

)>
(4.170)

ψ c
L(x) = iσ2

∑
p

[ dp v
∗
p (x) + c†p v

∗
− p (x) ] = iσ2

(
ψ†R(x)

)>
(4.171)

The mass-less Weyl fields can also be represented by complex bispinors. To
this concern, it appears that if Ψ(x) is a four components complex bispinor
solution of the mass-less Dirac equation

i∂/ ψ(x) = 0

then ψ ′(x) = γ5ψ(x) is also a solution of the same equation owing to

{γ5 , γ µ} = 0

Thus we see that general bispinor solutions of the mass-less Dirac equation
are actually characterized by their chirality as they are eigenfunctions of the
chirality matrix γ5 . It follows thereby that in the Weyl, spinorial, chiral
representation of the Clifford algebra we find

ψ±(x) ≡ 1
2
( I± γ5 )ψ(x) γ5 ψ±(x) = ±ψ±(x)

ψ−(x) =

∫
dp cp

 up (x)
0

+

∫
dp d†p

 u−p (x)
0


ψ+(x) =

∫
dp dp

 0
vp (x)

+

∫
dp c†p

 0
v−p (x)


in such a manner that charge conjugation acts as follows. From the general
relation (4.133) valid for any operator valued Dirac bispinor quantum field,
viz.,

ψ c(x) = γ 2
(
ψ †(x)

)>
if we make use of the real and symmetric chirality or helicity projectors

P± ≡ 1
2
( I± γ5 ) = (P±)> = (P±)†

we can write

(ψ±(x))c = γ 2
(
ψ †(x)P±

)>
= γ 2P±

(
ψ †(x)

)>
= P∓ γ

2
(
ψ †(x)

)>
= P∓ ψ

c(x)

≡ ψ c
∓(x) (4.172)
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in accordance with our previous eqs. (4.170,4.171). The charge conjugated
of the left-handed component of a Dirac bispinor is the right component of
the charge conjugated Dirac bispinor

(ψ−(x))c = (P−ψ(x))c = ψ c
+(x) = P+ ψ

c(x)

the converse holding true for the right-handed component, the opposite
charges of the charge conjugated bispinors being the lepton numbers.

To sum up, the quantum chiral fields ψ±(x) describe massless neutrinos
νe, νµ, ντ of negative chirality/helicity but positive lepton number, together
with the mass-less anti-neutrinos ν̄e, ν̄µ, ν̄τ of positive chirality/helicity but
negative lepton charge.

4.8.3 Majorana Spinor Field

One can write a relativistic invariant field equation for a massive 2-component
left Weyl spinor wave field ψL that transforms according to (2.40). Call such
a 2-component field χa(x) (a = 1, 2). Let us consider the Weyl spinor wave
field as a classical anti-commuting field, i.e. a Graßmann valued left Weyl
spinor field function over the Minkowski space which satisfies

{χa(x) , χb(y) } = 0 (x, y ∈M a, b = 1, 2 )

together with the complex conjugation rule

(χ1χ2)
∗ = χ∗2χ

∗
1 = −χ∗1χ∗2

so to imitate the Hermitean conjugation of quantum fields.
(a) Show that the classical Lagrangian

LL =
1

2
χ†(x)σ µ i

↔
∂µχ(x) +

m

2

[
χ>(x)σ2 χ(x) + χ†(x)σ2 χ

∗(x)
]

is real with χ† = (χ∗)> and yields the Majorana wave field equation

i σ µ ∂µχ(x) +mσ2 χ
∗(x) = 0

where σ µ = (1 , −σk) . That is, show that this equation, named the Majorana
field equation, is relativistically invariant and that it implies the Klein-Gordon
equation (� + m2) χ(x) = 0 . This form of the fermion mass is called a
Majorana mass term.

(b) Show that all we have obtained before can be formulated in terms
of a self-conjugated left handed real bispinor called the free Majorana spinor
ψL = ψ∗L = ψ c

L and derive the symmetries of the corresponding Action.
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(c) Perform the quantum theory of the Majorana massive field.

Solution

(a) Consider the transformation rule (2.51)

Λ †L σ
µ ΛL = Λµ

ν σ
ν

Then we immediately get

[χ ′(x ′ ) ] † σ µ i
↔
∂ ′µ χ

′(x ′ ) = χ† (x) Λ†L σ
µ ΛL i

↔
∂ρ χ(x) Λ ρ

µ

= χ† (x) Λµ
ν σ

ν i
↔
∂ρ χ(x) Λ ρ

µ

= χ† (x)σ µ i
↔
∂µ χ(x)

which vindicates once more the Poincaré invariance of the left Weyl kinetic
Lagrangian

TL [χ ] =
1

2
χ† (x)σ µ i

↔
∂µ χ(x)

Furthermore we have

χ ′ >(x ′ )σ2 χ
′(x ′ ) = χ> (x) Λ>L σ2 ΛL χ(x)

= χ> (x)σ2 Λ−1L σ 2
2 ΛL χ(x)

= χ>(x)σ2 χ(x)

= − i χ1 (x)χ2 (x) + i χ2 (x)χ1 (x)

= − 2 i χ1 (x)χ2 (x)

for anti-commuting Graßmann valued Weyl spinor fields. It follows therefrom
that the mass term is the real Lorentz scalar

LmL = − im
[
χ1 (x)χ2 (x) + χ ∗1 (x)χ ∗2 (x)

]
= im

[
χ∗2 (x)χ∗1 (x) + χ2 (x)χ1 (x)

]
= (LmL )∗

The Lagrange density can be rewritten as

LL =
1

2
χ †(x)σ µ i

↔
∂µχ(x) +

m

2

[
χ>(x)σ2 χ(x) + χ †(x)σ2 χ

∗(x)
]

= χ †(x)σ µ i ∂µχ(x) +
m

2

[
χ>(x)σ2 χ(x) + χ †(x)σ2 χ

∗(x)
]

− i

2
∂µ

(
χ †(x)σ µ χ(x)

)
=̇ χ †(x)σ µ i ∂µχ(x) +

m

2

[
χ>(x)σ2 χ(x) + χ †(x)σ2 χ

∗(x)
]

205



where =̇ means that the 4-divergence term can be disregarded as it does
not contribute to the equations of motion. If we treat χa (x) (a = 1, 2) and
χ ∗a (x) (a = 1, 2) as independent field variables, then the Euler-Lagrange field
equations yield

∂µ
δLL
δ ∂µ χ

= i ∂µχ
† σ µ =

δLL
δχ

= mχ> σ2

hence, taking the transposed and complex conjugate equation

i σ µ ∂µχ(x) + mσ2 χ
∗(x) = 0 (I )

which is the Majorana field equation. Multiplication to the left by σ2 and
taking complex conjugation gives

iσ2 ∂ 0χ
∗ (x)− iσ2 σ

∗
k ∂ kχ

∗ (x) +mχ(x) = 0

Remembering that σ2 σ
∗
k σ2 = − σk and that σ̄ µ = ( 1 , σk ) we come to the

equivalent form of the Majorana left equation, i.e.

i σ̄ µ ∂µσ2 χ
∗ (x) +mχ(x) = 0 (II )

Now, if act from the left with the operator i σ̄ ν ∂ ν to equation ( I ) and use
equation (II ) we obtain

σ̄ νσ µ ∂ ν ∂µχ(x) +m2χ(x) = (�+m2 )χ(x) = 0

so that the left-handed Weyl massive spinor satisfies the Klein-Gordon wave
equation.

(b) According to (2.80) we can introduce the Majorana left handed self-
conjugated bispinor

χL (x) =

 χ(x)
−σ2 χ∗ (x)

 = χ cL (x) (III )

with the Lagrange density

LL = 1
4
χL (x)

↔
i∂/ χL (x) − 1

2
mχL (x)χL (x)

in such a manner that the Majorana mass term can be written in the two
equivalent forms

LmL =
m

2

[
χ>(x)σ2 χ(x) + χ †(x)σ2 χ

∗(x)
]

= − m
2
χ̄L (x)χL (x)
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so that it is clear that the Majorana’s Action
∫

dxLL is no longer invariant
under the phase transformation

χ(x) 7−→ χ ′ (x) = χ(x) e iα

Taking the Graßmann valued Majorana left handed spinor wave field
χL(x) to be defined by the self-conjugation constraint ( III ) , it is easy to
see that the pair of coupled Weyl equations ( I ) and ( II ) is equivalent to
the single bispinor equation

(αµ i∂µ − β m) χL (x) = 0 (IV )

in which

αµ =

 σ µ 0
0 σ̄ µ

 β = γ0 =

 0 1
1 0

 γ µ = βαµ

while the Majorana Lagrangian then becomes

LL =
1

4
χ†L (x)αµ i

↔
∂µχL (x)− m

2
χ†L (x) β χL (x)

It is immediate to verify that the bispinor form ( IV ) of the field equations
does coincide with the two equivalent forms ( I ) and ( II ) of the Majorana
wave field equation: namely,{

i σ µ ∂µχ(x) +mσ2 χ
∗(x) = 0

i σ̄ µ σ2 ∂µχ
∗ (x) +mχ(x) = 0

Since the Majorana spinor wave field χL(x) has the constraint ( III )
which relates the lower two components to the complex conjugate of the two
upper components, a representation must exist which makes the Majorana
spinor wave field real, with the previous two independent complex variables
χa ∈ C (a = 1, 2) replaced by the four real variables ψM,α ∈ R (α = 1, 2, 3, 4) .
To obtain this real representation, we note that

χL =

 χ
−σ2 χ

∗

 χ∗L =

 0 −σ2

σ2 0

 χL

A transformation to left handed real bispinor fields ψM = ψ ∗M can be made
by writing

χL = S ψM χ∗L = S∗ ψM = S∗ S−1 χL

whence

S ∗ =

 0 −σ2

σ2 0

 S
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Now, if we set  0 iσ2

− iσ2 0

 = iγ 2 ≡ ρ2

ρ2 = ρ†2 ρ2
2 = I

so that
exp{i ρ2 θ} = I cos θ + i ρ2 sin θ

then the solution for the above relation is the unitary matrix

S = exp{− π i ρ2 /4} =

√
2

2

(
I− i ρ2

)
which fulfills

S =

√
2

2

 1 σ2

−σ2 1

 =

√
2

2

(
I + γ 2

)
or even more explicitly

S =

√
2

2


1 0 0 −i
0 1 i 0
0 i 1 0
−i 0 0 1


Thus we can suitably make use of the so called Majorana representation for
the Clifford algebra which is given by the similarity transformation acting on
the γ−matrices in the Weyl representation, viz.,

γ µM ≡ S † γ µ S

γ 0
M =

 −σ2 0
0 σ2

 =


0 i 0 0
− i 0 0 0
0 0 0 − i
0 0 i 0


γ 1
M =

 − iσ3 0
0 − iσ3

 =


− i 0 0 0
0 i 0 0
0 0 − i 0
0 0 0 i


γ 2
M =

 0 σ2

−σ2 0

 =


0 0 0 − i
0 0 i 0
0 i 0 0
− i 0 0 0


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γ 3
M =

 iσ1 0
0 iσ1

 =


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0


γ 5
M =

 0 −σ2
−σ2 0

 =


0 0 0 i
0 0 − i 0
0 i 0 0
− i 0 0 0


which satisfy by direct inspection

{γ µM , γ νM} = 2g µν {γ νM , γ 5
M} = 0

γ 0
M = γ 0†

M γ kM = − γ k †M γ 5
M = γ 5 †

M

γ νM = − γ ν ∗M γ 5
M = − γ 5 ∗

M

The result is that, at the place of a complex self-conjugated bispinor,
which corresponds to a left handed Weyl spinor, one can safely employ a real
Majorana bispinor: namely,

χL(x) = χcL(x) ↔ ψM (x) = S †χL(x) = ψ∗M (x)

A quite analogous construction can obviously be made, had we started from
a right handed Weyl spinor. In so doing, the Majorana Lagrangian and the
ensuing Majorana wave field equation take the form

LM = 1
4
ψ>M (x)α ν

M i
↔
∂ν ψM (x)− 1

2
m ψ>M (x) βM ψM (x)

(i∂/M −m)ψM (x) = 0 ψM (x) = ψ ∗M (x)

α ν
M = γ 0

M γ
ν
M α 0

M = I βM ≡ γ 0
M

The only relic internal symmetry of the Majorana’s Action is the discrete Z2

symmetry, i.e. ψM (x) 7−→ −ψM (x) . The Majorana Hamiltonian reads

HM = α k
M p̂ k +mβM ( p̂ k = − i∇k )

To solve the Majorana wave equation we set

ψM (x) =

∫
d4p

(2π)3/2
ψ̃M (p) exp{− ip · x}

with the reality condition

ψ̃ ∗M (p) = ψ̃M (− p)
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so that
(p/M −m) ψ̃M (p) = 0 p/M ≡ pν γ

ν
M

which implies

ψ̃M,α (p) = (p/M +m)αβ φ̃β (p)(
p2 −m2

)
φ̃α (p) = 0 (α = 1, 2, 3, 4)

φ̃α (p) = δ
(
p2 −m2

)
fα(p)

Furthermore, from the reality condition on the Majorana spinor field

ψ̃ ∗M,α (p) = ψ̃M,α (− p)

we find

ψ̃ ∗M,α (p) = (p/∗M +m)αβ φ̃
∗
β (p)

= (− p/M +m)αβ φ̃
∗
β (p)

= ψ̃M,α (− p) ⇐⇒ f ∗β (p) = fβ (− p)

thanks to the circumstance that the γ−matrices are purely imaginary in the
Majorana representation. Then we can write

ψM(x) =

∫ ∞
−∞

dp0

∫
dp
[

(2π)3 2ωp

]−1
θ(p0)

× ( p/M +m )αβ fβ(p) δ (p0 − ωp) exp{− ip · x}

+

∫ ∞
−∞

dp0

∫
dp

[
(2π)3 2ωp

]−1
θ(− p0)

× ( p/M +m )αβ fβ(p) δ (p0 + ωp) exp{− ip · x}

= 2m

∫
dp

[
(2π)3 2ωp

]−1 E +
M (p) f(p) e− ip·x

+ 2m

∫
dp
[

(2π)3 2ωp

]−1 E −M (p) f ∗(p) e ip·x

def
=

∑
p

[
E +
M (p) fp e

− ip·x + E −M (p) f ∗p e
ip·x
]

= ψ ∗M(x)

where p0 = ωp , whereas fp = 2mf(p)/
√

(2π)3 2ωp . The projectors onto the
spin states are

E ±M (p) = (m± p/M) /2m (p0 = ωp)
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with

[ E ±M (p) ]∗ = E ∓M (p) [ E ±M (p) ]† = E ±M ( p̃) ( p̃µ = pµ )

[ E ±M (p) ]2 = E ±M (p) E ±M (p) E ∓M (p) = 0

tr E ±M (p) = 2 E +
M (p) + E −M (p) = I

Now, in order to set up the spin states of the Majorana real spinor field, let
me start from the spin matrices in the Majorana representation

ΣM,1 = i γ2M γ3M =

 0 i σ3
− i σ3 0


ΣM,2 = i γ3M γ1M =

 σ2 0
0 σ2


ΣM,3 = i γ1M γ2M =

 0 − i σ1
i σ1 0


and from the common eigenvectors of the matrix βM and of the diagonal spin
matrix ΣM,2 that are e.g.

