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Tastiere

Nel campo di concentramento
si eseguivano soltanto ordini:
cos̀ı hanno riferito nei processi.

Il pilota di Hiroshima, di lassù,
ha soltanto schiacciato quel bottone.

Quanti tasti hai premuto oggi
senza saperlo, nella tua tastiera?

Tienine conto, sempre

Può non essere vero
ciò in cui più fermamente credi.
Può non essere stato
ciò che pensi essere il tuo passato.
Potrà benissimo non arrivare
quell’obiettivo che hai
per tanto tempo accarezzato.

Maurizio Bacchilega
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Chapter 1

Generating Functionals

In this chapter I aim to introduce the functional integral approach to the
quantum field theory. Historically the so called Path Integral Approach to
Quantum mechanics has been first developed by Richard Phillips Feynman,
Who actually implemented a former idea by Paul Adrian Maurice Dirac.
Here below, however, I will follow a further approach first developed by Kurt
Symanzik and Julian Schwinger in the fifties. According to this point of
view, the functional integrals arise as the formal solutions of the functional
equations satisfied by the generating functional of the Green’s functions.

George Green (Nottingham, 14 July 1793 – Nottingham, 31 May 1841)
An Essay on the Application of Mathematical Analysis to the Theories of
Electricity and Magnetism (1828)

It turns out that for free field theories the latter objects can be precisely
defined in terms of generalized Gaussian integration and by means of the
ζ−function regularization technique invented by Stephen Hawking in the
late seventies. As a final consequence, the functional integrals for interacting
quantum field theories appears to be eventually defined in terms of formal
perturbation expansions, starting from the generating functional for free field
theories. This leads to the Feynman rules of the perturbation expansion for
quantum field theories, that we shall analyze in details in the next chapter.

1.1 The Scalar Generating Functional

The simplest construction concerns of course the derivation of the generating
functional of the Green’s functions for a real scalar free field satisfying the
Klein-Gordon equation.
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1.1.1 The Symanzik Functional Equation

Consider the vacuum expectation value

Z0 [ J ] =

〈
T exp

{
i

∫ ∞
−∞

dx0

∫
dxφ(t,x) J(t,x)

}〉
0

def
=

∞∑
n=0

in

n!

∫
d4x1 J(x1) · · ·

∫
d4xn J(xn)

× 〈0 |T φ(x1) · · ·φ(xn) |0〉 (1.1)

the suffix zero denoting the free field theory, where J(x) is the so called source
density function or classical external source, with the canonical engineering

dimension [ J ] = eV−
1
2 cm−

7
2 in the physical C. G. S. system of units. The

vacuum expectation values of the chronological ordered products of n Klein-
Gordon Hermitean field operators at different space-time points are named
the n−point Green functions of the non-interacting or free field theory. By
construction, the latter ones can be expressed as functional derivatives of the
generating functional: namely,

G
(n)
0 (x1, · · · , xn) ≡ 〈0 |T φ(x1) · · ·φ(xn) |0〉 (1.2)

= (− i)n δ (n)Z0 [ J ]/δJ(x1) · · · δ J(xn)
⌋
J=0

Taking one functional derivative of the generating functional (1.1) we find

(− i) δ

δ J(x)
Z0 [ J ] =

〈
T φ(x) exp

{
i

∫
dy φ(y) J(y)

}〉
0

(1.3)

In order to evaluate the above quantity it is convenient to introduce the
operator

E( t ′ , t) ≡ T exp

{
i

∫ t ′

t

dy0

∫
dy φ(y) J(y)

}
(1.4)

so that we can write

(− i) δ

δ J(x)
Z0 [ J ] = 〈0 |E(∞ , x0 )φ(x)E(x0 , −∞) |0〉 (1.5)

Taking a derivative with respect to x0 we find

∂

∂ x0

〈0 |E(∞ , x0 )φ(x)E(x0 , −∞) |0〉 =

〈0 |E(∞ , x0 ) Π(x)E(x0 , −∞) |0〉 −

i

∫
dy J(x0,y)〈0 |E(∞ , x0 ) [φ(x0,y) , φ(x0,x) ]E(x0 , −∞) |0〉

= 〈0 |E(∞ , x0 ) Π(x)E(x0 , −∞) |0〉
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owing to micro-causality. One more derivative evidently yields

∂

∂ x0

〈0 |E(∞ , x0 ) Π(x)E(x0 , −∞) |0〉 =

〈0 |E(∞ , x0 ) Π̇(x)E(x0 , −∞) |0〉 + ~J(x)Z0 [ J ]

whence we eventually obtain the functional differential equation for the free
spin-less neutral field generating functional, that is[

(�x +m2c2/~2 )
iδ

δJ(x)
+ ~c J(x)

]
Z0 [ J ] = 0 (1.6)

where we used physical units and the fact that the free scalar field operator
valued distribution has canonical dimensions [φ ] = eV

1
2 cm−

1
2 and satisfy

the Klein-Gordon wave equation. The above functional equation has been
first obtained by

Kurt Symanzik
Über das Schwingersche Funktional in der Feldtheorie
Zeitschrift für Naturforschung 9A (1954) 809-824

and will thereby named the Symanzik functional equation. This functional
differential equation (1.6) has a unique solution that fulfills causality, viz.

Z0 [ J ] = exp
{
− 1

2

∫
d4x

∫
d4y J(x)DF (x− y) J(y)

}
(1.7)

as it can be verified by direct inspection.

The classical Action for the real scalar field in the presence of an external
source density can be rewritten as

SJ [φ ] = 1
2

∫ ∞
−∞

dt

∫
dx
[
∂µφ(x)∂ µφ(x)− (mc/~)2φ 2(x) + 2~c φ(x)J(x)

]
=̇

∫ ∞
−∞

dt

∫
dx
[
− 1

2
φ(x)

(
�+m2c2/~2

)
φ(x) + ~c φ(x)J(x)

]
≡ S0 [φ ] + ~

∫
d4xφ(x)J(x) (1.8)

where the symbol =̇ indicates that the total four divergence term

1
2
g µν

∫
d4x ∂µ

(
φ(x)∂ νφ(x)

)
has been dropped as it does not contribute to the equations of motion

δSJ [φ ]

δφ(x)
= 0 ⇐⇒ (�+m2c2/~2 )φ(x) = ~cJ(x) (1.9)
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1.1.2 The Functional Integrals for Bosons

The Symanzik functional equation (1.6) is a linear functional differential
equation. Hence the most customary method to solve it is by means of some
functional Fourier transform. To reconstruct the solution (1.6) via Fourier
methods we formally write Z0 [ J ] as a functional integral: namely,

Z0 [ J ] =
〈

T exp
{
i
∫

dy φ(y)J(y)
}〉

0

= exp
{
− 1

2

∫
dx
∫

d4y J(x)DF (x− y) J(y)
}

=

∫
Dφ Z̃0 [φ ] exp {i 〈φ y J y 〉} (1.10)

where Dφ formally denotes integration over an infinite dimensional functional
space of Lorentz scalar real functions on the Minkowski space φ : R1,3 → R ,
while I have used the discrete index like notation

〈φ y J y 〉 ≡
∫

d4 y φ(y)J(y)

It is worthwhile to remark that, as it is customary in the Literature, the very
same symbol φ(x) is employed to denote either the Klein-Gordon Hermitean
quantum field, i.e. an operator valued tempered distribution belonging to
S ′(R1,3) , or the classical field in S(R1,3) , which appears to be the argument
of the classical Action as well as the integration variable in the functional
integral (1.10). The precise role and meaning of the symbol φ(x) will be
henceforth readily extracted from the context without ambiguities.

Heuristically, a preliminary although quite suggestive way to understand
the functional measure Dφ is in terms of∫

Dφ :=:
∏
x∈M

∫ ∞
−∞

dφx

Here :=: denotes a formal equality, the precise mathematical meaning of
which has to be further specified, while the space-time events x of Minkowski
space M = R1,3 are treated as discrete indexes, in such a manner that the
functional integral could be formally understood as an infinitely continuous
generalization of a multiple Lebesgue integral. Taking the functional derivative
operator iδ/δJ(x) through the functional Fourier integral (1.10) equation
(1.6) becomes

0 =
[

(�x +m2 )
i δ

δJ(x)
+ J(x)

]
Z0 [ J ]

=

∫
Dφ

[
− (�x +m2 )φ(x) + J(x)

]
Z̃0 [φ ] exp { i 〈φx Jx 〉}
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Incidentally, this means that we require linearity for the Fourier-like functional
representation: namely,∫

Dφ
{
f(x) F̃ [φ] + g(x) G̃[φ]

}
= f(x)

∫
Dφ F̃ [φ] + g(x)

∫
Dφ G̃[φ]

for any pair of functional F̃ , G̃ and any pair of complex functions f, g . Now,
since we have the equality

− (�x +m2c2/~2 )φ(x) =̇
δS0

δφ(x)

up to an irrelevant boundary term, we are led to eventually identify

Z̃0 [φ ] = N exp {( i/~)S0 [φ ]} (1.11)

N being any arbitrary classical external source independent quantity.