ξ+ ≡


0
0
1
i

 ξ− ≡


i
1
0
0

 γ0M ξ± = ξ±

or equivalently

η+ ≡


1
i
0
0

 η− ≡


0
0
i
1

 γ0M η± = − η±

which do indeed satisfy by direct inspection

γ0M ξ± = ξ± ξ †∓ ξ± = 0 ( ΣM,2 ∓ 1 ) ξ± = 0

in such a manner that we have by construction

ξ †r ξ s = 2 δ rs ξ †r γ
k
M ξ s = 0 ∀ r, s = ± ∨ k = 1, 2, 3

Notice that, for example, the spin states ξr ( r = ± ) are in fact the two
degenerate eigenstates of the Majorana Hamiltonian in the massive neutral

211



spinor particle rest frame p = 0 with positive eigenvalue p0 = m and with
opposite spin projections on the OY axis, viz.,

σ 31
M ξ± ≡ 1

4
i [ γ 3

M , γ1M ] ξ± = 1
2

ΣM,2 ξ± = ± 1
2
ξ±

Then we define the Majorana spin states to be{
ur (p) ≡ 2m(2ωp + 2m)−

1
2 E +

M (p) ξ r
u∗r (p) ≡ 2m (2ωp + 2m)−

1
2 E −M (p) ξ ∗r

( r = ± ∨ p0 = ωp )

which are the two eigenstates of the positive energy projector

E +
M (p)ur (p) = ur (p) ( r = +,− ∨ p0 = ωp )

with
u†r (p)us (p) = 2ωp δ rs

In fact we have for instance

u†r(p)us(p) = (2ωp + 2m)−1 ξ †r (m+ p̃/M)(m+ p/M) ξs

= (2ωp + 2m)−1 ξ †r
(

2ω 2
p + 2mωp

)
ξs

= 2ωp
1
2
ξ †r ξs = 2ωp δrs

in which I have made use of the property

ξ †r γ
k
M γ 0

M ξs = ξ †r γ
k
M ξs = 0 ∀ r, s = +,− ∨ k = 1, 2, 3

Moreover we can easily verify that

ūr(p)us(p) = 2m δrs

so that we can write ∑
r=+,−

ur(p) ūr(p) = m+ p/M

Of course, a completely equivalent construction can be made, had we started
from the further degenerate pair of the constant eigenspinors ηr (r = +,−)
of the matrix βM .

In conclusion, the general normal mode decomposition of the Majorana
real spinor wave field becomes

ψM (x) =
∑
p , r

[
ap , r up , r(x) + a∗p , r u

∗
p , r(x)

]
= ψ ∗M (x)
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with
up , r (x) ≡ [ (2π)3 2ωp ]−

1
2 ur(p) exp{− iωp t+ ip · x}

{ap , r , aq , s} = {ap , r , a
∗
q , s} = {a∗p , r , a∗q , s} = 0

∀p , q ∈ R3 ∀ r , s = +,−

It is important to realize that the real Majorana massive spinor wave field
does exhibit two opposite helicity states.

(c) The transition to the quantum theory is performed as usual by means of
the creation annihilation operators ap , r and a†p , s which satisfy the canonical
anti-commutation relations

{ap , r , aq , s} = 0 = {a†p , r , a†q , s}

{ap , r , a
†
q , s} = δ rs δ (p− q)

∀p , q ∈ R3 ∀ r , s = +,−
so that

ψM (x) =
∑
p , r

[
ap , r up , r (x) + a†p , r u

∗
p , r (x)

]
= ψ †M (x)

where the Hermitean conjugation refers to the creation destruction operators
acting on the Fock space. Instead we have the expansion of the left Majorana
adjoint spinor

ψ̄M (x) =
∑
p , r

[
a†p , r ūp , r (x) + ap , r ū

∗
p , r (x)

]
= ψ̄ †M (x)

in which

ūp , r (x) ≡ [ (2π)3 2ωp ]−
1
2 [u>r (p) ]∗ γ 0

M exp{ iωp t− ip · x}

Notice that from the normalization

(up , r , uq , s ) =

∫
dx ūp , r (x) γ 0

M uq , s (x) = δ rs δ(p− q)

one can easily obtain all the observable quantities involving the Majorana
massive spinor field. For example the energy-momentum tetra-vector takes
the form

Pµ =
i

2

∫
dx : ψ̄M (x) γ 0

M

↔
∂µ ψM (x) :

=
∑
p , r

pµ a
†
p , r ap , r ( p0 = ωp )
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Moreover, for example, if ∂1ψM = ∂3ψM = 0 that implies ψM(t, y) =
ψM (t, 0, y, 0) , then we obtain for the energy-momentum tensor

2i T 13(t, y) = ψ̄M (t, y) γ1M
↔
∂zψM (t, y) = 0

2i T 31(t, z) = ψ̄M (t, y) γ 3
M

↔
∂xψM (t, y) = 0

and thereby

∂µM
µ
13 = ∂µ S

µ
13 = 0 (4.173)

whence it follows that the helicity is conserved in time. After insertion of the
normal modes expansion one gets

h =

∫ ∞
−∞

dy : 1
2
ψM(t, y) ΣM,2 ψM(t, y) :

=

∫ ∞
−∞

dy :
∑
p , r

[
a p , r u p , r (t, y) + a†p , r u

∗
p , r (t, y)

]
× 1

2
ΣM,2

∑
q , s

[
a†q , s u

∗
q , s (t, y) + a q , s u q , s (t, y)

]
:

in which we have set

p = (0, p, 0) q = (0, q, 0) ω p =
√
p2 +m2

u p , r (t, y) = [ 4πω p ]−1/2 ur (p) exp{ipy −−itω p} ( r = +,− )

the normalization being now consistent with the occurrence that the spinor
plane waves are independent of the transverse spatial coordinates x⊥ =
(x1 , x3) . From the commutation relation

[ω pγ
0
M − p γ2M , ΣM,2 ] = 0

together with the definition

u± (p) ≡ (2ω p + 2m)−1/2
(
m+ ω pγ

0
M − p γ2M

)
ξ±

it can be readily derived that

( ΣM,2 ∓ 1 ) ξ± = 0 ⇒ ( ΣM,2 ∓ 1 )u± (p) = 0

which yields in turn

h = 1
2

∫ ∞
−∞

dp
[
a †p ,+ a p ,+ − a

†
p ,− a p ,−

]
The 1-particle states a †p ,± | 0 〉 represent neutral Majorana massive particles
with energy-momentum pµ = (ωp, p) and positive/negative helicity.
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4.8.4 Dirac and Majorana Mass Terms

Write the most general mass term involving left and right complex Weyl
bispinors and real self-conjugated Majorana bispinors. Discuss its structure.

Solution. By making use of the real, symmetric and diagonal chirality or
helicity projectors in the Weyl representation of the Clifford algebra

P± ≡ 1
2
( I± γ5 ) = (P±)> = (P±)†

we can write

(ψ±(x))c = γ 2
(
ψ †(x)P±

)>
= γ 2P±

(
ψ †(x)

)>
= P∓ γ

2
(
ψ †(x)

)>
= P∓ ψ

c(x)

≡ ψ c
∓(x)

Thus the charge conjugated of the left–handed component of a Dirac bispinor
is the right component of the charge conjugated Dirac bispinor

(ψ−(x))c = (P−ψ(x))c = ψ c
+(x) = P+ ψ

c(x)

the converse holding true for the right-handed component, the opposite
charges of the charge conjugated bispinors being the lepton numbers.

A real Dirac-type mass term in the Lagrangian does indeed connect the
independent left and right components of the same Dirac bispinor

LmD = −mψ̄(x)ψ(x)

= −m
(
ψ†L(x)ψR(x) + ψ†R(x)ψL(x)

)
= (LmD)∗

From a Dirac bispinor ψ(x) one can always build up a pair of self-conjugated
Majorana bispinors ϕ(x) and χ(x) according to

χ(x) = ψ−(x) + (ψ−(x))c = ψ−(x) + ψ c
+(x) (4.174)

ϕ(x) = ψ+(x) + (ψ+(x))c = ψ+(x) + ψ c
−(x) (4.175)

where use has been made of the charge conjugation properties connecting
left-handed and right-handed Weyl spinor fields. Of course, by the very
construction we have

ϕ(x) = ϕc(x) χ(x) = χc(x)

The inversion formulæ can be easily obtained through the application of the
chirality or helicity projectors, that yields

ψ−(x) = P− χ(x) ≡
 ψL(x)

0


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ψ+(x) = P+ ϕ(x) ≡
 0

ψR(x)


ψ c
+(x) = P+ χ(x) ≡

 0
−σ2ψ∗L(x)


ψ c
−(x) = P− ϕ(x) ≡

 σ2ψ
∗
R(x)
0


so that

χ(x) =

 ψL(x)
−σ2ψ∗L(x)


ϕ(x) =

 σ2ψ
∗
R(x)

ψR(x)


It follows therefrom that the self-conjugated bispinor ϕ(x) can be constructed
from the left Weyl spinor ψL(x), while the self-conjugated bispinor χ(x) out of
the right Weyl spinor ψR(x). Hence we can build up two Majorana-type mass
terms which contain only left and right Weyl spinors respectively: namely,

LmL = − 1
2
mL χ̄(x)χ(x) = (LmL )∗

= − 1
2
mL

(
ψ †−(x) γ 0 ψ c

+(x) + ψ c
+(x)ψ−(x)

)
= 1

2
mL

[
ψ†L(x)σ2 ψ

∗
L(x) + ψ>L (x)σ2 ψL(x)

]
LmR = − 1

2
mR ϕ̄(x)ϕ(x) = (LmR )∗

= − 1
2
mR

(
ψ †+(x) γ 0 ψ c

−(x) + ψ c
−(x)ψ+(x)

)
= − 1

2
mR

[
ψ>R(x)σ2 ψR(x) + ψ†R(x)σ2 ψ

∗
R(x)

]
This means that the Majorana mass terms do mix the mass-less chirality and
helicity eigenstates ψ±(x) , in such a manner that the lepton number conservation
breaks down. The application of the chirality matrix γ5 yields

γ5 ψ(x) = ψ+(x)− ψ−(x) = ψ ′(x)

γ5 χ(x) = ψ c
+(x)− ψ−(x) = χ ′(x)

γ5 ϕ(x) = ψ+(x)− ψ c
−(x) = ϕ ′(x)

so that the the action of the chirality matrix γ5 clearly changes the signs of
all the mass terms. As a consequence, the bispinor fields ψ ′(x), ϕ ′(x), χ ′(x)
can be interpreted as the correct mass eigenstates for the minus values of the
masses m,m± because e.g.

LmR = − 1
2
m+ ϕ̄(x)ϕ(x) = 1

2
m+ ϕ̄

′(x)ϕ ′(x)
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Notice as well that the right and left bispinors ϕ ′(x) and χ ′(x) are in turn
anti-self-conjugated because ϕ ′ c = −ϕ ′ and χ ′ c = −χ ′. Whenever both the
Dirac and Majorana mass terms are simultaneously present we can write

LDM = − 1
2
m (χ̄ϕ+ ϕ̄χ)− 1

2
mL χ̄ χ− 1

2
mR ϕ̄ ϕ

= − 1
2

 χ̄ ϕ̄
 mL m

m mR

 χ
ϕ


the 2 × 2 mass matrix being readily made diagonal to yields the pair of
distinct eigenvalues

M± = 1
2

[
mL +mR ±

√
(mR −mL)2 + 4m2

]
( I )

In order to find the eigenstates, consider a general O(2,R) transformation
involving the left and right Majorana bispinors: namely,

χ(x) = cos θ η(x) + sin θ ξ(x)
ϕ(x) = − sin θ η(x) + cos θ ξ(x)

}
After substitution into the mass Lagrangian LDM we readily find

LDM = − 1
2

(
mL cos2 θ +mR sin2 θ −m sin 2θ

)
η̄(x) η(x)

− 1
2

(
mL sin2 θ +mR cos2 θ +m sin 2θ

)
ξ̄(x) ξ(x)

− 1
2
[ η̄(x) ξ(x) + ξ̄(x) η(x) ]

[
m cos 2θ − 1

2
(mR −mL ) sin 2θ

]
corresponding to the pair of Majorana bispinors mass eigenstates

η(x) = cos θ χ(x)− sin θ ϕ(x) = η c(x)
ξ(x) = sin θ χ(x) + cos θ ϕ(x) = ξ c(x)

}
( II )

if and only if the following relation holds true, viz.,

tan 2θ = 2m/(mR −mL) ( III )

Since any massive right-handed neutrino has never been detected so far,
one is naturally led to assume that mR � mL,m in such a manner that a
pretty tiny angle θ ≈ 1

2
arctan(2m/mR) is expected to yield the mixing which

corresponds to the so called seesaw mechanism8. Notice that the eigenvalues
(I) can be suitably rewritten in the form

M± = 1
2
(mL +mR )± m

sin 2θ

8Rabindra Nath Mohapatra and Goran Senjanovic, Exact Left-Right Symmetry and
Spontaneous Violation of Parity, The Physical Review D12 (1975) 1512-1523.
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for sin 2θ > 0 , that yields in turn

2m = (M+ −M− ) sin 2θ M+ +M− = mR +mL

In the limit of a tiny mass mL −→ 0 of the left-handed Majorana spinor, one
eventually gets

M+ = mL sin2 θ +mR cos2 θ +m sin 2θ ' mR

M− = mL cos2 θ +mR sin2 θ −m sin 2θ ' mL −
m2

mR

Some plausibly realistic estimates might be m ' MZ = O(100 GeV) while
mR = O(1016 GeV) so that mL ≈M− = O(10−3 eV) .