Proof. As a matter of fact we have in natural units∫
Dφ

[ δS0

δφ(x)
+ J(x)

]
Z̃0 [φ ] exp { i 〈φ y J y 〉}

= N
∫

Dφ
[ δS0

δφ(x)
+ J(x)

]
exp {i S0 [φ ] + i 〈φ y J y 〉}

= N
∫

Dφ
− i δ
δφ(x)

exp {i S0 [φ ] + i 〈φ y J y 〉}

so that, if we assume the validity of the functional integration by parts, the very last
expression formally yields

N exp
{
− i
[

1
2 φ x

(
� x +m2 − iε

)
φ x − φ x J x

]} ∣∣ φx = +∞
φx =−∞

×
∏
y∈M

∫ ∞
−∞

dφ y exp
{
− 1

2 i φ y
(
� y +m2 − iε

)
φ y + i φ y J y

} ⌋
y 6= x

= 0

the convergence factor being provided by the causal +iε prescription, where we have taken
into account that the boundary values for the co-domain of the scalar field functional space
are just

−∞ < φx <∞ ∀x ∈M

A comparison with equation (1.7) leads to the formal equality

Z0 [ J ] = exp
{
−
∫

dx
∫

dy 1
2 J(x)DF (x− y) J(y)

}
:=: N

∫
Dφ exp {iS0 [φ ] + i 〈φx Jx 〉}

:=: N
∏
x∈M

∫ ∞
−∞

dφ x exp
{
− 1

2 i φ xK x φ x + i φ x J x
}

(1.12)
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where as usual

S0 [φ ] = −
∫

dx 1
2 φ(x)

(
�+m2 − iε

)
φ(x) ≡ 〈− 1

2 φ xK x φ x 〉

This completes the proof of the above identity. �

The functional measure Dφ , which is a formal entity until now, can be
implemented by the requirement of invariance under field translations

φ(x) 7→ φ ′(x) = φ(x) + f(x)

Once it is assumed, after the change of variable

φ(x) 7→ φ ′(x) = φ(x)− (�+m2 − iε)−1J(x)

= φ(x)− i
∫

dy DF (x− y) J(y)

≡ φx − 〈 iDxy J y 〉 (1.13)

we find

Z0 [ J ] :=: exp
{
−
∫

dx
∫

dy 1
2
J(x)DF (x− y) J(y)

}
× N

∫
Dφ exp

{
− i
∫

dx 1
2
φ(x) (�+m2 − iε) φ(x)

}
= Z0 [ 0 ] exp

{
−
∫

dx
∫

dy 1
2
J(x)DF (x− y) J(y)

}
Proof : from the change of the integration variable

φ x 7→ φ ′x = φ x − 〈 iD xy J y 〉 dφ x = dφ ′x

equation (1.12) yields∫ ∞
−∞ dφ x exp

{
− 1

2 iφ xK x φ x + iφ x J x
}

=
∫ ∞
−∞ dφ ′x exp

{
− 1

2 i (φ ′x + 〈 iD xy J y 〉) K x (φ ′x + 〈 iD xz J z 〉)
}

× exp { iφ ′x J x − J x 〈D xy J y 〉}

Now, from the equality
K x 〈 iD xz J z 〉 = J x

and the further equality

〈 iD xy J y 〉K x φ ′x =̇ φ ′xK x 〈 iD xy J y 〉 = J x φ
′
x

which is true by neglecting twice a boundary term, we can finally write∫ ∞
−∞ dφ x exp

{
− 1

2 iφ xK x φ x + iφ x J x
}

=̇ exp
{
− 1

2 J x 〈D xy J y 〉
} ∫ ∞
−∞ dφ ′x exp

{
− 1

2 iφ
′
xK x φ ′x

}
(∀x ∈M )
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and thereby

Z0 [ J ] :=: N
∏
x∈M

∫ ∞
−∞ dφ x exp

{
− 1

2 iφ xK x φ x + iφ x J x
}

=̇
∏
x∈M

exp
{
− 1

2 J x 〈D xy J y 〉
}
N
∏
z∈M

∫ ∞
−∞ dφ ′z exp

{
− 1

2 iφ
′
z K z φ ′z

}
= exp

{
〈− 1

2 J xD xy J y 〉
}
N
∫

Dφ ′ exp {iS0 [φ ′ ]}

= exp
{
−
∫

dx
∫

dy 1
2 J(x)DF (x− y) J(y)

}
Z0 [ 0 ]

which completes the proof. �

Hence, self-consistency actually entails the formal identification

Z0 [ 0 ] :=: N
∫

Dφ exp {(i/~)S0 [φ ]} = 1

As a matter of fact, from the very definition (1.1) it appears quite evident
that Z0[0] is nothing but the vacuum to vacuum amplitude 〈 0 | 0 〉 that we
suppose to be normalized to one. Thus, at this point, the strategy should be
clear: if we were able to give a precise mathematical meaning to the above
formal quantity Z0[0] , then we will be able in turn to set up a mathematically
sound and precise definition of the functional integral (1.10).

To this aim, let us first consider the Euclidean formulation. Then we have
to make the replacements

iS0 [φ ] 7−→ −S (0)
E [φE ] xEµ = (x , x4 = ix0) (1.14)

S
(0)
E [φE ] =

∫
dxE

1
2

(
∂µφE (xE )∂µφE (xE ) +m2 φ2

E (xE )
)

=̇

∫
dxE φE (xE ) 1

2
(m2 − ∂µ∂µ )φE (xE )

Z
(0)
E [ 0 ] :=: N

∫
DφE exp

{
−S (0)

E [φE ]
}

(1.15)

The above quantity is, formally, an absolutely convergent Gaussian integral.

1.1.3 The ζ−Function Regularization

According to the previously suggested heuristic interpretation, we could now
understand the latter as

Z
(0)
E [ 0 ] :=: N

∏
x

∫ ∞
−∞

dφx exp
{
− 1

2
φxKE φx

}
KE ≡ m2 − ∂µ∂µ

10



and if we assume that the functional integration variable can be changed
through the scale transformation

φx 7→ φ ′x = µφx

where µ is an arbitrary mass scale which does not influence the relevant J(x)
dependence of the generating functional, then we come to the expression

Z
(0)
E [ 0 ] :=: N ′

∏
x

∫ ∞
−∞

dφ ′x exp
{
− 1

2
φ ′xµ

−2KE φ
′
x

}
(1.16)

in which the dimensionless, positive, second order and symmetric differential
operator µ−2 ( m2 − ∂µ∂µ ) is involved, the spectrum of which is purely
continuous and given by the positive eigenvalues µ−2 ( m2 + kµkµ ) with
kµ ∈ R (µ = 1, 2, 3, 4 ) .

Now, it is worthwhile to recall that, for any finite dimensional positive
definite symmetric matrix A = A> of rank n ∈ N , a real orthogonal matrix
R ∈ SO(n,R) always exists and such that R>AR = diag(λ1, · · · , λn) where
λi > 0 ( ∀ i = 1, 2, . . . , n ) are the positive eigenvalues of the symmetric
matrix. Hence we immediately obtain as a result of the Gaussian integration

I = (2π)−n/2
∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxn exp{− 1
2
x>Ax}

= (2π)−n/2
∫ ∞
−∞

dy1 · · ·
∫ ∞
−∞

dyn exp{− 1
2

(Ry)>ARy}

= (2π)−n/2
∫ ∞
−∞

dy1 · · ·
∫ ∞
−∞

dyn exp

{
−1

2

n∑
i=1

λi y
2
i

}

= (2π)−n/2
n∏
i=1

∫ ∞
−∞

dyi exp
{
− 1

2
λi y

2
i

}
= (2π)−n/2

n∏
i=1

√
2π

λi
= (detA)−1/2 (1.17)

In view of this simple result we shall attempt to define the formal quantity
Z

(0)
E [ 0 ] to be precisely given by

Z
(0)
E [ 0 ] :=: N ′

∏
x

∫ ∞
−∞

dφ ′x exp
{
− 1

2
φ ′xµ

−2KE φ
′
x

}
≡ N ′ det ‖µ−2 (m2 − ∂µ∂µ )‖−1/2 (1.18)

where the determinant of a positive symmetric differential operator can be
suitably defined by means of the so called ζ−function regularization:
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Steven W. Hawking (1977)
Zeta function regularization of path integrals in curved space time
Communication of Mathematical Physics, Vol. 55, p. 133

The idea beyond this method is as simple as powerful and is based upon the
analytic continuation tool. Consider for example a compact positive operator
A > 0 with the spectral decomposition

A =
∞∑
k=1

λkPk λk > 0 trPk = dk <∞ ∀ k ∈ N

The complex powers of the positive operator A > 0 can be easily obtained
in terms of its spectral resolution

A−s =
∞∑
k=1

λ−sk Pk =
∞∑
k=1

1

Γ(s)

∫ ∞
0

d t t s−1 exp{−tλk}Pk (<es > 0 )

where use has been made of the Mellin’s integral transform. Let us now
further suppose the compact operator A−s to be of the trace class in a strip
of the complex s−plane. Hence, from the spectral decomposition theorem
we can write the integral kernel, or Green function,

〈x |A−s |y〉 =
∞∑
k=1

λ−sk 〈x |Pk |y〉 =
∞∑
k=1

λ−sk ψk(x)ψ∗k(y) (1.19)

A−s ψk(x) = λ−sk ψk(x)

∫
dx ψk(x)ψ∗n(x) = δkn (1.20)

TrA−s =

∫
dx 〈x |A−s |x〉 =

∞∑
k=1

λ−sk dk

=
∞∑
k=1

dk
1

Γ(s)

∫ ∞
0

d t t s−1 exp{−tλk}

=
1

Γ(s)

∫ ∞
0

d t t s−1

∞∑
k=1

dk exp{−tλk} <∞ (1.21)

always in the half-plane <es > 0 . Now we have

d

ds
TrA−s =

∞∑
k=1

d

ds
λ−sk dk =

∞∑
k=1

(− lnλk)λ
−s
k dk (1.22)
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and thereby we obtain the zeta function regularization of the determinant of
a positive and compact operator of the trace class: namely,

ln detA =
∞∑
k=1

dk lnλk
def
= − d

ds
TrA−s

⌋
s=0

(1.23)

provided the analytic continuation is possible to include the imaginary axis
<e s = 0 , via some suitable deformation of the integration path in complex
plane, just like in the original case of the Riemann’s Zeta function 1

ζ(s, q) = − Γ(1− s)
2πi

∫ (0+)

∞
dθ

(−θ) s−1 e−q θ

1− e−θ
(1.24)

in which it is assumed that the path of integration does not pass through the
points 2nπi, where n is a natural number, and of course s 6= 1, 2, 3, . . . .