To sum up, the most general mass term for a four-component bispinor field
ψ(x) does actually describe two real Majorana bispinors with distinctive masses
but mixed chirality or helicity eigenstates ψ±(x) . Finally, taking an alternative
though equivalent point of view, we can define the manifestly self-conjugated
bispinor fields

Ψ+(x) ≡ ψ(x) + ψ c(x) Ψ−(x) ≡ iψ(x)− iψ c(x)

Ψ c
±(x) = Ψ±(x)

Then we obtain

LDM = −1
2
M
(
ψ ψ + ψ

c
ψ c
)
− 1

2
m
(
ψ ψ c + ψ

c
ψ
)

= −1
2
(m+M)Ψ+ Ψ+ + 1

2
(M −m)Ψ−Ψ−

Since the Majorana-type mass terms do violate the conservation of any
additive quantum number carried by the fermion field, such as electric charge,
lepton number and so on, it follows that all elementary charged fermions
must have mL = mR = 0 . For neutrinos and anti-neutrinos, instead, a
Majorana-type mass term violates the lepton number by two units because
L(ϕ̄ ϕ) = 2 . The presence of such a kind of Majorana masses leads, for
example, to neutrino-less double beta decays (Z − 1) → (Z + 1) e− e− , or
Kaon decays such as K− → π+ e− e− in which ∆L = − 2 .
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Chapter 5

The Vector Field

The quantum theory of a relativistic massive vector wave field has been
first developed at the very early stage of the quantum field theory by the
Romanian theoretical and mathematical great physicist

Alexandru Proca (Bucarest, 16.10.1897 – Paris, 13.12.1955)
Sur les equations fondamentales des particules elémentaires
Comptes Rendu Acad. Sci. Paris 202 (1936) 1490

Nearly twenty years after, a remarkable and far reaching generalization of the
quantum theory for a massive vector relativistic wave field was discovered by
the Swiss theoretician

E.C.G. Stueckelberg,
Théorie de la radiation de photons de masse arbitrairement petite
Helv. Phys. Acta 30 (1957) 209-215

whose clever construction is nowadays known as the Stueckelberg trick. The
manifestly Lorentz invariant quantum theory of the radiation field has been
first approached long time ago by Gupta and Bleuler

1. Sen N. Gupta, Proc. Phys. Soc. A63 (1950) 681

2. K. Bleuler, Helv. Phys. Acta 23 (1950) 567

and further fully developed by Nakanishi and Lautrup

1. Noboru Nakanishi, Prog. Theor. Phys. 35 (1966) 1111; ibid. 49 (1973)
640; ibid. 52 (1974) 1929; Prog. Theor. Phys. Suppl. No.51 (1972) 1

2. B. Lautrup, Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 35
(1967) No. 11, 1
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who completely clarified the subject. As we shall see below, there are many
common features shared by the quantum dynamics of the massive and the
mass-less relativistic vector fields, besides some crucial differences. Needless
to say, the most important property of the mass-less vector field theory is its
invariance under the so called gauge transformation of the first kind

Aµ (x) 7→ A ′µ (x) = Aµ (x) + ∂µ f(x)

where f(x) is an arbitrary real function, its consequence being the exact
null mass condition1 of the photon and the transverse nature of its polarization.
Conversely, this local symmetry is not an invariance of the massive vector
field theory, so that a third longitudinal polarization indeed appears for the
massive vector particles.

5.1 General Covariant Gauges

In what follow, on the one hand I will attempt to treat contextually the
massive and mass-less cases though, on the other hand, I will likely to focus
the key departures between the two items. The main novelty, with respect
to the previously studied scalar and spinor relativistic wave fields, is the
appearance of auxiliary, nonphysical ghost field to set up a general covariant
and consistent quantization procedure, as well as the unavoidable presence
of a space of the quantum states – the Fock space – with an indefinite metric.

We start from the classical Lagrange density

LA ,B = − 1

4
F µν (x)Fµν (x) +

m2c 2

2~2
Aµ (x)Aµ (x)

+ Aµ (x) ∂µB (x) +
ξ

2
B 2 (x) (5.1)

where the vector field Aµ(x) has canonical dimensions [Aµ ] =
√

eV/cm
in physical units, whereas B(x) is an auxiliary nonphysical scalar field of

canonical engineering dimension [B ] = erg
1
2 cm−

3
2 , while the dimensionless

parameter ξ ∈ R is named the gauge fixing parameter, the Abelian field
strength being as usual Fµν (x) = ∂µA ν (x)−∂νAµ (x) , in such a manner that
the Action S =

∫
dt
∫

dxL results to be Poincaré invariant. The variations
with respect to the scalar field B and the vector potential Aµ drive to the
Euler-Lagrange equations of motion{

∂µF
µν (x) + (mc/~)2A ν (x) + ∂ νB (x) = 0

∂µA
µ (x) = ξ B (x)

(5.2)

1The present day experimental limit on the photon mass is m γ < 6 × 10−17 eV – see
The Review of Particle Physics J. Beringer et al., Phys. Rev. D86, 010001 (2012).
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Taking the four divergence of the first equation and using the second equation
we obtain

(mc/~)2 ∂ · A(x) = − �B (x) = (mc/~)2 ξ B (x)

which shows that the auxiliary field is a free real scalar field that satisfies
the Klein-Gordon wave equation with a square mass ξ m2 , which is positive
only for ξ > 0 . This latter feature makes it apparent the nonphysical nature
of the auxiliary B−field, for it becomes tachyon-like for negative values of
the gauge fixing parameter. Nonetheless, it will become soon clear later on
why the introduction of the auxiliary and nonphysical B−field turns out to
bet very convenient and eventually unavoidable, to the aim of building up
a covariant quantization of the real vector field, especially in the null mass
gauge invariant limit m→ 0 .

If we turn to natural units and rewrite the above equations of motion for
the vector potential and the auxiliary scalar field we have(

�+m2
)
Aµ (x) + (1− ξ ) ∂µB (x) = 0 (5.3)

∂ · A(x) = ξ B (x) (5.4)

or even more explicitly

{
gµν

(
� +m2

)
−
(

1− 1

ξ

)
∂µ ∂ ν

}
A ν (x) = 0 (5.5)(

� +m2 ξ
)
B (x) = 0 (5.6)

∂ · A(x) = ξ B (x) (5.7)

the very last relation being usually named the subsidiary condition.
The above system (5.2) of field equations, which includes the subsidiary

condition, does nicely simplify for the particular value of the gauge fixing
parameter ξ = 1 : namely,

(� +m2 ) Aµ (x) = 0
∂ · A(x) = B (x)

(� +m2 )B (x) = 0

 (ξ = 1) (5.8)

and in the mass-less limit we come to the d’Alembert wave equation

�Aµ (x) = 0 = �B (x) ∂ · A(x) = B (x) (5.9)
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This especially simple and convenient choice of the gauge fixing parameter is
named the Feynman gauge. If, instead, we put ξ = 0 in the Euler-Lagrange
equations (5.2) we get

(
� +m2

)
Aµ (x) + ∂ µB (x) = 0 ∂ · A(x) = 0 = �B (x) (5.10)

and in the massless limit

�Aµ (x) + ∂ µB (x) = 0 ∂ · A(x) = 0 = �B (x) (5.11)

This latter choice is known as the Lorenz condition2 in the context of classical
electrodynamics or the Landau gauge in quantum electrodynamics, or even
the renormalizable gauge in the massive case. The general case of a finite
ξ 6= 0, 1 is called the general covariant gauge.

5.1.1 Conserved Quantities

The canonical energy-momentum tensor is obtained according to Noether
theorem

Tµν = Aµ ∂ νB − Fµλ ∂ ν A
λ − gµν LA ,B

= Aµ ∂ νB − Fµλ F
λ

ν − Fµλ ∂
λA ν − gµν LA ,B

= − Fµλ F ν κ g
λκ − gµν LA ,B

− ∂ λ (FµλA ν ) + A ν ∂
λFµλ + Aµ ∂ νB

and is not symmetric, just like in the gauge invariant Maxwell case (2.108).
However, using the equation of motion

Ḃ +m2A0 +∇ · E = 0

∂ λ F λ = ∂ B +m2A  (  = 1, 2, 3 )

we eventually obtain

Tµν = Θµν − ∂ λ (FµλA ν )

in which the improved symmetric energy-momentum tensor appears to be

Θµν
def
= Aµ ∂ νB + A ν ∂µB

− g λρ Fµλ F νρ +m2A ν Aµ − gµν LA ,B
= Aµ ∂ νB + A ν ∂µB − gµν

(
A · ∂B + 1

2
ξ B 2

)
+ 1

4
gµν F

ρσ F ρσ − Fµλ F
λ
ν +m2

(
A ν Aµ − 1

2
gµν A

2
)

(5.12)

2The proposal of solving the Maxwell equation with the condition ∂ · A = 0 was put
forward in 1867 by the Danish mathematical physicist Ludvig Valentin Lorenz.
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which satisfies
∂µ T

µν = ∂µΘµν = ∂νΘ
µν = 0

The components of the improved symmetric energy-momentum tensor are

Θ k = 1
2
δ k (E2 + B2 )− EEk −BBk

+ m2AAk + 1
2
δ km

2 (A2
0 −A2 )

+ A∂kB + Ak ∂B +
(
A0Ḃ + A ·∇B + 1

2
ξ B 2

)
δ k (5.13)

which is the generalized spatial stress tensor,

Θ 0k = A0∂kB + Ak Ḃ + F0`Fk` +m2A0Ak (5.14)

that corresponds to the generalized Poynting vector and finally

Θ 00 = 1
2

(E2 + B2 ) + 1
2
m2 (A2

0 + A2 )

+ A0Ḃ −A ·∇B − 1
2
ξ B 2 (5.15)

which is the energy density of the general Abelian vector field. Notice that
we have the trace property

− 1
2

Θµ
µ = A · ∂B + ξ B2 + 1

2
m2A2 = ∂µ (BAµ) + 1

2
m2A2

where use has been made of the equation of motion for the auxiliary field. It
follows therefrom that the conserved Hamiltonian functional becomes

cP0 =

∫
dx T 00 (t,x) =

∫
dx
{
A 0 (t,x) Ḃ (t,x) + F 0k (t,x) Ȧ k (t,x)

+ 1
4
F ρσ (t,x)F ρσ (t,x)− 1

2
m2Aλ (t,x)Aλ (t,x)

− Aµ (t,x) ∂µB (t,x)− 1
2
ξ B 2 (t,x)

}
≡ H

The form of the canonical conjugated momenta can be derived from the
Lagrange density (5.1) and reads

Πµ = δL/δ Ȧµ =

{
0 for µ = 0

F k0 ≡ E k for µ = k = 1, 2, 3
(5.16)

Π = δL/δ Ḃ = A0 (5.17)

Notice that the canonical momentum Π(t,x) (  = 1, 2, 3 ), conjugated to
the spatial vector potential Ak(t,x) ( k = 1, 2, 3 ), is opposite to the electric
field, i.e. Π(t,x) = −E(t,x), in such a manner that we have the canonical
Poisson brackets{

Ak(t,x) , Π(t,y)
}

= δk δ(x− y) =
{
Ak(t,x) , −E(t,y)

}
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Now, if we take into account that

F 0k (t,x) Ȧ k (t,x) = F 0k (t,x)F 0k (t,x) + F 0k (t,x) ∂ kA0 (t,x)

= E k (t,x)E k (t,x)− A0 (t,x) ∂ kE
k (t,x)

+ ∂ k

[
F 0k (t,x)A0 (t,x)

]
Ḃ (t,x) +m2 Π(t,x) +∇ · E(t,x) = 0

we can recast the energy, up to an irrelevant spatial divergence, in the form

P0 =̇

∫
dx
{
− 1

2
m2 Π2 (t,x)− Π(t,x) ∂ kE

k (t,x)

+ 1
2
E k (t,x)E k (t,x) + 1

4
F jk (t,x)F jk (t,x)− 1

2
ξ B 2 (t,x)

+ 1
2
m2A k (t,x)A k (t,x) + A k (t,x) ∂ kB (t,x)

}
Now we can rewrite the field equations (5.2) in the canonical form, that is

Ḃ (x) = {B (x) , H } = −m2 Π(x)−∇ · E(x)

= −m2A0 (x)− ∂ kF 0k (x) (5.18)

Ȧ k (x) = {A k (x) , H } = F 0k (x) + ∂ kΠ(x)

= F 0k (x) + ∂ kA0 (x) (5.19)

Π̇(x) = {Π(x) , H } = ∂ kA k (x) + ξ B (x) (5.20)

Ḟ 0k (x) = {E k (x) , H }
= ∂ j F jk (x)− m2Ak (x)− ∂ kB (x) (5.21)

where H ≡ P0 and I used the canonical Poisson brackets among all the
independent pairs of canonical variables (A , B ; −E , Π): namely,

{A (t,x) , E k (t,y)} = g k δ (x− y)

{B (t,x) , Π(t,y)} = {B (t,x) , A0 (t,y)} = δ (x− y) (5.22)

all the other Poisson brackets being equal to zero. Notice that the above set
of Poisson’s brackets holds true unchanged both in the massive and mass-
less cases. Moreover, it’s also very important to realize that, in the massive
case, the Hamiltonian functional contains an unusual negative kinetic term
− 1

2
m2 Π2 (t,x) for the auxiliary field.

The canonical total angular momentum density follows from the Noether
theorem and reads

M µρσ ≡ x ρ T µσ − xσ T µρ + S µρσ (5.23)
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Hence we find

M µρσ = x ρ
[

Θµσ + ∂ λ
(
F λµAσ

)]
+ F µσ Aρ − {ρ ↔ σ}

= x ρ Θµσ − xσ Θµρ + ∂ λ{F λµ (x ρAσ − xσ A ρ )}
= Mµρσ + ∂ λ{F λµ (x ρAσ − xσ A ρ )}

Since the very last term does not contribute to the continuity equation
∂µM

µρσ = 0 , we see that the total angular momentum tensor can be always
written in the purely orbital form, just like in the classical gauge invariant
Maxwell case

M ρσ =

∫
dx

[
x ρ Θ 0σ (t,x)− xσ Θ 0ρ (t,x)

]
which satisfies

Ṁ ρσ = 0

As a consequence we get the three spatial components

M ı =

∫
dx
{
x ı Θ0(t,x)− x Θ0ı(t,x)

}
which corresponds to an orbital angular momentum from the generalized
Poynting vector, while the spatial temporal components

M 0k = x0 P k − 1

c

∫
dx xk Θ00(t,x)

lead to the definition of the center of the energy for the radiation, viz.,

X t ≡
∫

d3x x Θ00(t,x)/cP0

that satisfies the suggestive particle velocity relationship

Ṁ 0k = 0 ⇔ Ẋ t = c
P

P0
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5.2 Normal Modes Decomposition

To solve the Euler-Lagrange system of equations (5.2) in the general case, it is
very convenient to decompose the vector potential according to the definition

Aµ (x)
def
= V µ (x) −

{
m−2 ∂ µB (x) m 6= 0
− ξ ∂ µ D ∗ B (x) m = 0

(5.24)

where the integral-differential operator D defined by

D def
= 1

2

(
∇2
)−1

(x0∂ 0 − C) (5.25)

for arbitrary constant C works as an inverse of the d’Alembert wave operator
� in front of any solution of the wave equation: namely,

� D ∗ f(x) = f(x) iff � f(x) = 0

as it can be readily checked by direct inspection.