In order to apply the above treatment to the case of interest, one is
faced with the problem that the Euclidean Klein-Gordon operator is neither
compact nor of the trace class. To overcome this difficulty, it is expedient
to introduce a very large box, e.g. a symmetric hyper-cube of side 2L , to
impose periodic boundary conditions on its faces and to make eventually
the transition to the infinite volume continuum limit. In the presence of a
symmetric hyper-cube with periodic boundary conditions, the spectrum of
the Euclidean Klein-Gordon operator is purely discrete and non-degenerate

λn = m2 +
π 2

L2
nµnµ nµ ∈ Z µ = 1, 2, 3, 4 (1.25)

and in the limit of L→∞ we can safely replace

∞∑
nµ=−∞

7−→ 2L

∫ ∞
−∞

dkµ
2π

(µ = 1, 2, 3, 4)

∑
n

7−→ V

∫
d4k

(2π)4

Then we find for A = µ−2 (m2 − ∂µ∂µ )

TrA−s =̇ V µ2s

∫
d4k

(2π)4
(m2 + k 2 )−s

=
V µ2s

16π 2 Γ(s)

∫ ∞
0

d t t s−3 exp{−tm2}

1Gradshteyn and Ryzhik [14] § 9.5 pp.1100-1103 ; Bruno Pini (1979) Lezioni sulle
distribuzioni, 1. Distribuzioni temperate, § 4 Appendice, cap. 3. p. 276.
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=
V m4

16π 2

( µ
m

) 2s Γ(s− 2)

Γ(s)

=
V m4

16π 2

( µ
m

) 2s

(s2 − 3s+ 2)−1 (1.26)

where =̇ means that the transition to the continuum limit is understood.
Hence

d

ds
TrA−s = (s2 − 3s+ 2)−2 TrA−s

×
[

2(s2 − 3s+ 2) ln
µ

m
− 2s+ 3

]
(1.27)

and thereby

det ‖
(
m2 − ∂µ∂µ

)
/µ2 ‖ = exp

{
V m4

16π 2

(
ln
m

µ
− 3

4

)}
(1.28)

Turning back to equation (1.18) we see that

Z
(0)
E [ 0 ] = 1 ⇐⇒ N ′ ≡ exp

{
V m4

32π 2

(
ln
m

µ
− 3

4

)}
and the transition to the Minkowski space can be immediately done by simply
replacing the volume factor VE ↔ i VM , the very meaning of which is that
of an infrared regulator.

The conclusion of all the above formal reasoning is as follows: we are
enabled to define the functional integral for a free scalar field theory by the
equality

Z0 [ J ] =
〈

T exp
{
i
∫

d4y φ(y)J(y)
}〉

0

= exp
{
− 1

2

∫
d4x

∫
d4y J(x)DF (x− y) J(y)

}
def
= N

∫
Dφ exp

{
(i/~)S0 [φ ] + i

∫
d4x φ(x) J(x)

}
S0 [φ ] = −

∫ ∞
−∞

dt

∫
dx 1

2
φ(x)

[
�+ (mc/~)2 − iε

]
φ(x)

N = constant×
√

det ‖�+m2c2/~2 ‖
def
= exp

{
iV m4c4

32π 2~4

(
ln
m

µ
− 3

4

)}
(Zeta regularization)

Z0 [ 0 ] = N
∫
Dφ exp{(i/~)S0 [φ ]} = 1

Notice that the integral kernel DF (x − y) which appears in the exponent
of the right hand side of eq. (1.7) is just the opposite of the inverse for the
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kinetic operator − i (�+m2 ) that specifies the exponent (i/~)S0 [φ ] of the
functional integral.

To summarize the above long discussion concerning the meaning and the
construction of the functional integration, I can list a number of key features.
The functional integral does fulfill by construction the following properties:

1. linearity∫
Dφ ( f F [φ ] + g G [φ ] ) = f

∫
Dφ F [φ ] + g

∫
Dφ G [φ ]

for any pair of complex functions f, g : M → C

2. translation invariance∫
Dφ F [φ+ f ] =

∫
Dφ F [φ ] ∀ f : M → C

3. change under a scale transformation∫
Dφ F [ (Aφ )(x) ] = (detA)−1

∫
Dφ F [φ ]

where A is any non-singular integral-differential operator

4. integration by parts

0 =

∫
Dφ

δF [φ ]

δφ(x)
G [φ ] +

∫
Dφ F [φ ]

δG [φ ]

δφ(x)

The above properties 1. − 4. are valid for any functional pair F,G of the
Gaussian kind

P [φ ] exp

{
i

~
S0 [φ ] + i

∫
dx φ(x) J(x)

}
with P [φ ] any polynomial functional of the scalar field and its derivatives.
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1.2 The Spinor Generating Functional

The construction of a generating functional for the free fermionic fields, such
as the quantized Dirac bispinor fields ψ(x) and ψ(y) that fulfill the canonical
anti-commutation relations

{ψ(x) , ψ(y)} =
{
ψ(x) , ψ(y)

}
= 0

{
ψ(x) , ψ(y)

}
= S(x− y)

does require the latter ones to be coupled to a suitable pair of sources. The
Green’s functions for the free Dirac bispinor quantum field are defined to be

S
(n)
0 (x1, . . . , xn; y1, . . . , yn) = 〈 0 |T ψ(x1) · · ·ψ(xn)ψ(y1) · · ·ψ(yn) | 0 〉

in which the 2n bispinor indexes of the kind 1L, 2L, 1R, 2R are understood
for the sake of brevity. The above expression for the Dirac spinor Green’s
functions does exhibit the full anti-symmetry property

S
(n)
0 (x1, . . . , xı, . . . , x, . . . , xn; y1, . . . , yk, . . . , y`, . . . , yn)

= − S
(n)
0 (x1, . . . , x, . . . , xı, . . . , xn; y1, . . . , yk, . . . , y`, . . . , yn)

= − S
(n)
0 (x1, . . . , xı, . . . , x, . . . , xn; y1, . . . , y`, . . . , yk, . . . , yn)

∀ ı,  = 1, . . . , n , ı 6=  ∀ k, ` = 1, . . . , n , k 6= ` (1.29)

which follows from the canonical anti-commutation relations, just endorsing
the Fermi-Dirac statistics for the many-particle states. Notice that for n = 1
we just obtain the Feynman’s spinor propagator

S
(1)
0 (x1; y1) = SF (x1 − y1)

It turns out that the above complete anti-symmetry property of the spinor
Green’s functions can be effected by constructing the generating functional
over a Graßmann algebra of anti-commuting classical sources ζ(x) , ζ(y) as
we shall see here below.

1.2.1 Symanzik Equations for Fermions

Consider the vacuum expectation value

Z0 [ ζ , ζ ] ≡
〈
0|T exp

{
i
∫

dx ζ̄(x)ψ (x) + i
∫

dy ψ̄ (y) ζ(y)
}
|0
〉

= 1−
∫

dx ζ̄α(x)
∫

dy ζβ(y)
〈
0|T ψα(x) ψ̄β(y)|0

〉
+ · · · · · · (1.30)

the suffix zero denoting the free field theory, where ζ(x) and ζ̄(x) are the
so called classical fermion external sources, which turn out to be Graßmann
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valued functions, with the canonical dimensions [ ζ ] = cm−5/2 in natural
units, which satisfy

{ζ(x) , ζ(y)} = {ζ̄(x) , ζ̄(y)} = 0 (1.31)

{ζ(x) , ζ̄(y)} = {ζ̄(x) , ζ(y)} = 0 (1.32)

{ζ(x) , ψ (y)} = {ζ̄(x) , ψ̄ (y)} = 0 (1.33)

{ζ(x) , ψ̄ (y)} = {ζ̄(x) , ψ (y)} = 0 (1.34)

Notice that, just owing to (1.34), the products ζ̄(x)ψ (x) and ψ̄ (y) ζ(y) do
not take up signs under time ordering, i.e.

T
(
ζ̄(x)ψ (x) ψ̄ (y) ζ(y)

)
=

{
ζ̄(x)ψ (x) ψ̄ (y) ζ(y) if x0 > y0

ψ̄ (y) ζ(y) ζ̄(x)ψ (x) if x0 < y0

In fact

ζ̄(x)ψ (x) ψ̄ (y) ζ(y) = ζ̄(x) ζ(y)ψ (x) ψ̄ (y) (x0 > y0)

ψ̄ (y) ζ(y) ζ̄(x)ψ (x) = ζ̄(x) ζ(y)
(
− ψ̄ (y)ψ (x)

)
(x0 < y0)

so that 〈
T
(
ζ̄(x)ψ (x) ψ̄ (y) ζ(y)

)〉
0

= ζ̄(x) ζ(y)
〈
T ψ (x) ψ̄ (y)

〉
0

= ζ̄(x) ζ(y)SF (x− y)

=
〈
T
(
ψ̄ (y) ζ(y) ζ̄(x)ψ (x)

)〉
0

The functional differentiation with respect to the classical Graßmann valued
sources is defined by

{δ/δζ̄(x) , ζ̄(y)} = δ(x− y) = {δ/δζ(x) , ζ(y)}
{δ/δζ̄(x) , ζ(y)} = 0 = {δ/δζ(x) , ζ̄(y)}

{δ/δζ̄(x) , δ/δζ̄(y)} = 0 = {δ/δζ(x) , δ/δζ(y)}
{δ/δζ̄(x) , δ/δζ(y)} = 0 = {δ/δζ(x) , δ/δζ̄(y)} (1.35)

where all operators act on their right. It follows that

− i δZ0 [ ζ , ζ ]/δζ̄(x) =〈
T ψ (x) exp

{
i
∫

dy
[
ζ̄(y)ψ (y) + ψ̄ (y) ζ(y)

]}〉
0

i δZ0 [ ζ , ζ ]/δζ(x) =〈
T ψ̄ (x) exp

{
i
∫

dy
[
ζ̄(y)ψ (y) + ψ̄ (y) ζ(y)

]}〉
0

(1.36)
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where the plus sign in the second equality is because

δ

δζ(x)

∫
dy ψ̄ (y) ζ(y) =

∫
dy

δ

δζ(x)

(
ψ̄ (y) ζ(y)

)
= −

∫
dy ψ̄ (y)

δζ(y)

δζ(x)

= −
∫

dy ψ̄ (y) δ(x− y)

= − ψ̄ (x) (1.37)

Taking one more functional derivatives of the generating functional (1.30) we
find

[ δ/δζ̄(x) ] δZ0 [ ζ , ζ ] / δζ (y) = (1.38)〈
T ψ (x) ψ̄ (y) exp

{
i
∫

dz
[
ζ̄(z)ψ (z) + ψ̄ (z) ζ(z)

]}〉
0

The vacuum expectation values of the chronological ordered products
of n pairs of free spinor field and its adjoint operators at different space-
time points are named the n−point fermion Green’s functions of the (free)
Dirac spinor quantum field theory. By construction, the latter ones can be
expressed as functional derivatives of the generating functional: namely,

S
(n)
0 (x1, · · · , xn ; y1, · · · , yn )

= 〈0 |T ψ (x1) · · · ψ (xn)ψ (y1) · · · ψ (yn) |0〉
= δ (2n)Z0 [ ζ , ζ ]/δζ̄(x1) · · · δζ̄(xn) δζ(y1) · · · δζ(yn)

⌋
ζ= ζ̄=0

Now it should be evident that the very same steps, which have led to
establish the functional equation (1.6) for the free scalar field generating
functional, can be repeated in a straightforward manner. To this purpose,
let me introduce the finite times chronologically ordered exponential operator
for the spinor fields that reads

E(t ′ , t) ≡ T exp

{
i

∫ t ′

t

dy0

∫
dy [ ψ̄(y) ζ(y) + ζ̄(y)ψ(y) ]

}
(1.39)

Then we can derive the Symanzik functional equation for the generating
functional of the Dirac field: namely,[

( i ∂/x −M ) (i δ/δ ζ̄x)− ζx
]
Z0 [ ζ , ζ̄ ] = 0 (1.40)

Proof. First we obtain

− i δZ0 [ ζ , ζ ] / δ ζ̄ (x) =

〈 0 |E (∞, x0)ψ(x0,x)E (x0,−∞) | 0 〉
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so that the application of the Dirac differential operator yields

( i ∂/x −M )
(
− i δZ0 [ ζ , ζ ] / δ ζ̄ (x)

)
=

i γ0
∫

dy 〈 0 |E (∞, x0) {ψ (x)[ ψ̄ (x0,y) ζ (x0,y) + ζ̄ (x0,y)ψ (x0,y) ]

− [ ψ̄ (x0,y) ζ (x0,y) + ζ̄ (x0,y)ψ (x0,y) ]ψ (x) }E (x0,−∞) | 0 〉
+ 〈 0 |E (∞, x0) ( i ∂/x −M )ψ(x0,x)E (x0,−∞) | 0 〉

= i γ0

∫
dy 〈 0 |E (∞, x0) {ψ (x) , ψ̄ (x0,y)} ζ (x0,y)E (x0,−∞) | 0 〉

− i γ0

∫
dy 〈 0 |E (∞, x0) ζ̄ (x0,y) {ψ (x) , ψ (x0,y)}E (x0,−∞) | 0 〉

= − ζ (x)Z0 [ ζ , ζ ]

in which I have made use of the canonical anti-commutation relations {ψ(x), ψ(y)} = 0, as
well as of the Dirac equation (i ∂/x −M)ψ(x). This proves the Symanzik equation (1.40).

�

In a complete analogous way we find the functional differential formula[ iδ

δζx

( ←
i ∂/x +M

)
− ζ̄x

]
Z0 [ ζ , ζ ] = 0 (1.41)

Proof. First we obtain

i δZ0 [ ζ , ζ ] / δ ζ (x) =

〈 0 |E (∞, x0) ψ̄(x0,x)E (x0,−∞) | 0 〉

and taking left time derivative

〈 0 |E (∞, x0) ψ̄(x0,x)E (x0,−∞) | 0 〉
←
∂

∂x0

= i

∫
dy 〈 0 |E (∞, x0) ψ̄ (x) [ ψ̄ (x0,y) ζ (x0,y) + ζ̄ (x0,y)ψ (x0,y) ]E (x0,−∞) | 0 〉

− i

∫
dy 〈 0 |E (∞, x0)[ ψ̄ (x0,y) ζ (x0,y) + ζ̄ (x0,y)ψ (x0,y) ] ψ̄ (x)E (x0,−∞) | 0 〉

+

〈
T ∂0ψ̄ (x) exp

{
i

∫
dy
[
ζ̄(y)ψ (y) + ψ̄ (y) ζ(y)

]}〉
0

Now, using the anti-commutation relations (1.33), (1.34) and the equal time canonical
anti-commutation relations for the Dirac spinor fields we find

〈 0 |E (∞, x0) ψ̄(x0,x)E (x0,−∞) | 0 〉 (
←
i ∂/x +M )

= γ0

∫
dy 〈 0 |E (∞, x0) ζ̄ (x0,y){ψ̄ (x0,x) , ψ (x0,y)}E (x0,−∞) | 0 〉

− γ0

∫
dy 〈 0 |E (∞, x0){ψ̄ (x0,x) , ψ̄ (x0,y)} ζ (x0,y)E (x0,−∞) | 0 〉

+

〈
T ψ̄ (x)(

←
i ∂/x +M ) exp

{
i

∫
dy
[
ζ̄(y)ψ (y) + ψ̄ (y) ζ(y)

]}〉
0

=

∫
dy 〈 0 |E (∞, x0) ζ̄ (x0,y) δ(x− y)E (x0,−∞) | 0 〉 = ζ̄ (x)Z0 [ ζ , ζ ]
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where use has been made of the adjoint Dirac equation ψ̄(x)(
←
i ∂/x +M ) = 0 . This proves

the Symanzik equation (1.41). �

The solution of the above couple of functional differential equations that
satisfies causality is

Z0 [ ζ , ζ ] = exp
{
−
∫

dx
∫

dy ζ̄ (x)SF (x− y) ζ (y)
}

(1.42)

It is worthwhile to remark that, in close analogy with the case of the free
scalar field generating functional, the integral kernel which appears in the
exponent of the right hand side of eq. (1.42) does exactly coincide with the
inverse of the Dirac operator (i ∂/−M) that specify the classical Action, since
(i ∂/x −M)SF (x−y) = iδ (x− y) . The inversion of the classical kinetic Dirac
operator is precisely provided by the Feynman propagator or causal 2-point
Green’s function, which indeed encodes:

1. the covariance properties under the action of the Poincaré group

2. the canonical anti-commutation relations, the related property of the
micro-causality and the Fermi-Dirac statistics obeyed by all the many-
particle states

3. the causality requirement, that means the possibility to perform the
transition to the Euclidean formulation.

Hence the generating functional (1.42) does truly contain all the mutually
tied up key features of the relativistic quantum field theory.

1.2.2 The Integration over Graßmann Variables

In order to find a functional integral representation for Z0 [ ζ , ζ̄ ] I need to
primary define the concept of integration with respect to Graßmann valued
functions on the Minkowski space. This latter tool has been constructed by

F.A. Berezin, The Method of Second Quantization
Academic Press, New York (1966)

Hereafter I shall follow

Sidney R. Coleman, The Uses of Instantons
Proceedings of the 1977 International School of Subnuclear Physics
Erice, Antonino Zichichi Editor, Academic Press, New York (1979)

Consider first a real function f : G → R of a Graßmann variable a ∈ G so
that a2 = 0 and suppose we want to define

∫
da f(a) . We require this to have

20



the usual linearity property, viz.,∫
da [αf(a) + β g (a) ]

= α

∫
da f(a) + β

∫
da g (a) (∀α, β ∈ R) (1.43)

and in addition, we would like the integral to be translation invariant∫
da f(a+ b) =

∫
da f(a) (∀ b ∈ G) (1.44)

It is easy to show that those conditions determine the integral, up to a
normalization constant. The reason is very simple: there are only two linearly
independent functions of a ∈ G , that is 1 and a , all higher powers being null.
As a matter of fact we have ∀ a, b ∈ G with {a, a} = {a, b} = {b, b} = 0

f(a) = f0 + a f1 f(a+ b) = f0 + (a+ b) f1 (1.45)

Here, if f : G −→ R then f0 is an ordinary real number while f1 is a real
Graßmann number2 such that {a, f1} = {f1, f1} = 0. Conversely, if f(a)
is Graßmann valued, then f0 ∈ G while f1 is an ordinary real number. It
follows that the linearity property (1.43) indeed entails for e.g. f ∈ R∫

da f(a) =

∫
da f0 +

∫
da a f1

= f0

∫
da 1 + f1

∫
da a∫

da f(a+ b) =

∫
da f0 +

∫
da (a+ b) f1

= f0

∫
da 1 + f1

∫
da a+ b f1

∫
da 1

and from the translation invariance requirement (1.44)∫
da a = N b f1

∫
da 1 ≡ 0 ( ∀ b ∈ G ) (1.46)

One can always choose the normalization constant N such that∫
da a = 1

2Of course complex Graßmann numbers are understood to be of the kind a + ib with
a, b ∈ G.
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But then, translation invariance just requires∫
da 1 = 0

Hence ∫
da f(a) = f1 =

d

da
f(a) ∀ f : G → R

which manifestly shows that for a real functions of a Graßmann variable the
integration just coincides with right differentiation.