Proof. The Green’s function which corresponds to the inverse Laplace operator can be
readily obtained in the Fourier integral representation: namely,

∇2G(x− y) = 4G(x− y) = δ(x− y)

〈y|
(
∇2
)−1 |x 〉 ≡ G(x− y) =

∫
dk

(2π)3
G̃(k) e−ik·(x−y) G̃(k) = − 1

k2

G(x− y) =
1

4π2

∫ ∞
0

dk

∫ π

0

dcos θ exp{−ik|x− y| cos θ}

≡ − 1

4π2|x− y|
=m

∫ ∞
−∞

dk

k − i0
exp{ik|x− y|} =

1

2π|x− y|

Then we get for ∂ 2
0 f(x) = 4f(x)

∂0D ∗ f(x) = 1
2

(
∇2
)−1 (

(1− C) ∂0 + x0 ∂
2
0

)
f(x)

= 1
2

(
∇2
)−1

∂0f(x) (1− C) + 1
2 x0f(x)

∂ 2
0 D ∗ f(x) = (1− C/2) f(x) + 1

2 x0 ∂0f(x)

4D ∗ f(x) = 1
2 (x0 ∂ 0 − C) f(x) =⇒ �D ∗ f(x) = f(x)

q.e.d.

Hence, the subsidiary condition (5.7) entails the transverse condition, i.e.

∂µA
µ = ξ B ⇔ ∂µ V

µ = 0

so that we eventually obtain from the equations of motion (5.4)
(� +m2 )Vµ (x) = 0

∂ µ Vµ (x) = 0
(� + ξ m2 )B (x) = 0

(m 6= 0) (5.26)
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
�V µ (x) + ∂ µB (x) = 0

∂ µ Vµ (x) = 0
�B (x) = 0

(m = 0) (5.27)

It is worthwhile to realize that the field strength does not depend upon the
nonphysical auxiliary field B (x), albeit merely on the transverse vector field
Vµ (x) since we have Fµν (x) = ∂µVν (x)−∂ ν Vµ (x) . This means that we can
also write (

� +m2
)
Fµν (x) = 0 or �Fµν (x) = 0

The transverse real vector field Vµ (x) is also named the Proca vector field in
the massive case, while it is called the transverse vector potential in the null
mass case. We shall now find the general solution of above system of the
equations of motion in both cases, i.e. , the massive and the mass-less cases.

5.2.1 Normal Modes of the Massive Vector Field

Let me first discuss the normal mode decomposition in the massive case. To
this purpose, if we set

Vµ (x) = (2π)−3/2
∫

dk Ṽµ (k) exp{− i k · x} (5.28)

Ṽ ∗µ (k) = Ṽµ (−k)

then we find

Ṽµ (k) = fµ (k) δ
(
k2 −m2

)
k · f(k) = 0 (5.29)

where fµ (k) are regular functions on the hyperbolic manifold k2 = m2 , which
are any arbitrary functions, but for the transverse condition k · f(k) = 0 and
the reality condition f ∗µ (k) = fµ (−k).

Next, it is convenient to introduce the three linear polarization real unit
vectors eµr (k) ( r = 1, 2, 3 ) which are dimensionless and determined by the
properties

kµ e
µ
r (k) = 0 (r = 1, 2, 3) k0 ≡ ωk =

(
k2 +m2

)1/2
− gµν eµr (k) e νs (k) = δ rs (orthogonality relation) (5.30)

3∑
r=1

eµr (k) e νr (k)

= − g µν + k µ k ν /k 2

= − g µν + k µ k ν /m2 (closure relation) (5.31)
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A suitable explicit choice is provided by

e 0
r (k) = 0

k · e r (k) = 0
e r (k) · e s (k) = δrs

 for r, s = 1, 2

e 0
3 (k) =

|k |
m

e 3 (k) =
k̂

m
ωk

in such a manner that we can write the normal mode decomposition of the
classical Proca real vector field in the form

V ν (x) =
∑
k , r

[
fk , r u

ν
k , r (x) + f ∗k , r u

ν ∗
k , r (x)

]
(5.32)

u νk , r (x) = [ (2π)3 2ωk ]−1/2 e νr (k) exp{− i ωk t+ ik · x} (5.33)

where we have denoted as usual∑
k , r

def
=

∫
dk

3∑
r=1

Notice that the set of the vector wave functions u νk , r (x) does satisfy the
orthogonality and closure relations

− gλσ
(
uσk , s , u

λ
h , r

)
≡ − gλσ

∫
dx uσ ∗k , s (y) i

↔
∂ 0 u

λ
h , r (x)

= δ (h− k) δ rs (5.34)

gλσ
(
uσk , s , u

λ∗
h , r

)
= gλσ

(
uσ∗k , s , u

λ
h , r

)
= 0 (5.35)

gλσ
(
uσ∗k , s , u

λ∗
h , r

)
= δ (h− k) δ rs (5.36)∑

k , r

uλk , r (x)u ν ∗k , r (y) =
(
g λν −m−2 ∂ λx ∂ νy

)
iD (−) (x− y) (5.37)

Next we have

B (x) = m
∑
k

[
bk uk (x) + b∗k u

∗
k (x)

]
uk (x) = [ (2π)3 2ω ′k ]−1/2 exp{− i ω ′kx0 + ik · x}

ω ′k ≡
(
k2 + ξ m2

)1/2
(5.38)

so that from eq. (5.24) we eventually come to the normal mode decomposition
of the classical real vector potential

Aµ (x) =
∑
k , r

[
fk , r u

µ
k , r (x) + f ∗k , r u

µ ∗
k , r (x)

]
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+
i

m

∑
k

k ′µ
[
bk uk (x) − b∗k u

∗
k (x)

]
k ′µ = (ω ′k , k) (5.39)

The Proca transverse vector field. As a final remark about the massive case,
it is very instructive to rewrite the classical Lagrange density and the canonical energy-
momentum tensor as functional of the transverse Proca vector field Vµ (x) and of the
nonphysical auxiliary scalar field B (x) . Actually, making use of the decomposition (5.24)
we obtain

LA ,B = LV + LB (5.40)

LV = − 1
4 F

µν (x)Fµν (x) + 1
2 m

2 V µ (x)Vµ (x) (5.41)

LB = −
(

1/2m2
)
∂ µB (x) ∂µB (x) + 1

2 ξ B
2 (x) (5.42)

The Lagrange density LV is also called the Proca Lagrangian, as it involves solely the
massive transverse vector field. Notice that the Lagrangian of the transverse vector field
V µ (x) entails the Euler-Lagrange equations

∂µF
µν (x) +m2 V ν (x) = 0 Fµν = ∂µVν − ∂νVµ

so that the transverse-like condition

∂µV
µ (x) = 0

does indeed follow from the equations of motion that can be consequently written in the
simplest form(

�+m2
)
V µ(x) = 0 ∂µV

µ(x) = 0
(
�+ ξm2

)
B(x) = 0 (5.43)

The canonical conjugate momenta are given by

Πµ (x) = δLV /δ V̇µ (x) =

{
0 for µ = 0

F 0k = E k for µ = k = 1, 2, 3
(5.44)

Π(x) = δLB /δ Ḃ (x) = − m−2 Ḃ (x) (5.45)

whence we get the Poisson’s brackets

{Vk(t,x) , E `(t,y)} = δ `k δ(x− y) (5.46)

{B(t,x) , Π(t,y)} = δ(x− y) (5.47)

all the remaining ones being equal to zero. Also the canonical energy-momentum tensor
can be conveniently expressed in terms of the transverse vector field according to

T µ
ν = 1

4 δ
µ
ν

(
F ρσ F ρσ − 2m2 V λ Vλ

)
+m2V ν V

µ − F µλ F νλ − ∂λ
(
V ν F

µλ
)

− 1

m2
∂ µB∂ νB +

(
1

2m2
∂ λB ∂ λB − 1

2 ξ B
2

)
δ µν

≡ Θµ
ν − ∂λ

(
V ν F

µλ
)

(5.48)

where use has been made of the field equations. It is apparent that the symmetric energy
momentum tensor Θµν = Θνµ turns out to be the sum of the transverse vector and of
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the auxiliary scalar parts. As a consequence, when the total angular momentum density
is expressed as a functional of the transverse vector field Vµ (x) and of the nonphysical
auxiliary field B (x) we obtain

M µρσ = x ρ T µσ − xσ T µρ − F µρ V σ + F µσ V ρ

= x ρ Θµσ − xσ Θµρ

− F µρ V σ + F µσ V ρ − x ρ ∂λ
(
V σ F µλ

)
+ xσ ∂λ

(
V ρ F µλ

)
= x ρ Θµσ − xσ Θµρ − ∂λ

(
x ρ V σ F µλ − xσ V ρ F µλ

)
Hence, once more, since the very last term does not contribute to the continuity equation
∂µM

µρσ = 0 , we see that the total angular momentum tensor can be always written in
the purely orbital form, just like in the classical gauge invariant Maxwell case

M ρσ =

∫
dx

[
x ρ Θ 0σ (t,x)− xσ Θ 0ρ (t,x)

]
which satisfies

Ṁ ρσ = 0

As a consequence we get the three spatial components

M ı =

∫
dx
{
x ı Θ0(t,x)− x Θ0ı(t,x)

}
which corresponds to an orbital angular momentum from the sum of the Poynting vector
and of the auxiliary scalar parts, while the spatial temporal components

M 0k = x0 P k −
∫

dx xk Θ00(t,x)

lead to the definition of the center of the energy for the full system of transverse vector
and auxiliary scalar fields

X k
t ≡

∫
dx

P0
xk Θ00(t,x)

that still satisfies the suggestive particle velocity relationship

Ṁ 0k = 0 ⇔ Ẋ k
t =

P k

P0

5.2.2 Normal Modes of the Gauge Potential

Let me now turn to the discussion of the null mass case. Here, it is very
important to gather that the transverse-like condition

0 = ∂ µVµ (x) = (2π)−3/2
∫

dk (− i) k µ Ṽµ (k) exp{− i k · x} (5.49)

Ṽ ∗µ (k) = Ṽµ (−k)
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on the light-cone k 2 = 0 is fulfilled by three independent linear polarization
unit real vectors εµA (k) (A = 1, 2, L ) which are again dimensionless and
defined by the properties

kµ ε
µ
A (k) = 0 (A = 1, 2, L) k0 ≡ ωk = |k |

ε 0
A (k) = 0

k · εA (k) = 0
εA (k) · εB (k) = δAB

 for A,B = 1, 2

εµL (k) ≡ k µ/ |k | =
(

1 , k̂
)

Now, if we introduce a further light-like real polarization vector

ελS (k) = 1
2

( |k | , −k) / |k | ≡ k λ∗ /
√

2k · k∗
= 1

2

(
1 , − k̂

)
εL · εS = 1 (5.50)

where k λ∗ = ( |k | , −k) is the so called dual null vector, then we can write

− gµν εµA (k) ε νB (k) = ηAB (orthonormality relation) (5.51)

ηAB ε
µ
A (k) ε νB (k) = − g µν (closure relation) (5.52)

where

ηAB =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 (A,B = 1, 2, L, S )

According to the conventional wisdom, the labels L and S do correspond
respectively to the longitudinal polarization and the scalar polarization of the
mass-less vector particles. Hence, it turns out that the two pairs of space-
like and light-like polarization vectors εµA (k) (A = 1, 2;L, S ) do represent

a complete base in the vector space spanned by Ṽ µ(k) for any given light-like
tetra-momentum k µ = ( |k|,k ) .