As a straightforward generalization for any real function of many Graßmann
variables, it is natural to define multiple integrals by iteration. Thus, e.g. , a
complete integration table for the four linearly independent functions of two
anti-commuting variables a and ā is provided by

∫
da

∫
d ā


ā a = 1
ā = 0
a = 0
1 = 0

(1.47)

with {a, a} = {ā, ā} = {a, ā} = 0 . As an application of this table we can
calculate ∫

da

∫
d ā exp{λ ā a} =

∫
da

∫
d ā (1 + λ ā a) = λ (1.48)

The generalization to higher dimensional spaces is easy. Consider for example
some n× n Hermitean matrix A = A† and two collections of n of Graßmann
variables

{θi , θj} = {θi , θ̄j} = {θ̄i , θ̄j} = 0 ( i, j = 1, 2, . . . , n)

Then a unitary n× n matrix always exists such that

U †AU = diag(λ1, λ2, . . . , λn) λj ∈ R (j = 1, 2, . . . , n)

As a consequence, if we set

a = U θ ā = θ̄ U †

so that

{ai , aj} = {ai , āj} = {āi , āj} = 0 ( i, j = 1, 2, . . . , n) (1.49)
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then we can write

I =

∫
dna

∫
dnā exp{āAa}

= det (U †U)

∫
dnθ

∫
dnθ̄ exp{θ̄ U †AU θ}

≡
n∏
j=1

∫
dθj

∫
d θ̄j exp{λj θ̄j θj}

=
n∏
j=1

∫
dθj

∫
d θ̄j

(
1 + λj θ̄j θj

)
=

n∏
j=1

λj = detA (1.50)

As a further application, consider the Taylor’s expansion for a function of the
two collections of n of Graßmann variables (ā, a) satisfying (1.49): namely,

f(ā, a) = f0 +
n∑
=1

ā f̄1 +
n∑
ı=1

aı f1ı +
n∑
ı=1

n∑
=1

ā aı f2ı (1.51)

where

f̄1 =

(
∂f

∂ā

)
0

≡ ∂

∂ā
f(ā, a)

⌋
ā=a=0

f1ı =

(
∂f

∂aı

)
0

≡ ∂

∂aı
f(ā, a)

⌋
ā=a=0

f2ı =

(
∂ 2f

∂aı∂ā

)
0

=
∂ 2f

∂aı∂ā

⌋
ā=a=0

Notice that, for example, if f ∈ R then we have f0, f2ı ∈ R ( ı,  = 1, . . . , n),
while f̄1, f1ı ∈ G ( ı,  = 1, . . . , n). Then we obtain for instance∫

da

∫
d ā

∂

∂ā
f(ā, a) =

∫
da

{
f̄1 −

n∑
ı=1

aı f2ı

}∫
d ā ≡ 0

and in general∫
da

∫
d ā [ ∂f(ā, a)/∂ā ] = 0 (∀  = 1, 2, . . . , n ) (1.52)∫

da

∫
d ā [ ∂f(ā, a)/∂a ı ] = 0 (∀ ı = 1, 2, . . . , n ) (1.53)
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1.2.3 The Functional Integral for Fermions

Consider now the straightforward generalization of the functional integral
representation (1.10) to the fermion case: namely,

Z0 [ ζ , ζ ] =

∫
Dψ

∫
Dψ Z̃0

[
ψ , ψ

]
× exp

{
i
∫

dx
[
ζ̄(x)ψ (x) + ψ̄ (x) ζ(x)

]}
(1.54)

where we understand once again formally∫
Dψ

∫
Dψ̄ :=:

∏
x∈M

∫
dψx

∫
d ψ̄x

Inserting into (1.40) and (1.41) and making use of (1.52) and (1.53) we are
allowed to identify

Z̃0

[
ψ , ψ

]
= N exp

{
(i/~)S0 [ ψ̄ , ψ ]

}
(1.55)

and by comparison with (1.42) we find

Z0

[
ζ , ζ

]
= exp

{
−
∫

dx
∫

dy ζ̄ (x)SF (x− y) ζ (y)
}

:=: N
∫

Dψ

∫
Dψ̄ exp

{
(i/~)S0 [ ψ̄ , ψ ]

}
× exp

{
i
∫

dx
[
ζ̄(x)ψ (x) + ψ̄ (x) ζ(x)

]}
(1.56)

S0 [ ψ̄ , ψ ] =
∫

dx ψ̄ (x) (i ∂/−M) ψ (x)

Proof. As a matter of fact, from eq. (1.40) we obtain[
ζ (x) + ( i ∂/x −M ) δ/iδ ζ̄ (x)

]
Z0

[
ζ , ζ

]
= N

∫
Dψ

∫
Dψ̄ [ ζ (x) + (i ∂/x −M) ψ (x) ]

× exp
{

(i/~)S0 [ ψ̄ , ψ ] + i
∫

dy
[
ζ̄(y)ψ (y) + ψ̄ (y) ζ(y)

]}
= N

∫
Dψ

∫
Dψ̄

(
δ/iδ ψ̄(x)

)
× exp

{
(i/~)

∫
dy
[
ψ̄(y) (i ∂/y −M)ψ(y) + ~ ζ̄(y)ψ(y) + ~ ψ̄(y)ζ(y)

]}
= 0

owing to the general identity (1.52). Quite analogously we still recover a null result from

the application of (1.53) to the adjoint Symanzik functional differential equation (1.41).

This completes the proof of the above statements. �

As I did in the case of the scalar field, the functional measure DψDψ̄ ,
which is a formal entity until now, can be implemented by the requirement of
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invariance under field translations 3 ψ(x) 7→ ψ(x) + θ(x) , ψ̄(x) 7→ ψ̄(x) +
θ̄(x) . Once translation invariance is assumed, let us change the integration
variables according to

ψ (x) 7→ ψ ′(x) = ψ (x) + (i ∂/−M)−1 ζ (x)

= ψ (x)− i
∫

dy SF (x− y) ζ (y)

= ψx − 〈 i Sxy ζ y 〉 (1.57)

ψ̄ (x) 7→ ψ̄ ′(x) = ψ̄ (x)− ζ̄ (x)(
←
i ∂/ +M )−1

= ψ̄ (x) + i
∫

dy ζ̄ (y) S̄F (y − x)

= ψ̄x + 〈 i ζ̄ y S̄ yx 〉 (1.58)

where use has been made of the adjoint Dirac equation. Then we get

Z0

[
ζ , ζ

]
:=: Z0 [ 0 , 0 ] exp

{
− i
∫

dx
∫

dy ζ̄ (x) (i ∂/−M)−1 ζ (y)
}

= Z0 [ 0 , 0 ] exp
{
−
∫

dx
∫

dy ζ̄ (x)SF (x− y) ζ (y)
}

and consistently Z0[0, 0] = 〈0|0〉 :=: N
∫
Dψ

∫
Dψ̄ exp

{
(i/~)S0[ψ̄, ψ]

}
= 1.

Proof : the formal expression (1.56) can be suitably rewritten as

Z0

[
ζ , ζ

]
:=: N

∏
x∈M

∫
dψ x

∫
d ψ̄ x exp

{
(i/~) ψ̄ x (i ∂/ x −M)ψ x + i ψ̄ x ζ x + i ζ̄ x ψ x

}
Then, once again, it is very convenient to perform the change of variables

ψ x = ψ ′x + 〈 i S xy ζ y 〉 dψ x = dψ ′x

ψ̄ x = ψ̄ ′x − 〈 i ζ̄ y S̄ yx 〉 d ψ̄ x = d ψ̄ ′x

in such a manner that we have∫
dψ x

∫
d ψ̄ x exp

{
(i/~) ψ̄ x (i ∂/ x −M)ψ x + i ψ̄ x ζ x + i ζ̄ x ψ x

}
=

∫
dψ x

∫
d ψ̄ x exp

{
(i/~)

(
ψ̄ ′x − 〈 i ζ̄ y S̄ yx 〉

)
(i ∂/ x −M) (ψ ′x + 〈 i S xz ζ z 〉)

}
× exp

{
i ψ̄ ′x ζ x + i ζ̄ x ψ

′
x + 〈 ζ̄ y S̄ yx 〉 ζ x − ζ̄ x 〈S xy ζ y 〉

}
and from the first equality

ψ̄ ′x (i ∂/ x −M) 〈 i S xz ζ z 〉 = − ψ̄ ′x ζ x

together with the second conditioned equality

〈 i ζ̄ y S̄ yx 〉 (i ∂/ x −M)ψ ′x

= − (∂/∂xµ )
[
〈 ζ̄ y S̄ yx 〉 γ µ ψ ′x

]
− 〈 i ζ̄ y S̄ yx 〉 (

←
i ∂/ x +M )ψ ′x

=̇ −〈 i ζ̄ y S̄ yx 〉 (
←
i ∂/ x +M )ψ ′x = ζ̄ x ψ

′
x

3It is worthwhile to recall that translation invariance is one of the axioms which define
the integration over the Graßmann variables.
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which is true by neglecting the four divergence term, we can eventually write

exp
{

(i/~)
(
ψ̄ ′x − 〈 i ζ̄ y S̄ yx 〉

)
(i ∂/ x −M) (ψ ′x + 〈 i S xz ζ z 〉)

}
=̇ exp

{
(i/~) ψ̄ ′x ( i ∂/ x −M )ψ ′x − i ψ̄ ′x ζ x − i ζ̄ x ψ

′
x + 〈 ζ̄ y S̄ yx 〉 ζ x

}
Hence, collecting altogether we come to the double integral∫

dψ x
∫

d ψ̄ x exp
{

(i/~) ψ̄ x (i ∂/ x −M)ψ x + i ψ̄ x ζ x + i ζ̄ x ψ x
}

=̇ exp
{
− ζ̄ x 〈S xy ζ y 〉

} ∫
dψ ′x

∫
d ψ̄ ′x exp

{
(i/~) ψ̄ ′x (i ∂/ x −M)ψ ′x

}
(∀x ∈M )

and thereby

N
∏
x∈M

∫
dψ x

∫
d ψ̄ x exp

{
(i/~) ψ̄ x (i ∂/ x −M)ψ x + i ψ̄ x ζ x + i ζ̄ x ψ x

}
=̇

∏
x∈M

exp
{
− ζ̄ x 〈S xy ζ y 〉

}
N
∏
z∈M

∫
dψ ′z

∫
d ψ̄ ′z exp

{
(i/~) ψ̄ ′z (i ∂/ z −M)ψ ′z

}
=

∏
x∈M

exp
{
− ζ̄ x 〈S xy ζ y 〉

}
N
∫

Dψ ′
∫

Dψ̄ ′ exp
{

(i/~)S0 [ ψ̄ ′ , ψ ′ ]
}

= exp
{
−
∫

dx
∫

dy ζ̄(x)SF (x− y) ζ(y)
}
Z0 [ 0 , 0 ] = Z0 [ ζ , ζ̄ ]

which completes the proof. �

To the aim of giving some precise mathematical meaning to the above
expression, it is convenient to turn to the Euclidean formulation just like I
did in the case of the real scalar field – see formula (1.18). Then, taking the
Dirac Euclidean Action into account, we can consider

Z
(0)
E [ 0 , 0 ] = N

∫
DψE

∫
Dψ̄E exp

{
i
∫

dxE ψ̄E (i ∂/E + iM) ψE
}

After rescaling
ψ ′E , x = iµ ψE , x

where µ is some arbitrary mass scale, the we can write

Z
(0)
E [ 0 , 0 ] =

N ′
∏

xE ∈R 4

∫
dψ ′Ex

∫
dψ̄Ex exp

{
ψ̄Ex (i ∂/Ex + iM)µ−1ψ ′Ex

}
def
= N ′ det ‖ (i ∂/E + iM)/µ ‖ (1.59)

which can be understood as a formal continuous generalization of the formula
(1.50) that represents a determinant. Nevertheless, it should be noticed that
the Euclidean Dirac operator (i ∂/E + iM) is not Hermitean but only normal,
i.e. , it commutes with its adjoint [ i ∂/E − iM , i ∂/E + iM ] = 0 .
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This fact in turn implies that the Euclidean Dirac operator i ∂/E + iM
also commutes with the positive definite diagonal operator

(i ∂/E − iM)(i ∂/E + iM) =
(
M2 − ∂Eµ ∂Eµ

)
I = (i ∂/E + iM)(i ∂/E − iM)

that means
[ i ∂/E ± iM , M2 − ∂Eµ ∂Eµ ] = 0

where the eigenfunctions and the eigenvalues of the Euclidean Klein-Gordon
operator are respectively given by

φE , p (xE) = (2π)−2 exp{ ipEµxEµ} λ (pE) = p2
E +M 2 > 0

Notice that the normal operator i ∂/E + iM is also non-singular, since we have

(i ∂/E + iM)−1 = (i ∂/E − iM)
(
M2 − ∂Eµ ∂Eµ

)−1

From the explicit form

i ∂/E + iM =


iM 0 i∂4 + ∂3 ∂1 − i∂2

0 iM ∂1 + i∂2 i∂4 − ∂3

i∂4 − ∂3 −∂1 + i∂2 iM 0
−∂1 − i∂2 i∂4 + ∂3 0 iM


it can be readily checked by direct inspection that

det ‖ (i ∂/E + iM)/µ ‖=
(

det ‖
(
M2 − ∂ 2

E

)
/µ2 ‖

)2

so that from the Zeta function definition (1.28) we eventually obtain

det ‖ (i ∂/E + iM) /µ ‖ = exp

{
VM4

8π 2

(
ln
M

µ
− 3

4

)}
(1.60)

and again the transition to the Minkowski space can be immediately done
by simply replacing Veuclidean ↔ i Vminkowskian so that

det ‖ (i ∂/−M) /µ ‖ = exp

{
iV M4

8π 2

(
ln
M

µ
− 3

4

)}
(1.61)

Turning back to (1.59) we eventually have

Z
(0)
E [ 0 , 0 ] = 1 ⇐⇒ N ′ ≡ exp

{
− VM

4

8π 2

(
ln
M

µ
− 3

4

)}
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The conclusion of all the above formal reasoning is as follows: we are allowed
to define the functional integral for a free Dirac spinor quantum field theory
by the equality

Z0

[
ζ , ζ

]
= exp

{
−
∫

dx

∫
dy ζ̄ (x)SF (x− y) ζ (y)

}
def
= N

∫
Dψ

∫
Dψ̄ exp

{
(i/~)S0 [ ψ̄ , ψ ]

}
× exp

{
i

∫
dx
[
ζ̄(x)ψ (x) + ψ̄ (x) ζ(x)

]}
(1.62)

where

S0 [ ψ̄ , ψ ] =

∫
dx ψ̄ (x) (i ∂/−M) ψ (x)

N = constant× det ‖ i ∂/−M ‖−1

def
= exp

{
VM4

8iπ 2

(
ln
M

µ
− 3

4

)}
(Zeta regularization)

Z0 [ 0 , 0 ] = N
∫

Dψ

∫
Dψ̄ exp

{
(i/~)S0 [ ψ̄ , ψ ]

}
= 1 = 〈 0 | 0 〉

It is clear that, by construction, the functional integral for a free Dirac spinor
quantum field theory does satisfy all the requirements of linearity, translation
invariance, rescaling and integration by parts which I have discussed in the
case of the real scalar field.

1.3 The Vector Generating Functional

Finally I want to set up the generating functional for the massive real vector
free field theories. This can be done by a straightforward generalization of
the real scalar field case. We recall that the most general Lagrangian in a
linear covariant gauge reads

LA ,B = − 1

4
F µν(x)Fµν(x) +

m2c 2

2}2
Aν(x)Aν(x)

+ Aµ(x) ∂µB(x) +
ξ

2
B 2(x)

where the vector field Aµ(x) has canonical dimensions [Aµ ] =
√

eV/cm
in physical units, whereas B(x) is an auxiliary nonphysical scalar field of

canonical engineering dimension [B ] = erg
1
2 cm−

3
2 , while the dimensionless
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parameter ξ ∈ R is named the gauge fixing parameter, the Abelian field
strength being as usual Fµν(x) = ∂µAν(x)−∂νAµ(x) , in such a manner that
the Action S =

∫
dt
∫

dxL turns out to be Poincaré invariant. In particular,
we can conveniently define

uA(x)
def
= (Aµ(x) , B(x) ) A = (µ , • )

jA(x)
def
= ( Jµ(x) , K(x) )∫

dx uA(x) jA(x) =

∫
d
[
Aµ(x) Jµ(x) +B(x)K(x)

]
so that we have a five dimensional diagonal metric tensor

gAB = gAB = diag(+1,−1,−1,−1,+1)

The classical Action can be written in the form

S 0[u ] = − 1

2

∫
dxuA(x)KAB u

B(x)

with

Kµν = − gµν
(
�+m 2

)
+ ∂µ ∂ν Kµ • = − ∂µ K • • = − ξ

The kinetic operator KAB can be uniquely inverted by means of the causal
+ iε prescription leading to the causal Green’s function

D
(c)
AB (x− y ; m, ξ ) =

∫
d4k

(2π)4
D̃

(c)
AB ( k ; m, ξ ) e− ik·(x−y)

D̃ F
µν ( k ; m, ξ ) =

i

k 2 −m 2 + i ε

{
− gµν +

(1− ξ) kµ k ν
k 2 − ξ m 2 + i ε ′

}
D̃ F

ν • (k ; m, ξ) =
− k ν

k 2 − ξ m 2 + i ε ′

D̃ F
• • (k ; m, ξ) =

− im 2

k 2 − ξ m 2 + i ε ′

In fact we have

K ρ
µ D F

ρσ(x) +Kµ •D
F
σ •(x) = − i gµσ δ(x)

g µν Kµ •D
F
ν •(x)− ξ D F

• •(x) = − i δ(x)
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and in the Fourier space{
δ ρµ −

kµ k
ρ

k 2 −m 2 + i ε

}{
− gρσ +

(1− ξ) kρ kσ
k 2 − ξ m 2 + i ε ′

}
− kµ kσ
k 2 − ξ m 2 + i ε ′

= − gµσ +
(1− ξ) kµ kσ

k 2 − ξ m 2 + i ε ′
+

kµ kσ
k 2 −m 2 + i ε

− k 2

k 2 −m 2 + i ε
· (1− ξ) kµ kσ
k 2 − ξ m 2 + i ε ′

− kµ kσ
k 2 − ξ m 2 + i ε ′

= − gµσ + kµ kσ
[ (
k 2 −m 2 + i 0

) (
k 2 − ξ m 2 + i 0

) ]−1

×
{

(1− ξ)(k 2 −m 2) + k 2 − ξ m 2 − (1− ξ) k 2 − k 2 +m 2
}

= − gµσ

− i k 2

k 2 − ξ m 2 + i ε ′
+

i ξ m 2

k 2 − ξ m 2 + i ε ′
= − i

This means that we can write

gBC KAB iD
(c)
CD (x− y ;m, ξ ) = gAD δ

(4)(x− y)

and thereby

Z0[ j ] =

〈
T exp

{
i

∫
d4xuA(x) j A(x)

}〉
0

= exp
{
− 1

2

∫
d4x

∫
d4y D

(c)
AB(x− y) j A(x) j B(y)

}
= N

∫
DuA exp

{
(i/})S 0[u ] + i

∫
d4x uA(x) jA(x)

}
with

Z0[ 0 ] = N
∫

DuA exp {(i/})S0[u ]} = 1

Turning to the Euclidean formulation in the usual way

x4 = ix0 A4(xE) = − i A0 (− ix4,x)

− gµν xµx ν = x 2
E − gµν A

µ(x)Aν(x) = AEµ(xE)AEµ(xE)

et cetera, we find

Z
(0)
E [ 0 ] = N

∫
DAEµ

∫
DBE exp

{
−S (0)

E [AEµ , BE ]
}

= 1

where

S
(0)
E [AEµ , BE ] =

∫
d4xE

{
AEµ ∂EµBE + 1

2
ξ B 2

E

+ 1
2
AEµ [ (m2 − ∂ 2

E) δµν + ∂Eµ ∂Eν ]AEν

}
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After re-scaling with an arbitrary mass scale µ

AEµ 7→ A ′Eµ = µAEµ

we come to fully dimension-less kinetic operator

Z
(0)
E [ 0 ] = exp

{
− 1

2

∫
d4xE uA(xE)K AB

E uB(xE)

}
= N ′ det ‖ KE ‖− 1/2

KE = µ−2

 (m 2 − ∂λ∂λ) δλν + ∂λ ∂ν µ ∂ρ
µ ∂ρ µ 2ξ


Hence, for ξ µ2 + 4m2 > 0, from the ζ−regularisation technique we obtain

TrK − sE
def
= VE µ

2s

∫
d4kE
(2π)4

(trKE)− s

= VEµ
2s

∫
d4kE
(2π)4

(
4m2 + 3k 2 + ξ µ 2

)−s
=

VEµ
2s

144π2Γ(s)