Moreover, let me introduce the transverse and the light-cone projectors

Πλν
⊥ (k) = g λν − k λk ν∗ + k νk λ∗

k · k∗
= −

∑
A=1 ,2

ελA (k) ε νA (k) (5.53)

Πλν
∨ (k) =

k λk ν∗ + k νk λ∗
k · k∗

= ελL (k) ε νS (k) + ελS (k) ε νL (k) (5.54)
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which satisfy by construction

Πλν
⊥ (k) =

(
Π ν λ
⊥ (k)

)∗
gµρ Πµν

⊥ (k) Π ρσ
⊥ (k) = Π ν σ

⊥ (k)

Πλν
∨ (k) =

(
Π ν λ
∨ (k)

)∗
gµρ Πµν

∨ (k) Π ρσ
∨ (k) = Π ν σ

∨ (k)

tr Π⊥ (k) = gλν Πλν
⊥ (k) = 2 = tr Π∨ (k) = gλν Πλν

∨ (k)

Πµν
⊥ (k) + Πµν

∨ (k) = g µν

as it can be readily verified by direct inspection. As a consequence, for
any given light-like momentum k µ (k 2 = 0) the physical photon polarization
density matrix

ρλν⊥ (k)
def
= − 1

2

∑
A=1 ,2

ελA (k) ε νA (k) (5.55)

ρλν⊥ (k) =
(
ρ ν λ⊥ (k)

)∗
tr ρ⊥ = 1 (5.56)

will represent a mixed state corresponding to non-polarized monochromatic
photons. In conclusion, we can finally write the normal mode decomposition
of the classical real transverse mass-less vector field which satisfies the Lorenz
condition ∂ · V (x) = 0: namely,

V λ (x) =
∑
k , A

[
gk , A u

λ
k , A (x) + g ∗k , A u

λ ∗
k , A (x)

]
− ∂ λ D ∗ B (x) (5.57)

uλk , A (x) = [ (2π)3 2 |k | ]−1/2 ελA (k) exp{ i |k|( k̂ · x− ct)}
= ελA (k)uk (x) A = 1, 2, L, S k0 = |k |

kλ ε
λ
A (k) = |k | δAS i∂λ u

λ
k , A (x) = |k | uk (x) δAS k0 = |k |

together with

B (x) = ∂λ
∑
k , A

[
gk , A u

λ
k , A (x) + g ∗k , A u

λ ∗
k , A (x)

]
= (− i )

∑
k

|k |
[
uk (x) gk , S − u ∗k (x) g ∗k , S

]
(5.58)

The transverse and mass-less real vector field Vλ(x) is also named the vector
potential in the Lorenz or Landau gauge ξ = 0 . Then, from eq. (5.24) we
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eventually come to the normal mode decomposition of the classical real mass-
less vector potential

Aλ (x) = V λ (x) + ξ ∂ λ D ∗ B (x)

=
∑
k , A

[
gk , A u

λ
k , A (x) + g ∗k , A u

λ ∗
k , A (x)

]
− (1− ξ ) ∂ λ D ∗ B (x) (5.59)

Notice that the complete and orthogonal system of the positive frequency
plane wave solutions uλk , A (x) for the null mass gauge vector potential does
satisfy

gλν
(
uλh , A , u

ν
k , B

)
≡ gλν

∫
dx uλ ∗h , A (x) i

↔
∂ 0 u

ν
k , B (x)

= gλν ε
λ
A (h) ε νB (k) (uh , uk)

= − δ (h− k) ηAB

= − gλν
(
uλ ∗h , A , u

ν ∗
k , B

)
(5.60)

gλν
(
uλ ∗h , A , u

ν
k , B

)
= gλν

(
uλh , A , u

ν ∗
k , B

)
= 0 (5.61)

ηAB
∑
k

uλk , A (x)u ν ∗k , B (y) = ηAB
∑
k

ελA (k) ε νB (k)uk (x)u ∗k (y)

= i g λν D
(−)
0 (x− y) (5.62)∑

k

uλk , L (x)u ν ∗k , S (y) =
1

i
∂ λ
x ∂

ν
∗ y D

(−)
0 (x− y) (5.63)

where the mass-less scalar positive frequency distribution is given by

D
(−)
0 (x) ≡ lim

m→ 0

i

(2π)3

∫
d4k δ

(
k 2 −m2

)
θ (k0) exp{− ik · x}

whereas I have set

∂ λx ∂
ν
∗ y D

(−)
0 (x− y) ≡ i

(2π)3

∫
dk

k λk ν∗
k · k ∗

δ
(
k 2
)
θ (k0) exp{− ik · x}

We are now ready to perform the general covariant canonical quantization of
the free vector fields, both in the massive and mass-less cases.

233



5.3 Covariant Canonical Quantum Theory

The manifestly covariant canonical quantization of the massive and mass-
less real vector free fields can be done in a close analogy with the canonical
quantization of the real scalar free field, just like I have done in Section 3.3.

5.3.1 The Massive Vector Field

Let us first consider the transverse vector free fields. The simplest way to
obtain the canonical quantization of the transverse massive Proca field is
based upon the Lorentz covariance. As a matter of fact, it is an easy exercise
to realize that the covariant canonical commutator – in physical units

[Vµ (x) , V ν (y) ] = i~c

{
gµν +

(
~
mc

)2
∂ 2

∂xµ ∂xν

}
D (x− y ; m) (5.64)

where D (x−y ; m) denotes the Pauli-Jordan distribution (3.112), does indeed
fulfill all the fundamental requirements: namely,

1. it is a solution of the Klein-Gordon equation(
�x +m2

)
[Vµ (x) , V ν (y) ] =

(
�y +m2

)
[Vµ (x) , V ν (y) ] = 0

2. it fulfills the transverse-like condition

∂ µx [Vµ (x) , V ν (y) ] = ∂ νy [Vµ (x) , V ν (y) ] = 0

3. it encodes the symmetry, Hermitean and micro-causality properties

[Vµ (x) , V ν (y) ] = − [Vµ (x) , V ν (y) ]† = − [V ν (y) , Vµ (x) ]

[V ı (x) , V  (y) ] = 0 ∀ (x− y)2 < 0 , ı,  = 1, 2, 3

lim
x0→y0

[V0 (x) , V (y) ] = − i

m2
∂ δ(x− y)

4. from the expression of the conjugated momentum Proca field operator

E (y) = ∂0V(y)− ∂V0(y)
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we obtain the commutator[
V  (x) , E `(y)

]
= [V  (x) , ∂0V`(y)− ∂`V0(y) ]

=
∂

∂y0
[V (x) , V` (y) ]− ∂

∂y `
[V (x) , V0 (y) ]

=
i∂

∂y0

{(
g` +m−2

∂ 2

∂x ∂x`

)}
D (x− y ; m)

− m−2
∂ 2

∂x ∂x0

i∂

∂y `
D (x− y ; m)

= i δ `
∂

∂x0
D (x− y ; m)

that yields
lim
x0→y0

[
V  (x) , E `(y)

]
= i δ ` δ(x− y)

In a quite analogous way it is straightforward to verify that

lim
x0→y0

[
E  (x) , E `(y)

]
= 0

Hence the following initial conditions hold true, viz.,

lim
x0→y0

[Vı (x) , V (y) ] = 0 (5.65)

lim
x0→y0

[
V  (x) , E `(y)

]
= i δ ` δ(x− y) (5.66)

lim
x0→y0

[
E  (x) , E `(y)

]
= 0 (5.67)

which are nothing but the equal time canonical commutation relations
that arise from the Dirac correspondence principle {· , ·} −→ [ · , · ]/i~
when applied to the classical Poisson’s brackets (5.46).

As a consequence we safely come to the conclusion that the above covariant
canonical commutation relations (5.64) are the unique operator solution of the
equations of motion that endorses all the requirements demanded by the first
principles of Quantum Field Theory.

In the massive case, the classical Proca vector free field (5.33) is turned into
an operator valued tempered distribution: namely,

V ν (y) =
∑
k , r

[
fk , r u

ν
k , r (y) + f †k , r u

ν ∗
k , r (y)

]
(5.68)

u νk , r (y) = [ (2π)3 2ωk ]−1/2 e νr (k) exp{− i ωk y0 + ik · y} (5.69)
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Now it is straightforward to derive the algebra of the creation and destruction
operators

[ fh , r , fk , s ] = 0 [ f †h , r , f
†
k , s ] = 0

[ fh , r , f
†
k , s ] = δ rs δ (h− k)

Proof. Consider the covariant canonical commutator (5.64) and insert the normal modes
expansions of the Proca vector field: then we obtain

[V µ (x) , V ν (y) ] = i
(
gµν −m−2 ∂ µx∂

ν
y

){
D (−) (x− y ; m) +D (+) (x− y ; m)

}
=

∑
h , r

∑
k , s

[
fh , r u

µ
h , r(x) + f †h , r u

µ ∗
h , r (x) , fk , s u

ν
k , s (y) + f †k , s u

ν ∗
k , s (y)

]
=

∑
h , r

∑
k , s

{[
fh , r , fk , s

]
uµh , r (x)u νk , s(y) +

[
fh , r , f

†
k , s

]
uµh , r (x)u ν ∗k , s(y)

+
[
f †h , r , fk , s

]
uµ∗h , r (x)u νk , s (y) +

[
f †h , r , f

†
k , s

]
uµ∗h , r (x)u ν ∗k , s (y)

}
On the other side, from the closure relations (5.37) we can write∑

k , r

(
uµk , r (x)u ν ∗k , r (y)− uµ∗k , r (x)u νk , r (y)

)
= [V µ (x) , V ν (y) ]

so that, by comparison, equality occurs iff the creation and destruction operator algebra

[ fh , r , fk , s ] = 0 [ f †h , r , f
†
k , s ] = 0

[ fh , r , f
†
k , s ] = δ rs δ (h− k)

holds true. �

As in the scalar and spinor cases, the wave functions of the neutral massive
Proca particle of spin one are provided by

〈 0 | V ν (x) |h , s 〉 = 〈 0 | V ν (x) f †h , s | 0 〉 = u νh , s (x)

Moreover, the normal mode expansion of the field strengths becomes

E(x) = i
∑
k , r

{
fk , r

[
ωk uk , r (x)− ku 0

k , r (x)
]

− f †k , r
[
ωk u ∗k , r (x)− ku 0 ∗

k , r (x)
] }

(5.70)

B(x) = i
∑
k , r

k × uk , r (x) fk , r + c.c. (5.71)

where the massive electric and massive magnetic fields are defined by

E k = F k0 = −
(
∂ 0A

k + ∂ kA 0

)
B k = 1

2
ε j`k F j`
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It is in fact a straightforward exercise to show that, by inserting the normal
mode expansion (5.69) and by making use of the orthogonality relations
among the polarization vectors eµr (k) , the energy momentum operator takes
the expected diagonal form, which corresponds to the sum over an infinite
set of independent linear harmonic oscillators, one for each component of the
wave vector k and for each one of the three independent physical polarization
eµr (k) (r = 1, 2, 3) . Actually, if we recast the equations of motion (5.26) for
the Proca wave field in the Maxwell-like form

∂ j F jk = Ḟ 0k +m2V k (displacement current)
∂ kF 0k = −m2V 0 (Gauss law)

V̇ 0 = ∂ kV k (subsidiary condition)

(5.72)

then we get the quite simple expression for the energy operator

P 0 = H =

∫
dx : Θ 00 (t,x) :

= 1
2

∫
dx : E k (x)E k (x) + 1

2
F jk (x)F jk (x) :

+ 1
2
m2

∫
dx : V 2

0 (x) + V k (x)V k (x) :

=̇ 1
2

∫
dx : F 0k (x)

↔
∂0V k (x) :

=̇

∫
dx : 1

2
Vµ (x)

↔
∂ 0 V̇

µ (x) :

where =̇ means, as usual, that I have dropped some spatial divergence term
and I have repeatedly made use of the equations of motion. Now, from the
orthogonality relation (5.30) we can easily recognize that

gλν

∫
dx uλ ∗k , r (x)

↔
∂0 u̇

ν
h , s (x) = ωk δ rs δ (h− k)

gλν

∫
dx uλk , r (x)

↔
∂0 u̇

ν
h , s (x) ≡ 0

and consequently

P 0 =
∑
k , r

ωk f
†
k , r fk , r

P =

∫
dx : E(x) × B(x) +m2 V 0 (x) V (x) :

=̇

∫
dx : 1

2
Vµ (x)

↔
∂ k V̇

µ (x) :

=
∑
k , r

k f †k , r fk , r (5.73)
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On the other hand, the energy-momentum tensor of the auxiliary field is
provided by the B−dependent part of the general expression (5.48): namely,

Θµν
B = m−2 : 1

2
g µν ∂ λB ∂ λB − 1

2
ξm2 g µν B 2 − ∂ µB ∂ νB :

which drives to the conserved energy-momentum operators

P 0 =
1

2m2

∫
dx : B (x) B̈ (x)− Ḃ 2 (x) : (5.74)

P =
1

m2

∫
dx : Ḃ (x)∇B (x) : (5.75)

5.3.2 The Stückelberg Ghost Scalar

It is important to gather that from the Lagrange density (5.42) it follows
that the conjugate momentum of the auxiliary field gets the wrong sign, i.e.

Π(x) = − Ḃ (x)/m2

From the normal mode decomposition of the auxiliary nonphysical field and
its conjugate momentum

B (x) = m
∑
h

[
bh uh (x) + b†h u

∗
h (x)

]
Π(y) =

i

m

∑
k

ω ′k

[
bk uk (y)− b†k u

∗
k (y)

]
uk (x) = [ (2π)3 2ω ′k ]−1/2 exp{− i ω ′k t+ ik · x}

ω ′k ≡
(
k2 + ξ m2

)1/2
it is evident that in order to recover the canonical commutation relation

[B (t,x) , Π(t,y) ] = i~ δ (x− y)

that corresponds to the classical Poisson bracket (5.47) we have to require

[ b†h , bk ] = δ (h− k) (5.76)

all the other commutators vanishing.
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Proof. On the one hand we find

[B (t,x) , Π(t,y) ] =

=
∑
h

∑
k

i ω ′k

[
bh uh (t,x) + b†h u

∗
h (t,x) , bk uk (t,y)− b†k u

∗
k (t,y)

]
=

∑
h

∑
k

i ω ′k

{
[ bh , bk ]uh (t,x)uk (t,y)− [ bh , b

†
k ]uh (t,x)u∗k (t,y)

}
+

∑
h

∑
k

i ω ′k

{
[ b†h , bk ]u∗h (t,x)uk (t,y)− [ b†h , b

†
k ]u∗h (t,x)u∗k (t,y)

}
On the other hand we can always write the identities

[B (t,x) , Π(t,y) ] = i δ(x− y)

= i

∫
dk

2(2π)3

(
exp{ik · (x− y)}+ exp{ik · (y − x)}

)
=

∑
k

i ω ′k

{
u∗k (t,x)uk (t,y) + uk (t,x)u∗k (t,y)

}
By comparison, owing to the inversion of the normal mode expansions, we are led to the
ghost-like canonical commutation relations

[ bh , b
†
k ] = − δ (h− k) [ bh , bk ] = [ b†h , b

†
k ] = 0 ( ∀h,k ∈ R3 )

which is what we had to prove. �

Thus we can eventually write

P 0 = −
∑
k

√
k2 + ξ m2 b†k bk ≡ HB (5.77)

P =
∑
k

k b†k bk

From the above expression (5.77) for the conserved Hamiltonian of the
auxiliary B−field, as well as from the unconventional nature of the canonical
commutation relations (5.76), it turns out that no physical meaning can be
assigned to the Hamiltonian operator of the auxiliary scalar field. As a matter
of fact, for ξ ≥ 0 the Hamiltonian operator becomes positive semi-definite
- thanks to the unconventional canonical commutation relations - while for
ξ < 0 we see that at low momenta k2 < |ξ |m2 the energy becomes imaginary.
In all cases, any physical interpretation of the Hamiltonian operator breaks
down.

Moreover, from the conventional definition of the Fock vacuum

fk , r | 0 〉 = 0 bk | 0 〉 = 0 ∀k ∈ R3 r = 1, 2, 3
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and the unconventional canonical commutation relations (5.76), it follows
that e.g. the proper 1-particle states of the auxiliary field

|b〉 def=

∫
dk b̃(k) b†k | 0 〉

∫
dk | b̃(k) |2 = 1

do exhibit negative norm, that is

〈b |b〉 = − 1

Hence the Fock space F of the quantum states for the free massive vector
field in the general covariant gauge is equipped with an indefinite metric,
which means that it contains normalizable states with positive, negative and
null norm. The auxiliary B−field is named a ghost field: its presence entails
a Hamiltonian operator which is unbounded from below, leading thereby to
the instability, or even imaginary energy eigenvalues, that means meta-stable
states when exp{− i ω ′k t} is less than one, or even runaway solutions when
exp{− i ω ′k t} becomes very large.

Thus, in order to ensure some meaningful and sound quantum mechanical
interpretation of the free field theory of a massive vector field in the general
covariant gauge, we are necessarily led to select a physical subspace Hphys of
the large Fock space F , in which no quanta of the auxiliary field are allowed.
This can be achieved by imposing the subsidiary condition

B (−) (x) |phys〉 = 0 ∀ |phys〉 ∈ Hphys (5.78)

where B (−) (x) denotes, as usual, the positive frequency destruction part of
the auxiliary scalar Klein-Gordon ghost field i.e.

B (−) (x) = m
∑
k

bk uk (x)

This entails that the vacuum state is physical and cyclic, in such a manner
that all the physical states are generated by the repeated action of the massive
Proca field creation operators f †k , r on the vacuum.

5.3.3 The Stückelberg Vector Propagator

Now we are ready to obtain the covariant commutation relations and the
causal Green’s functions for the Stückelberg vector field, which is defined by
the decomposition (5.24)

Aµ(x) = Vµ(x)− ~2

m2c 2
∂µB(x)
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where V µ(x) is the Proca vector field operator while B(x) is the Stückelberg
ghost scalar field operator that I have thoroughly discussed in the previous
paragraphs. From the normal mode expansions of the massive Proca real
vector field and of the ghost scalar field, taking the canonical commutation
relations into account, we can readily check that we have

[Vµ(x) , V ν(0) ] = i ( gµν +m−2 ∂µ ∂ν )D (x ;m2)
[B(x) , B(0) ] = im2D (x ; ξ m2)

[Vµ(x) , B(y) ] = 0

 (5.79)

the first commutator being due to the closure relation (5.31). Then it is
straightforward to check that the following Feynman propagators actually
occur: namely,

〈 0 |T Vµ(x)V ν(y)| 0 〉 =

[
− gµν +

~2

m2c 2
· ∂µ , x ∂ν , y

]
DF (x− y ;m2)

〈 0 |T B(x)B(y)| 0 〉 = −m2DF

(
x− y ; ξ m2

)
〈 0 |T Vµ(x)B(y)| 0 〉 = 0

Proof. The Proca propagator is defined to be

〈 0 |T Vµ(x)V ν(y)| 0 〉 =

θ(x0 − y0)〈 0 |Vµ(x)V ν(y)| 0 〉+ θ(y0 − x0)〈 0 |V ν(y)Vµ(x)| 0 〉

Taking into account the normal modes expansion (5.33) of the Proca field operator, the
canonical commutation relations and the closure relations (5.37)

V ν(x) =
∑
k , r

[
fk , r u

ν
k , r(x) + f †k , r u

ν ∗
k , r(x)

]
u νk , r (x) = [ (2π)3 2ωk ]−1/2 e νr (k) exp{− it ωk + ik · x}

[ fk , r , f
†
p , s ] = δrs δ(k− p) [ fk , r , fp , s ] = [ f †k , r , f

†
p , s ] = 0∑

k , r

uµk , r (x)u ν ∗k , r(y) = i
(
g µν −m−2 ∂ µx ∂

ν
y

)
D (−)(x− y)

we can write

〈 0 |T V µ (x)V ν (y)| 0 〉 =

=
∑
k , r

[
θ(x0 − y0)uµk , r (x)u ν ∗k , r (y) + θ(y0 − x0)uµ ∗k , r (x)u νk , r (y)

]
= iθ(x0 − y0)

(
g µν −m−2 ∂ µx ∂

ν
y

)
D (−)(x− y)

− i θ(y0 − x0)
(
g µν −m−2 ∂ µx ∂

ν
y

)
D (+) (x− y)

Now we get

θ(y0 − x0) ∂ µx ∂
ν
y D

(+) (x− y)− θ(x0 − y0) ∂ µx ∂
ν
y D

(−) (x− y)
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= ∂ µx

[
θ(y0 − x0) ∂ νy D

(+) (x− y)− θ(x0 − y0) ∂ νy D
(−) (x− y)

]
+ gµ0 δ(x0 − y0) ∂ νy D (x− y)

= − i ∂ µx ∂ νy DF (x− y)− g 0ν ∂ µx
[
δ(x0 − y0)D (x− y)

]
+ g 0µ ∂ νy

[
δ(x0 − y0)D (x− y)

]
+ g 0µ g 0ν δ ′(x0 − y0)D (x− y)

where D(x− y) is the invariant Pauli-Jordan distribution, while δ ′(x) means derivative in
the sense of the distributions. Now, owing to the micro-causality property D(x − y) = 0
for (x − y)2 < 0, it turns out that solely the first addendum in the right-hand-side of
the very last equality does not vanish. Hence we eventually get the Proca causal Green’s
function

〈 0 |T V µ(x)V ν(y)| 0 〉 =

[
− g µν +

}2

m2c 2
· ∂ µx ∂ νy

]
DF (x− y ;m2)

The propagator for the Stückelberg scalar ghost does immediately follow from the normal
modes expansion and the unconventional canonical commutation relations

B (x) = m
∑
k

[
bk uk (x) + b†k u

∗
k (x)

]
uk (x) = [ (2π)3 2ω ′k ]−1/2 exp{− i ω ′k t+ ik · x} ω ′k ≡

√
k2 + ξ m2[

bk , b
†
p

]
= − δ(k− p) [ bk , bp ] =

[
b†k , b

†
p

]
= 0

that readily yield 〈 0 |T B (x)B (y)| 0 〉 = −m2DF

(
x− y ; ξ m2

)
. Notice that from the null

canonical commutation relations

[ bk , fp , r ] = [ bk , f
†
p , r ] = [ b†k , fp , r ] = [ b†k , f

†
p , r ] = 0 ∀ r = 1, 2, 3 ∨ k,p ∈ R3

we definitely obtain 〈 0 |T B(x)V µ(y)| 0 〉 = 0 which concludes the proof. �

Now it is a very simple exercise to obtain the canonical commutator and the
Feynman propagator for the Stückelberg massive vector field operator Aµ(x)
taking the basic definition (5.24) into account. As a matter of fact, from the
covariant commutation relations (5.79) we immediately obtain

[Aµ(x) , A ν(0) ] = i
(
gµν +m−2 ∂µ ∂ν

)
D(x ;m2)

− im−2 ∂µ ∂ν D
(
x ; ξ m2

)
(5.80)

[Aµ(x) , B(0) ] = − i ∂µD
(
x ; ξ m2

)
(5.81)

Moreover we find

〈 0 |T ∂µB(x) ∂νB(y) | 0 〉
= ∂µ , x〈 0 |T B(x) ∂νB(y) | 0 〉
− δ(x0 − y0) gµ0 〈 0 | [B(x) , ∂νB(y) ] | 0 〉
= ∂µ, x ∂ ν, y〈 0 |T B(x)B(y) | 0 〉
+ δ(x0 − y0) g ν0 ∂µ, x〈 0 | [B(x) , B(y) ] | 0 〉
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− ∂ν, y

{
δ(x0 − y0) gµ0 〈 0 | [B(x) , B(y) ] | 0 〉

}
− δ ′(x0 − y0) gµ0 gν0 〈 0 | [B(x) , B(y) ] | 0 〉
= ∂µ, x ∂ν, y〈 0 |T B(x)B(y) | 0 〉

all the other addenda in the third equality being null for micro-causality.
Hence, the Feynman propagator of the Stückelberg vector field becomes

D F
µν

(
x ;m2, ξ

)
= 〈 0 |T Aµ(x)Aν(0) | 0 〉

=
i

(2π)4

∫
d4k exp{− ik · x}

×
{
− gµν +m−2 kµ k ν
k2 −m2 + iε

− m−2 kµ k ν
k2 − ξ m2 + iε ′

}
=

i

(2π)4

∫
d4k

e− ik·x

k2 −m2 + iε

{
− gµν +

(1− ξ ) kµ k ν
k2 − ξ m2 + iε ′

}
which is the celebrated Stückelberg vector propagator, together with

〈 0 |T Aµ (x)B (0)| 0 〉 = ∂µDF

(
x ; ξm2

)
(5.82)

〈 0 |T B (x)B (0) | 0 〉 = −m2DF

(
x ; ξm2

)
(5.83)

An important comment is now in order. In the general covariant gauge, for
any finite value ξ ∈ R of the gauge fixing parameter, the leading asymptotic
behavior for large momenta of the momentum space Feynman propagator is
provided by

D̃ F
µν (k ;m2, ξ) =

i

k 2 −m2 + iε

{
− gµν +

(1− ξ ) kµ k ν
k 2 − ξ m2 + iε ′

}
∼ k−2 dµν (kµ → ∞) (5.84)

where dµν is a constant 4×4 matrix, that is a momentum space isotropic and
scale homogeneous quadratic decreasing law. On the one hand, this näıve
power counting property will be one of the crucial necessary though not
sufficient hypothesis in all the available proofs of the perturbative order by
order renormalizability of any interacting quantum field theory. On the other
hand, the price to be paid is the unavoidable introduction of an auxiliary
nonphysical B−field, that must be eventually excluded from the physical
sector of the theory, in such a manner to guarantee the standard orthodox
quantum mechanical interpretation. In the free field theory, the subsidiary
condition (5.78) is what we need to remove the nonphysical quanta. However,
it turns out that an extension of the subsidiary condition to the interacting
theories appears to be, in general, highly nontrivial.
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Hence, the crucial issue of the decoupling of the auxiliary field from the
physical sector of an interacting theory involving massive vector field will
result to be one of the the most selective and severe model building criterion
for a perturbatively renormalizable interacting quantum field theory. In other
words, this means that if we consider the scattering operator S of the theory,
then, for any pair of physical states |phys〉 and |phys ′ 〉 , the unitarity relation

〈phys |S †S |phys ′ 〉 =
∑
ı

〈phys |S † | ı 〉 〈 ı |S |phys ′ 〉 = 〈phys |phys ′ 〉

must be saturated by a complete orthogonal set of physical intermediate
states or, equivalently, the contribution of the nonphysical states must cancel
in the sum over intermediate states. This unitarity criterion will guarantee
the existence of a well-defined unitary restriction of the scattering operator to
the physical subspace Hphys ⊂ F of the whole Fock space, thus allowing a
consistent physical interpretation of the theory.

To this concern, it is important to remark that in the limit ξ → ∞ , the
auxiliary B−field just disappears, so that we are left with the Proca field, the
quanta of which do carry just the three physical polarization states. However,
the ultraviolet leading behavior of the corresponding Feynman propagator
becomes

lim
ξ→∞

D̃ F
µν (k ;m2, ξ) =

i

k 2 −m2 + iε

{
− gµν +m−2 kµ k ν

}
(5.85)

The lack of scale homogeneity and näıve power counting property of this
expression is the evident obstacle that makes the proof of perturbative order
by order renormalizability beyond the present day capabilities. In turn, this
is the ultimate reason why the spontaneous gauge symmetry breaking and the
Higgs mechanism, to provide the masses for the vector fields which mediate
the weak interaction3, still nowadays appear to be the best buy solution of
the above mentioned renormalizability versus unitarity issue.

5.3.4 The Gauge Vector Potential

The quantum theory of the mass-less gauge vector potential can be conve-
niently obtained from the manifestly covariant formulation. As a matter
of fact, from the Lorentz covariance and the bi-linearity and anti-symmetry

3The weak interaction is mediated by two charged complex vector fields W ± with
mass M± = 80.425 ± 0.038 GeV and a neutral real vector field Z 0 with a mass M0 =
91.1876± 0.0021 GeV.
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properties of the commutators we obtain that the following canonical com-
mutation relations must hold true[

Aλ (x) , Aν (y)
]

= i g λν D0 (x− y) + i (1− ξ ) ∂ λx ∂
ν
y E(x− y) (5.86)[

F λρ (x) , Aν (y)
]

=
(
g ν ρ i∂ λx − g λν i∂ ρx

)
D0 (x− y) (5.87)

[B (x) , Aν (y) ] = i∂ ν
x D0 (x− y)[

F ρλ (x) , B (y)
]

= 0 [B (x) , B (y) ] = 0 (5.88)

where the mass-less Pauli-Jordan real and odd distribution is as usual

D0 (x) = D
(−)
0 (x) +D

(+)
0 (x) = lim

m→0
D (x ; m)

D
(±)
0 (x) ≡ ± 1

i

∫
dk

(2π)3
δ
(
k 2
)
θ (k 0 ) exp{± ik · x}

lim
x0→0

D0 (x) = 0 lim
x0→0

∂ 0D0 (x) = δ (x)

D0 (x) = D∗0 (x) = −D0 (−x)

whereas E(x) is named the mass-less dipole ghost invariant distribution and is
defined by the property

�E(x) = D0 (x) (5.89)

an explicit representation being provided by

E(x) = 1
2

(
∇2
)−1

(x0∂ 0 − 1) D0 (x)

= − lim
m→0

∂

∂m2
D (x ; m) (5.90)

It is an easy task to prove the following useful formula

∂ µx ∂
ν
x E(x− y) =

(
∂ µ
x ∂

ν
∗ x + ∂ ν

y ∂
µ
∗ y
)
D0 (x− y)

It is a simple and instructive exercise to verify the compatibility between the
canonical commutation relations (5.88) and the equations of motion{

gµν � −
(

1− 1

ξ

)
∂µ ∂ ν

}
A ν (x) = 0 (5.91)

�B (x) = 0 (5.92)

∂ · A(x) = ξ B (x) (5.93)

Moreover one can readily check that the initial conditions fulfilled by the
canonical commutation relations (5.88) are[

Ak (t,x) , E ` (t,y)
]

= i~ g k` δ (x− y)

[B (t,x) , Π(t,y) ] = i~ δ (x− y) = [B (t,x) , A0 (t,y) ]
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all the remaining equal time commutation relations being equal to zero, in full
agreement with the Dirac correspondence principle and the classical Poisson
brackets (5.22). Hence it follows that the canonical commutation relations
(5.88) are the unique solutions of the Euler-Lagrange field equations with
the required symmetry properties and that obey the canonical equal time
commutation relations which arise from the Dirac correspondence principle.
It is worthwhile to remark that from the canonical equal time commutation
relations [

Ak (t,x) , E ` (t,y)
]

= i~ δ `k δ (x− y)

one can immediately obtain for ε123 = +1

1
2
ε ık

[
∇Ak (t,x)−∇k A (t,x) , E ` (t,y)

]
= 1

2
i~ ε ık

{
δ `k∇ δ (x− y)− δ ` ∇k δ (x− y)

}
= 1

2
i~
{
ε ı`∇ δ (x− y)− ε ı`k∇k δ (x− y)

}
⇒

[
B ı (t,x) , E ` (t,y)

]
= i~ ε ık`∇k δ (x− y)

which shows that the electric and magnetic components of the radiation field
do not commute at space-like separations.