∫ ∞
0

dt t s−3 exp
{
−t
(

4m2 + ξ µ 2
)}

=
m 4VE
9π2

(
1 +

ξµ 2

4m2

)2(
4m2

µ2
+ ξ

)− s
Γ(s− 2)

Γ(s)

=
m 4VE
9π2

(
1 +

ξµ 2

4m2

)2(
4m2

µ2
+ ξ

)− s
(s2 − 3s+ 2)−1

Hence

d

ds
TrK− sE = (s2 − 3s+ 2)−1 TrK− sE

×
[

3− 2s− (s2 − 3s+ 2) ln
(4m2

µ 2
+ ξ
) ]

and thereby

ln det‖ KE ‖ =
m 4VE
9π2

(
1 +

ξµ 2

4m2

)2 [
1

2
ln

(
4m2

µ2
+ ξ

)
− 3

4

]
so that the normalization condition Z

(0)
E [ 0 ] = 1 yields

N ′ ≡ exp

{
m4VE
18π2

(
1 +

ξµ 2

4m2

)2 [
1

2
ln

(
4m2

µ2
+ ξ

)
− 3

4

]}
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Finally, the transition to the Minkowski space can be immediately done by
simply replacing Veuclidean ↔ i Vminkowskian which leads to the final result

Z0[ j ] =

〈
T exp

{
i

∫
d4xuA(x) j A(x)

}〉
0

= exp
{
− 1

2

∫
d4x

∫
d4y D

(c)
AB(x− y) j A(x) j B(y)

}
= N

∫
DuA exp

{
(i/})S0[u ] + i

∫
d4xuA(x) jA(x)

}
N (m, ξ;µ) = constant × ( detKAB )

1
2

def
= exp

{
im4 V

18π2

(
1 +

ξµ 2

4m2

)2 [
1

2
ln

(
4m2

µ2
+ ξ

)
− 3

4

]}

Notice that the limit for m→ 0 is regular and yields

lim
m→ 0

N (m, ξ;µ) = exp

{
i µ4 ξ 2

288π2

(
1

2
ln ξ − 3

4

)
V

}
and in the Feynman gauge ξ = 1 for the massless theory

lim
ξ→ 1+

lim
m→ 0

N (m, ξ;µ) = exp

{
− i µ4V

384π2

}
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Chapter 2

The Feynman Rules

We are now in order to develop perturbation theory, which will provide the
fundamental tool to calculate the probability amplitudes for all the physical
processes involving relativistic quantized fields in mutual interaction. This is
precisely the ambitious final task of the quantum theory of relativistic wave
fields. In this aim, I will consider the paradigmatic and simplest cases of the
self-interacting real scalar field, together with the Dirac field interacting á la
Yukawa, the generalizations to any other set of mutually interacting fields of
any mass, spin and charges being admittedly straightforward.

2.1 Connected Green’s Functions

Let me start from the simplest model, i.e. the Z2 symmetric self-interacting
real scalar field theory, which is known as the λφ4

4 theory. We recall the
classical Action for the real scalar relativistic wave field, that is

S [φ ] = S0 [φ ]− V [φ ]

S0 [φ ] =
1

2

∫ ∞
−∞

dt

∫
dx

{
∂µφ(x)∂ µφ(x)−

(mc
}

)2

φ 2(x)

}

V [φ ] =
1

4!
· λ
}c

∫ ∞
−∞

dt

∫
dxφ 4(t,x)

where we have to pay attention to the fact that, owing to dimensional reasons,
the reduced Planck constant } already appears to the power minus one in
the classical potential V [φ ] . Then the Euler-Lagrange field equations read[

�+ (mc/})2
]
φ(x) + (λ/6}c)φ3(x) = 0 (2.1)
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which are non linear second order differential equations. It turns out that
still nowadays nobody knows any nontrivial solution of the above classical self-
interacting field equation. This complete ignorance about the dynamics of
a self-interacting classical field has profound consequences on the quantum
theory. As a matter of fact, there is no idea on how an interacting quantum
field operator could be truly built up. One might assume that

1. the self-interacting quantum scalar field φ(x) is an operator valued
tempered distribution which satisfies (2.1)

2. a conjugate momentum operator valued tempered distribution exists

cΠ(x) = ∂0φ(x)

such that the customary canonical equal time commutation relation are
still fulfilled: namely,

[φ(x), φ(y) ]x0=y0 = 0 [ Π(x),Π(y) ]x0=y0 = 0

[φ(x),Π(y) ]x0=y0 = i} δ(x− y)

3. a unique non-degenerate cyclic vacuum state |O 〉 exists such that
〈O | φ(x) |O 〉 = 0 with 〈O |O 〉 = 1

4. the Green’s functions

G (n)(x1, x2, . . . , xn) ≡ 〈O |Tφ(x1)φ(x2) · · ·φ(xn) |O 〉

are well defined tempered distributions

Once again, in spite of many ingenious attempts, ranging from the so
called constructive quantum field theory of the early sixties until the lattice
Wilsonian formulation of quantum field theory of the late eighties of the
20th century, yet nobody knows if and to what extent the above simple
basic assumptions can be actually realized in a concrete operative and non-
perturbative framework on the four dimensional Minkowski space.

None the less, what we aim to evaluate is the generating functional for
the self-interacting real scalar field theory, which is defined to be

Z [ J ] = 〈O |T exp
{
i
∫

dx φ(x) J(x)
}
|O 〉

def
=

∞∑
n=0

in

n!

∫
dx1 J(x1) · · ·

∫
dxn J(xn)

× 〈O | T φ(x1) · · ·φ(xn) |O 〉 (2.2)
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where J(x) is the classical source with engineering dimensions [ J ] = eV3

in natural units. The vacuum expectation values of chronological ordered
products of n scalar field operators at different space-time points are named
the n−point Green functions of the field theory. By construction, the latter
ones can be expressed as functional derivatives of the generating functional

G(n)(x1, · · · , xn) ≡ 〈O | T φ(x1) · · ·φ(xn) |O 〉 (2.3)

= (− i)n δ (n)Z [ J ]/δJ(x1) · · · δ J(xn)
⌋
J=0

We remind that taking one functional derivative of the generating functional
(1.1) we find

δZ [ J ]

iδ J(x)
=
〈
T φ(x) exp

{
i
∫

dy φ(y) J(y)
} 〉

O
(2.4)

The generating functional for the Klein-Gordon quantum field – which
corresponds to λ = 0 – has been explicitly computed in the first part of these
notes. Moreover, its functional integral representation has been obtained
after transition to the Euclidean formulation and the use of the ζ−function
regularization: namely,

Z0 [ J ] = 〈 0 | T exp
{
i
∫

dx φ(x) J(x)
}
| 0 〉

= exp
{
− 1

2

∫
dx
∫

dy J(x)DF (x− y) J(y)
}

def
= N0

∫
Dφ exp

{
i

~
S0 [φ ] + i

∫
dx φ(x) J(x)

}
S0 [φ ] = − 1

2

∫
dx φ(x) (�+m2 − iε) φ(x)

N0 =
√

det ‖{(~/c)2�+m2}/µ2 ‖
def
= exp

{
( Volume )

im4c4

32π 2~4

(
ln
m

µ
− 3

4

)}
Z0 [ 0 ] = N0

∫
Dφ exp{(i/~)S0 [φ ]} = 1

It is immediate to gather that

V [δ /i δ J ]Z0 [ J ] = N0

∫
Dφ V [φ ] exp

{
i

~
S0 [φ ] + i

∫
dx φ(x) J(x)

}
in such a manner that I can formally define the generating functional for the
real self-interacting scalar field theory as follows

Z [ J ] = 〈O |T exp
{
i
∫

dx φ(x) J(x)
}
|O 〉
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= N
∫

Dφ exp

{
i

~
S [φ ] + i

∫
dx φ(x) J(x)

}
= N

∫
Dφ exp

{
− i

~
V [φ ]

}
exp

{
i

~
S0 [φ ] + i

∫
dxφ(x)J(x)

}
def
= ν exp

{
− i

~
V [δ /i δ J ]

}
Z0 [ J ] (2.5)

where ν ≡ N /N0 . Notice that since

Z[ 0 ] = 〈O | O 〉 = 1 = Z0[ 0 ] = 〈 0 | 0 〉

it follows that also the ratio ν must be a function of λ such that

lim
λ→ 0

ν(λ) = 1

Notice en passant that the Fock vacuum state of the Klein-Gordom quantum
field and the corresponding unique cyclic state of the self-interacting quantum
scalar field are expected to be connected by some unitary transformation

|O 〉 = U | 0 〉 U U † = I = U † U

To go one step further it is convenient to define

Z [ J ] = exp {( i/~)W [ J ]} Z0 [ J ] = exp {( i/~)W0 [ J ]}

and thereby

Z [ J ] = Z0 [ J ] exp {− ( i/~)W0 [ J ]} ν exp {(− i/~)V [δ /i δ J ]}Z0 [ J ]

= ν exp {( i/~)W0 [ J ]}
[

1 + exp {− ( i/~)W0 [ J ]}

×
(

exp {(− i/~)V [δ /i δ J ]} − 1
)

exp { iW0 [ J ]}
]

= exp {( i/~)W [ J ]}

Taking the logarithm of the above relation we find

W [ J ] = W0 [ J ]− i~ ln ν − i~ ln
(

1 +X [ J ]
)

(2.6)

X [ J ] = e− ( i/~)W0 [ J ]
[

e−( i/~)V [δ /i δ J ] − 1
]

e( i/~)W0 [ J ] (2.7)

By formally expanding ln(1+X) in Taylor’s series, on the one side we obtain

i

~
W =

i

~
W0 + ln ν +X − 1

2
X 2 +

1

3
X 3 − · · ·

=
i

~
W0 + ln ν +

∞∑
k=1

(−1)k+1 X
k

k
(2.8)
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On the other side we can in turn expand the dimensionless quantity X as
a power series of the dimensionless small coupling parameter 0 ≤ λ < 1 so
that we can write

X = λX1 + λ2X2 + λ3X3 + · · · (2.9)

in such a manner that we finally come to the formal expansion

i

~
W =

i

~
W0 + ln ν +

(
λX1 + λ2X2 + λ3X3 · · ·

)
− 1

2

(
λX1 + λ2X2 + · · ·

)2

+ 1
3

(
λX1 + λ2X2 + . . .