5.3.5 Fock Space with Indefinite Metric

From the normal mode expansion (5.59) and the orthogonality and closure
relations (5.61–5.63), we readily obtain the canonical commutation relations
for the creation and destruction operators, viz.,[

gh , A , g
†
k , B

]
= δ (h− k) ηAB (5.94)

all other commutators vanishing.

Proof. To simplify things but without loss of generality one can always select the
Feynman gauge ξ = 1 . Then we obtain[

Aλ (x) , Aν (y)
]

= i g λν D0 (x− y) = − g λν
∑
k

(
uk(x)u ∗k(y)− u ∗k(x)uk(y)

)
=

∑
k , A

∑
k ′, A′

[
gk , A u

λ
k , A (x) + g †k , A u

λ ∗
k , A (x) , gk ′, A′ u νk ′, A′ (y) + g †k ′, A′ u

ν ∗
k ′, A′ (y)

]
=

∑
k , A

∑
k ′, A′

ελA(k) ε νA′(k ′)
{
uk(x)uk ′(y) [ gk , A , gk ′, A′ ] − h.c.

+ uk(x)u ∗k ′(y) [ gk , A , g
†
k ′, A′ ]− u ∗k(x)uk ′(y) [ gk ′, A′ , g †k , A ]

}
where

uk(x) = exp{i |k | ( k̂ · x− ct )}/
√

(2π)3 2 |k |
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From the above expressions it is clear that the matching occurs if and only if the following
canonical commutation relations hold true: namely,[

gk , A , g
†
k ′, A′

]
= δ (k− k ′ ) ηAA′ [ gk , A , gk ′, A′ ] =

[
g †k , A , g

†
k ′, A′

]
= 0

which endorses the claim. �

Then the gauge vector potential operator valued distribution becomes

Aλ (x) = V λ (x) + ξ ∂ λ D ∗ B (x)

=
∑
k , A

[
gk , A u

λ
k , A (x) + g †k , A u

λ ∗
k , A (x)

]
− (1− ξ ) ∂ λ D ∗ B (x) (5.95)

with

B (x) = ∂λ
∑
k , A

[
gk , A u

λ
k , A (x) + g †k , A u

λ ∗
k , A (x)

]
= i

∑
k

|k |
(
u ∗k (x) g †k , S − uk (x) gk , S

)
(5.96)

The photon covariant wave function, which is a gauge dependent tool, is
most easily expressed in the Feynman gauge ξ = 1 that yields

〈 0 | Aλ (x) |k A 〉 = 〈 0 | Aλ (x) g †k , A | 0 〉 = uλk , A (x)

It is worthwhile to remark that the very important canonical commutation
relation [

F ρλ (x) , B (y)
]

= 0 (5.97)

does tell us that a physical local operator such as the electromagnetic field
strength tensor indeed commutes with the nonphysical auxiliary field for any
space-time separations. Actually, a weaker condition will specify the concept
of gauge invariance in the quantum field theory of the electromagnetism as I
will show in the sequel.

Let us now set up the Hilbert space of the physical states. To this concern,
I will first define the Fock space F in the conventional way starting from the
cyclic vacuum state

g k , A | 0 〉 = 0 = 〈 0 | g †k , A ∀k ∈ R3 , A = 1, 2, L, S (5.98)
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a generic polarized N−photon energy-momentum eigenstate being given by

|k1A1 k2A2 . . . kN AN 〉
def
=

N∏
=1

g †k , A
| 0 〉

It is very important to realize that the Fock space F for the massless gauge
vector particles is of an indefinite metric. As a matter of fact, the inner
product 4 × 4 real symmetric matrix η ≡‖ η ‖AB (A,B = 1, 2, L, S ) does
satisfy

η 2 = I tr η = 2

which means that it admits three positive eigenvalues equal to +1 and one
negative eigenvalue equal to −1 . Hence, negative norm states do indeed exist,
for example

1√
2

(
g †k , L + g †k , S

)
| 0 〉

as well as null norm states just like

g †k , L | 0 〉 g †k , S | 0 〉

Actually we readily find

1
2
〈 0 | ( g h , L + g h , S) ( g †k , L + g †k , S) | 0 〉 = − δ (h− k) (5.99)

Then, an arbitrary physical state | phys 〉 ∈ Hphys ⊂ F will be defined by the
auxiliary condition

B (−) (x) | phys 〉 = 0 (5.100)

where the positive frequency part of the auxiliary B−field is given by the
normal mode expansion (5.58)

iB (−) (x) =
∑
k

|k | uk (x) gk , S (5.101)

To understand the meaning of the auxiliary condition (5.100) consider the
polarized 1-photon energy-momentum eigenstates

|kA 〉 = g †k , A | 0 〉 〈B h |kA 〉 = ηAB δ (h− k)

From the canonical commutation relations (5.94) it follows that the 1-photon
states with transverse polarization are physical

B (−) (x) |kA 〉 = 0 ∀k ∈ R3 ∀A = 1, 2
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as well as the scalar photon 1-particle states

B (−) (x) |kS 〉 = 0 ∀k ∈ R3

Notice, however, that for any given wave packet ϕ(k) normalized to one, i.e.∫
dk |ϕ(k) |2 = 1

we find for A,B = 1, 2

〈ϕB |ϕA 〉 =

∫
dk

∫
dh ϕ(h)ϕ∗ (k) 〈B k |hA 〉 = δAB

〈ϕS |ϕS 〉 =

∫
dk

∫
dh ϕ(h)ϕ∗ (k) 〈S k |hS 〉 = 0

〈ϕS |ϕA 〉 =

∫
dk

∫
dh ϕ(h)ϕ∗ (k) 〈S k |hA 〉 = 0

From the above table of scalar products it follows that the 1-photon states
with transverse polarization are physical states with positive norm and are
always orthogonal to the 1-particle scalar states, which are the physical states
with zero norm. Hence, the 1-particle physical Hilbert space

H 1 ,phys
def
= V 1 V1 ≡

{
|kA 〉 |k ∈ R3 A = 1, 2, S

}
is a Hilbert space with a positive semi-definite metric. It is clear that the
very same construction can be generalized in a straightforward way to define
the N -particle completely symmetric physical Hilbert space – the closure of
the symmetric product of 1-particle physical Hilbert spaces

HN ,phys ≡ VN VN = {H 1 , phys

s
⊗ H 1 , phys

s
⊗ . . .

s
⊗ H 1 ,phys︸ ︷︷ ︸

N times

} = H
s
⊗n
1 , phys

so that

H phys ≡ C⊕H 1 , phys ⊕H 2 , phys ⊕ . . . ⊕HN ,phys ⊕ . . . =
∞⊕
n=1

H
s
⊗n
1 ,phys

By their very construction, we see that the covariant physical photon states
are equivalence classes of positive norm photon states with only transverse
polarization, up to the addition of any number of zero norm scalar photons.

This fact represents the quantum mechanical counterpart of the classical
gauge transformations of the second kind. As a matter of fact, in classical
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electrodynamics the invariant Lorentz gauge condition ∂ · A (x) = 0 does
not fix uniquely the gauge potential, for a gauge transformation A ′µ (x) =
Aµ (x) + ∂µ f(x) with f(x) satisfying the d’Alembert wave equation, is still
compatible with the Lorentz condition. Hence, an equivalence class of gauge
potentials obeying the invariant Lorentz condition indeed exists, what is
known as classical gauge invariance of the second kind. Notice that such an
invariance is no longer there for Lorentz non-covariant gauge conditions, like
e.g. the Coulomb gauge ∇ ·A(t,x) = 0 .

Remark. As a matter of fact, it turns out that the transverse vector potential of the
radiation field Aν = (ϕ,A) with ϕ = 0 , ∇ · A = 0 is gauge invariant: under a gauge
transformation

A(t,x) 7−→ A′(t,x) = A(t,x) + ∇f(x)

by holding true the transverse condition upon the new vector potential entails

∇ ·A′(t,x) = ∇ 2f(x) = 0 =⇒ f(x) ≡ 0

under the usual boundary condition lim |x|→∞ f(x) = 0 .

Hence, the Coulomb gauge condition for the radiation field does indeed allow
to select the physical, transverse and gauge invariant degrees of freedom, i.e.
the two transverse components of the vector potential and the two transverse
components of the electric field satisfying the Gauß law. Owing to this
feature, the Coulomb gauge is said to be a manifestly unitary or physical gauge
for the radiation field; of course, this can be achieved at the price of giving
up the manifest Lorentz covariance.

As a final comment, I’d like to stress that the notion of gauge invariant
local observable in the covariant quantum theory of the free radiation field is
as follows: a gauge invariant local observable O(x) is a self-adjoint operator
that maps the physical Hilbert space onto itself, i.e.

O(x) | phys 〉 ∈ H phys ∀ | phys 〉 ∈ H phys O(x) = O† (x) (5.102)

which implies

| phys 〉 ∈ Hphys ⇔ B (−) (x) | phys 〉 = 0

B (−) (x)O(y) | phys 〉 =
[
B (−) (x) , O(y)

]
| phys 〉

∝ B (−) (x) | phys 〉 = 0

It follows therefrom that the Maxwell field equation as well as the usual
form of the energy-momentum tensor for the radiation field hold true solely
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in a weak sense, i.e. as matrix elements between physical states: namely

〈 phys ′ | ∂µF µν (x) + ∂ νB (x) | phys 〉 =

〈 phys ′ | ∂µF µν (x) | phys 〉 = 0

〈 phys ′ |Θµν (x) | phys 〉 =

〈 phys ′ | 1
4
gµν F

ρσ (x)F ρσ (x)− g ρσ Fµρ (x)F ν σ (x) | phys 〉
∀ | phys 〉 , | phys ′ 〉 ∈ Hphys

In respect to the above definition, the canonical energy-momentum tensor
of the mass-less vector gauge field theory is neither symmetric nor observable,
as it appears to be evident from its expression

Tµν = : Aµ ∂ νB − Fµλ ∂ ν A
λ (5.103)

+ gµν
(

1
4
F ρσ F ρσ − Aλ ∂λB − 1

2
ξ B 2

)
:

because, from the canonical commutation relations (5.88), we immediately
get

[B (x) , Tµν (y) ] = i ∂µ , xD0(x− y) ∂ ν B (y)

− i gµν ∂
λ
x D0(x− y) ∂ λB (y)

+ i Fµλ (y) ∂ ν , x ∂
λ
x D0(x− y)

which does not fulfill the criterion (5.102) owing to the presence of the very
last term. Conversely, the symmetric energy-momentum local operator

Θµν
def
= : Aµ ∂ νB + A ν ∂µB − g λρ Fµλ F νρ − gµν LA ,B :

= : Aµ ∂ νB + A ν ∂µB − gµν
(
Aλ ∂λB − 1

2
ξ B 2

)
:

− : F ρ
µ F νρ + 1

4
gµν F

ρσ F ρσ : (5.104)

as well as, a fortiori, the energy-momentum four vector do indeed satisfy the
requirements (5.102), i.e. they are observable in the quantum mechanical
sense, since we have

[B (x) , Θµν (y) ] = i ∂µ , xD0(x− y) ∂ ν B (y)

+ i ∂ ν , xD0(x− y) ∂µB (y)

− i gµν ∂
λ
x D0(x− y) ∂ λB (y)

Θµν (y) = Θ ν µ (y) Θµν (y) = Θ †µν (y)

For the very same reason, from the obvious canonical commutation relations[
B (x) , yλ Θµν (y)

]
= i yλ ∂µ , xD0(x− y) ∂ ν B (y)

+ i yλ ∂ ν , xD0(x− y) ∂µB (y)

− i yλ gµν ∂
λ
x D0(x− y) ∂ λB (y)
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we immediately conclude that the six components of the angular momentum
operator, which is of a purely orbital form, do correspond to truly observable
quantities, as expected. In particular we get the three spatial components

M ı =

∫
dx : x ı Θ0(t,x)− x Θ0ı(t,x) : (5.105)

which are related to an orbital angular momentum from the generalized
Poynting vector operator, while the spatial-temporal components

M 0` = x0 P ` −
∫
x` : Θ00(t,x) : d3x

lead again to the definition of the center of the energy operator, viz.,

Υt ≡
∫

x

}c
: Θ00(t,x) : d3x

which is dimensionless and satisfies the suggestive particle velocity relation

Ṁ 0` = 0 ⇔ Υ̇t =
cP

}

5.3.6 Photon Helicity

We have already met the concept of helicity of the massive Dirac field in the
previous chapter of the present notes. In particular, its very definition stems
on the propagation of the spinor field along a specific spatial direction: in
such a circumstance, one can actually define the spin projection along the
direction of motion and the related left- and right-handed polarization states
for particles and antiparticles.

In the case of massless vector particles like photons, the definition and
physical meaning of the helicity concept become even more stringent and
mandatory because:

1. it is not possible to set up any inertial reference frame in which any
photon is at rest and the projection of its spin vector along any axis
can not be safely established;

2. from Wigner’s theorem about the irreducible representations of the
non-homogeneous Lorentz group – see Chapter 1 of the present notes
– we know that for a mass-less and spin-one vector field, the 1-particle
states are just labeled by the spatial momentum k ∈ R and the helicity
eigenvalues, which are equal to ±1 .
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As we shall see here below, it turns out that the notion of projection of
the spin vector along some fixed direction of the propagation can be suitably
set even for mass-less photons. On the one hand, this can be achieved in the
manifestly unitary and physical Coulomb gauge, in which only the physical,
transverse and gauge invariant degrees of freedom of the radiation field are
involved in the dynamics. On the other hand, this fundamental result can be
reached at the expense of the manifest Lorentz and gauge invariance. Here
is a first enlightening example of the impossibility of keeping simultaneously
into the game gauge invariance, unitarity and Lorentz covariance for the
quantum theory of the radiation field.

Consider the creation and destruction operators g †k , A , gk , A (A = 1, 2)
which correspond to physical, transverse, linearly polarized photons, and set

g †k , 1 ≡
1√
2

[
− g †k ,+ + g †k ,−

]
(5.106)

g †k , 2 ≡
i√
2

[
g †k ,+ + g †k ,−

]
(5.107)

g †k ,± = ∓ 1√
2

[
g †k , 1 ± i g †k , 2

]
(5.108)

h ≡ ~
∑
k

[
g †k ,+ gk ,+ − g †k ,− gk ,−

]
(5.109)

= i~
∑
k

[
g †k , 2 gk , 1 − g †k , 1 gk , 2

]
(5.110)

the latter being named the helicity operator. From the canonical commutation
relations (5.94) we immediately get

[ gk ,+ , g
†
k ′ ,+ ] = [ gk ,− , g

†
k ′ ,− ] = δ(k− k ′ ) (5.111)

all the other commutators being null. It follows that the 1-photon states

g †k ′ ,± | 0 〉 ≡ |k
′ ±〉 (5.112)

are common eigenstates of the energy, momentum and helicity operators with
eigenvalues ~ck, ~k,±~ respectively, with k = |k| . As a matter of fact we
have

W = 1
2

∫
dx : E2(t,x) + B2(t,x) :

=
∑
k

~ck
[
g †k ,+ gk ,+ + g †k ,− gk ,−

]
(5.113)
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=
∑
k

~ck
[
g †k , 1 gk , 1 + g †k , 2 gk , 2

]
(5.114)

P =
1

c

∫
dx : E(t,x)×B(t,x) : (5.115)

=
∑
k

~k
[
g †k ,+ gk ,+ + g †k ,− gk ,−

]
(5.116)

=
∑
k

~k
[
g †k , 1 gk , 1 + g †k , 2 gk , 2

]
(5.117)

and consequently

W |k ′ ±〉 = ~ck ′ |k ′ ±〉
P |k ′ ±〉 = ~k ′ |k ′ ±〉
h |k ′ ±〉 = ± ~ |k ′ ±〉

 (5.118)

Moreover we can introduce the complex polarization vectors according to

gk , 1 ε1(k) + gk , 2 ε2(k) = gk ,+ ε+(k) + gk ,− ε−(k) (5.119)

ε±(k) ≡ ∓ 1√
2

[ ε1(k)± iε2(k) ] ε∗±(k) = − ε∓(k) (5.120)

Notice that we get

ε1(k)× ε2(k) = k̂ k̂× ε1(k) = ε2(k) ε2(k)× k̂ = ε1(k) (5.121)

ε1(−k) = ε2(k) ε2(−k) = ε1(k) (5.122)

ε−(k)× ε+(k) = ik̂ k̂× ε±(k) = ∓ iε±(k) (5.123)

ε±(−k) = ± iε∓(k) (5.124)

It turns out that we can expand the physical transverse vector potential and
the electric field in the two equivalent forms

A(t,x) =
∑
k

(
gk , 1 ε1(k) + gk , 2 ε2(k)

)
uk(t,x) + h.c. (5.125)

A(t,x) =
∑
k

(
gk ,+ ε+(k) + gk ,− ε−(k)

)
uk(t,x) + h.c. (5.126)

uk(t,x) =

√
~c

(2π)3 2k
exp{ i(k · x− ckt)} (5.127)

E(t,x) = − 1

c
Ȧ(t,x) = − 1

c
Π(t,x) (5.128)

=
∑
k

(
gk , 1 ε1(k) + gk , 2 ε2(k)

)
ik uk(t,x) + h.c. (5.129)

=
∑
k

(
gk ,+ ε+(k) + gk ,− ε−(k)

)
ik uk(t,x) + h.c.(5.130)
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Notice that the transverse vector potential and the electric field of radiation
do satisfy the transverse conditions

∇ ·A(t,x) = ∇ · E(t,x) = 0 (5.131)

so that they are physical, gauge invariant and consistently fulfill the canonical
commutation relations

[E k(t,x) , A`(t,y) ] = i~c
(
δk` − ∂k ∂`∇−2

)
δ(x− y) (5.132)

all the other commutators being null.
From the classical Lagrangian L = −1

4
F µνFµν and the Nöther theorem, by

taking the normal modes expansions of the vector potential and the electric
field operators suitably into account,

A(−)(t,x) =
∑
k

√
~c

(2π)3 2k

∑
A=1,2

gk , A εA(k) exp{ i(k · x− ckt)}

A(+)(t,x) =
∑
k

√
~c

(2π)3 2k

∑
A=1,2

g †k , A εA(k) exp{− i(k · x− ckt)}

E(−)(t,x) = i
∑
k ′

√
~ck ′

2(2π)3

∑
A′=1,2

gk ′ , A′ εA′(k ′) exp{ i(k ′ · x− ck ′t)}

E(+)(t,x) =
1

i

∑
k ′

√
~ck ′

2(2π)3

∑
A ′=1,2

g †k ′ , A ′ εA′(k ′) exp{− i(k ′ · x− ck ′t)}

one can define the spin angular momentum tensor of the radiation field. As
a matter of fact we find

cΣ(t,x) = E(−)(t,x)×A(−)(t,x) + E(+)(t,x)×A(+)(t,x)

+ E(+)(t,x)×A(−)(t,x)−A(+)(t,x)× E(−)(t,x)

the very last minus sign being due to the exchange in the vector product.
An explicit calculation yields

1

c

∫
dx
[
E(+)(t,x)×A(−)(t,x)−A(+)(t,x)× E(−)(t,x)

]
= i~

∑
k

(
g †k , 2 gk , 1 − g †k , 1 gk , 2

)
k̂

= ~
∑
k

(
g †k ,+ gk ,+ − g †k ,− gk ,−

)
k̂
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1

c

∫
dx
[
E(+)(t,x)×A(+)(t,x) + E(−)(t,x)×A(−)(t,x)

]
= 1

2
i~
∑
k

(
g−k , 1 ε1(−k) + g−k , 2 ε2(−k)

)
×

(
gk , 1 ε1(k) + gk , 2 ε2(k)

)
e− 2ikct + h.c.

= 1
2
i~
∑
k

(
g−k , 1 ε2(k) + g−k , 2 ε1(k)

)
×

(
gk , 1 ε1(k) + gk , 2 ε2(k)

)
e− 2ikct + h.c.

=
∑
k

1
2
i~ k̂

(
g−k , 2 gk , 2 − g−k , 1 gk , 1

)
e− 2ikct + h.c. ≡ 0

the very last equality being due to symmetric integration. Hence we get the
constant spin vector for the radiation field

Σ =
1

c

∫
dx : E(t,x)×A(t,x) :

= ~
∑
k

(
g †k ,+ gk ,+ − g †k ,− gk ,−

)
k̂ (5.133)

Suppose now that the motion of the electromagnetic radiation occurs
along some given spatial direction. One can always fixes a reference frame
with axes chosen so that the photon progressive waves are propagating in
the positive OZ direction, while ε1 and ε2 are in the positive OX and OY
directions, respectively. Then we have the vector potential

A(t, z) =

∫ ∞
−∞

dk
(
g k ,+ ε+(k) + g k ,− ε−(k)

)
u k(t, z) + h.c. (5.134)

u k(t, z) =

√
~c

4π|k|
exp{ i(kz − c|k|t)} (5.135)

and the electric field

E(t, z) = − 1

c
Ȧ(t, z) = − 1

c
Π(t, z) (5.136)

=

∫ ∞
−∞

dk
(
g k ,+ ε+(k) + gk ,− ε−(k)

)
i|k|u k(t, z) + h.c. (5.137)

At a fixed point in space, the above expressions are such that e.g. the
normal modes of the electric vector are constant in magnitude, but sweep
around in a circle at a frequency ω = c|k| . For any momentum kz = k ∈ R
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and the positive sign (ε1 + iε2) /
√

2, the rotation is counterclockwise when
the observer is facing into the oncoming wave: this photon is called left
circularly polarized in Optics, or to have positive helicity in Particle Physics
jargon. The latter terminology appears to be more appropriate because such
a photon has a positive projection of its spin angular momentum along the
OZ−axis, i.e. along the direction and versus of its motion. Conversely, for
the negative sign (ε1 − iε2) /

√
2, the rotation is clockwise when the observer

is facing into the oncoming wave: this photon is called right circularly polarized
in Optics, or to have negative helicity in Particle Physics jargon. If we denote
as customary by i, j,k the unit vectors along the OX,OY,OZ directions
respectively, we readily find

k ·Σ =
ẑ

c
·
∫ ∞
−∞

dz : E(t, z)×A(t, z) :

= ~
∫ ∞
−∞

dk
(
g †k ,+ g k ,+ − g

†
k ,− g k ,−

)
= h (5.138)

Consider therefore the generic state

|Υ 〉 = Υ+ g
†
k ,+ | 0 〉+ Υ− g

†
k ,− | 0 〉

where Υ± are complex numbers, which is not an helicity eigenstate because

h |Υ 〉 = ~Υ+ g
†
k ,+ | 0 〉 − ~Υ− g

†
k ,− | 0 〉

If Υ+ and Υ− have different magnitudes but equal phases, then the above
state represents an elliptically polarized photon traveling along the OZ axis
and with principal axes of the ellipse in the direction of ε1 = i and ε2 = j . The
ratio of semi-major to semi-minor axis is (1 + r)/(1− r) where Υ−/Υ+ = r .
If, instead, the complex amplitudes have a phase difference between them,
i.e. Υ−/Υ+ = r e iθ , then it is easy to show that the ellipse traced out by the
electric field of the photon

〈 0 |E(t, z)|Υ 〉 =
(

Υ+ ε+(k) + Υ− ε−(k)
)
i|k|u k(t, z) (5.139)

has its axes rotated by an angle 1
2
θ . For r = ±1 we get back to linearly

polarized photons. Notice that we find the transformation law

e ih θ/~ g †k ,± e− ih θ/~ = e± iθ g †k ,± (5.140)

showing that the helicity operator is the generator of the rotations around
the direction of the photon propagation, just like in the spinor case.
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5.4 Problems

1. Covariance of the vector field. Find the transformation laws of the
quantum vector wave field under the Poincaré group.

Solution. We shall treat in detail the mass-less case, the generalization
to the massive case being straightforward. We have to recall some
standard definitions: namely,∫

Dk
def
=

∫
dk

(2π)3 2ωk

=
1

(2π)3

∫
dk θ(k0) δ

(
k 2
)

(5.141)

| k A 〉 def
= [ (2π)3 2 |k | ]

1
2 g †k , A | 0 〉 = g †A (k) | 0 〉 (5.142)

i) covariant 1-particle states for the mass-less vector field{
| k A 〉 = [ (2π)3 2 |k | ]

1
2 g †k , A | 0 〉 | k ∈ R3

}
(5.143)

ii) orthogonality and closure relations

〈hA | k B 〉 = (2π)3 2 |k | δ (h− k) ηAB∑
A

∫
Dk | k A 〉 〈 k A | = IH1

iii) gauge potential covariant normal mode expansion

Aλ (x) =
∑
A

∫
Dk

[
ελA (k) gA (k) e− ikx + h. c.

]
k0 = |k|

iv) wave functions

uλk,A (x) ≡ 〈 0 |Aλ (x) | k A 〉 = ελA (k) exp{i(k · x− c|k|t)}

− gλν

∫
dx u ν ∗h,A (x) i

↔
∂0 u

λ
k,B (x) = 2 |k | (2π)3 ηAB δ (h− k)

For each element of the non-homogeneous Lorentz group, which is
uniquely specified by ten canonical coordinates (aλ, ω µν) = (cτ, a,α,η)
there will correspond a unitary operator U(ω, a) : F 1 → F 1 so that

| k ′A 〉 = U(ω, a) | k A 〉 = e ik·a |Λ k A 〉 = e ik·a g †A(Λ k)| 0 〉
〈A Λh |Λ k B 〉 = 〈Ah | k B 〉 = 〈Ah |U †(ω, a)U(ω, a) k B 〉

= ηAB δ (h− k) (2π)3 2 |k |
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where we obviously understand e.g.

|A Λ k 〉 = |Ak ′ 〉 = [ (2π)3 2k ′0 ]
1
2 g †k ′ , A | 0 〉 = g †A (Λ k) | 0 〉

k ′µ = Λ ν
µ kν k ′0 = |k ′ |

g µν k ′µk
′
ν = k ′2 = k 2 = 0

According to the general principles of the local Quantum Field Theory,
any (passive) Poincaré transformation will act upon space-time events,
state vectors and vector field operator valued tempered distributions
in the form

Aµ(x ′ ) |Υ ′ 〉 = Aµ(x ′ )U(ω, a) |Υ 〉 = Λµ
ν A

ν(x) |Υ 〉
A ′µ(x ′ ) ≡ U †(ω, a)Aµ(x ′ )U(ω, a) = Λµ

ν A
ν(x)

Under a Poincaré transformation the vacuum is invariant

U(ω) |0〉 = |0〉

and the annihilation operators transform according to the law

U(ω, a) gA (k) = e− ik·a gA (Λ k)U(ω, a)

g ′A (k ′) = U−1(ω, a) gA (Λ k)U(ω, a) = e ik·a gA(k)

As a consequence we can write with k ′ = Λ · k

A ′λ (x ′ )
def
= U †(ω, a)Aλ (x ′ )U(ω, a)

=
∑
A

∫
Dk ′ ε ′λA (k ′ )

[
U †(ω, a) gA(k ′ )U(ω, a) e− ik

′ x ′

+ U †(ω, a) g †A(k ′ )U(ω, a) e ik
′ x ′
]
k ′
0 = |k ′|

= Λλ
σ

∑
A

∫
Dk εσA (k) gA (k)

[
exp{− ik · x}

+ g †A (k) exp{ ik · x}
]
k0 = |k |

= Λλ
σ A

σ(x)

in which I have used the standard transformation rule (2.20) for the
linear polarization real tetra-vectors

ε ′λA (k ′ ) = Λλ
σ ε

σ
A (k)

the new equivalent basis of the polarization vectors {ε ′µA (k ′)} with A =
1, 2, L, S still obeying the orthogonality and closure relations

− gµν ε ′µA (k ′ ) ε ′νB (k ′ ) = ηAB

ηAB ε
′µ
A (k ′ ) ε ′ νB (k ′ ) = − g µν
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