)3

+ · · ·

=
i

~
W0 + λX1 + λ2

(
X2 −

1

2
X 2

1

)
+ λ3

(
X3 −X2X1 +

1

3
X 3

1

)
+ · · · · · · =

i

~
W0 + ln ν +

∞∑
n=1

λn Yn (2.10)

Y 1 = X1

Y 2 = X2 −
1

2
X 2

1

Y 3 = X3 −X2X1 +
1

3
X 3

1

...

the dimensionless coefficients Yn being the so called connected parts of the
related quantities Xn (n ∈ N) . Hence, within the perturbative approach,
the quantity Z [ J ] will provide the generating functional for the full Green’s
function of the interacting theory, while the functional W [ J ] = − i ln Z [ J ]
will generate the connected Green’s functions. The attentive reader should
certainly catch the analogy with statistical thermodynamics. As a matter
of fact, the partition function Z and the Helmoltz free energy F do fulfill a
very close relation in units of kBT , kB being the Boltzmann constant and T
the (absolute) temperature: namely, β F = − ln Z ( β = 1/kBT = 1 ) . This
means that, after transition to the Euclidean formulation, we can identify the
generating functional ZE [ JE ] with the canonical partition function and the
functional WE [ JE ] = − ln ZE [ JE ] with the Helmoltz free energy F (T, V )
at some given equilibrium temperature, in natural units β = 1 . Hence the
Euclidean Green’s functions will correspond to the correlation function of the
corresponding mechanical system in thermodynamic equilibrium with a heat
reservoir at unit temperature. The above analogy does provide the bridge to
formulate and develop the statistical theory of the phase transitions in terms
of the very same conceptual and mathematical tools which lie on the ground
of relativistic quantum field theory.
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Turning back to natural units and to the definitions (2.7), (2.8) and (2.9)
it is convenient to introduce the following shorter notations: namely,

X 1 [ J ] = − i

4!
e− iW0 [ J ]

∫
dx

δ 4

δJ 4
x

Z0 [ J ] = Y 1 [ J ]

X 2 [ J ] =
1

2

(
− i

4!

)
e− iW0 [ J ]

∫
dy

δ 4

δJ 4
y

(
Z0 [ J ] X 1 [ J ]

)
(2.11)

...

W0 [ J ] =
i

2

∫
dx

∫
dy J(x)DF (x− y) J(y) ≡ i

2
〈 JxDxy Jy 〉

Hence we can write

X 1 = Y 1 =

(
− i

4!

)
e− iW0 [ J ]

∫
dz

δ 4

δJ 4
z

exp
{
− 1

2
〈 JxDxy Jy 〉

}
Let me evaluate this expression: first we find

e− iW0 [ J ] δ

δ J z
Z0 [ J ] = −〈Dzx Jx 〉

e− iW0 [ J ] δ 2

δ J 2
z

Z0 [ J ] = −DF (0) + 〈Dzx Jx 〉2

e− iW0 [ J ] δ 3

δ J 3
z

Z0 [ J ] = 3DF (0) 〈Dzx Jx 〉 − 〈Dzx Jx 〉3

so that we finally obtain

iY 1[ J ] =
1

4!
e− iW0[ J ]

∫
dx

δ 4

δ J 4
x

Z0[ J ] =
1

8

∫
dx D 2

F (0)

− 1

4

∫
dxDF (0)

∫
dx1

∫
dx2DF (x− x1)DF (x− x2)J(x1)J(x2)

+
1

24

∫
dx

4∏
k=1

∫
dxk DF (x− xk) J(xk)

or equivalently but in terms of the shorthand notation

Y 1 [ J ] =

(
− i

4!

)∫
dx
(

3D 2
F (0)− 6DF (0) 〈Dx1Dx2 J1 J2 〉

+ 〈Dx1Dx2Dx3Dx4 J1 J2 J3 J4 〉
)

(2.12)
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which leads to the first order O(λ) correction to the generating functional of
the connected Green’s functions

W [ J ] ≈ − i ln ν +W0[ J ]− iλ Y 1 [ J ] = i lnN0 − i lnN

+ W0[ J ]− λ

4!

∫
dx
(

3D 2
F (0)− 6DF (0) 〈Dx1Dx2 J1 J2 〉

+ 〈Dx1Dx2Dx3Dx4 J1 J2 J3 J4 〉
)

(2.13)

It follows that the lowest order result for the source-independent quantity

lnZ[ 0 ] =
i

~
W [ 0 ] = 0 = ln ν + λY 1 [ 0 ] + · · ·

that drives to

lnN = lnN0 −
iλ

8
D 2
F (0)

∫
d4x+ · · ·

which appears to be a divergent (both infrared and ultraviolet) correction to
the normalization constant

N −1 =

∫
Dφ exp

{
i

~
S [φ ]

}
(2.14)

due to the real scalar field self-interaction: namely,

N = exp

{
iV m 4

8π 2

[
1

4

(
ln
m

µ
− 3

4

)
+ λ

π 2

m 4
D 2
F (0) + . . .

]}
(2.15)

where V stands for the measure of a very large box in Minkowski space - an
infrared divergent quantity which is already present in N0 - while

DF (0) =
i

(2π)4

∫
d4k

k2 −m2 + iε

is an ill-defined ultraviolet divergent quantity, as we shall closely analyze later
on. Hence, it turns out that even in the perturbative calculation of the
normalization constant of the generating functional, even to the lowest order
approximation, one has to face the problem of dealing with the so called
ultraviolet divergences.

Next we have to calculate X 2 . The straightforward generalization of the
symbolic Leibnitz chain rule to the functional differentiation reads

δ n

δJ n
(Z0X 1 ) = (Z0 +X 1 )(n)

= Z0
δ n

δJ n
X 1 +

(
n

1

) (
δ

δJ
Z0

)
δ n−1

δJ n−1
X 1

+

(
n

2

) (
δ 2

δJ 2
Z0

)
δ n−2

δJ n−2
X 1 + · · · +

(
δ n

δJ n
Z0

)
X 1
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and in particular

δ 4

δJ 4
(Z0X 1 ) = Z0

δ 4

δJ 4
X 1 + 4

(
δ

δJ
Z0

)
δ 3

δJ 3
X 1

+ 6

(
δ 2

δJ 2
Z0

)
δ 2

δJ 2
X 1 + 4

(
δ 3

δJ 3
Z0

)
δ

δJ
X 1 +

(
δ 4

δJ 4
Z0

)
X 1

Then, from equation (2.11) we readily get

X 2 =
1

2
Y 2

1 + Y 2 X 2 −
1

2
X 2

1 = Y 2

Y 2 =
1

2

(
− i

4!

)
e− iW0

∫
dz

{
Z0

δ 4

δJ 4
z

+ 4

(
δ

δJ z
Z0

)
δ 3

δJ 3
z

+ 6

(
δ 2

δJ 2
z

Z0

)
δ 2

δJ 2
z

+ 4

(
δ 3

δJ 3
z

Z0

)
δ

δJ z

}
Y 1 [ J ] (2.16)

Taking the functional derivatives of equation (2.12) we find

δ

δJ z
Y 1 [ J ] = − i

4!

∫
dx
(
− 12DF (0)DF (x− z) 〈 Dx1 J1 〉

+ 4DF (x− z) 〈Dx1Dx2Dx3 J1 J2 J3 〉
)

δ 2

δJ 2
z

Y 1 [ J ] =
1

2i

∫
dx D 2

F (x− z)
(
− DF (0) + 〈Dx1Dx2 J1 J2 〉

)
δ 3

δJ 3
z

Y 1 [ J ] = − i
∫

dx D3
F (x− z) 〈Dx1 J1 〉

δ 4

δJ 4
z

Y 1 [ J ] = − i
∫

dx D4
F (x− z) (2.17)

so that explicit term-by-term evaluation yields

1

2

(
− i

4!

)∫
dz

δ 4

δJ 4
z

Y 1 [ J ] =
− 1

2(4 !)

∫
dx

∫
dy D 4

F (x− y)

(
− i

4!

)
2

Z0

∫
dz

(
δ

δJ z
Z0

)
δ 3

δJ 3
z

Y 1 =

4

2(4!)

∫
dx

∫
dy D 3

F (x− y) 〈Dx1Dy2 J1 J2 〉
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1

2

(
− i

4!

)
6

Z0

∫
dz

(
δ 2

δJ 2
z

Z0

)
δ 2

δJ 2
z

Y 1 =

3

2

(
− 1

4!

)∫
dx

∫
dy D2

F (x− y) ×(
D2
F (0)− 2DF (0) 〈Dx1Dx2 J1 J2 〉+ 〈Dx1Dx2Dy3Dy4 J1 J2 J3 J4 〉

)
1

2

(
− i

4!

)
4

Z0

∫
dz

(
δ 3

δJ 3
z

Z0

)
δY 1

δJ z

=
1

2

(
− i

4!

)2

· 4 · 4
∫

dx

∫
dy DF (x− y) ×(

− 3DF (0) 〈Dx1 J1 〉+ 〈Dx1Dx2Dx3 J1 J2 J3 〉
)

×
(

3DF (0) 〈Dy2 J2 〉 − 〈Dy4Dy5Dy6 J4 J5 J6 〉
)

Thus, the source dependent lowest order contribution take the form

Y 2 [ J ] =
1

12

∫
dx

∫
dy D 3

F (x− y) 〈Dx1Dy2 J1 J2 〉

+
1

8

∫
dx

∫
dy D2

F (x− y)DF (0) 〈Dx1Dx2 J1 J2 〉

+
1

8

∫
dx

∫
dy DF (x− y)D2

F (0) 〈Dx1Dy2 J1 J2 〉

− 3

2(4 !)

∫
dx

∫
dy D2

F (x− y) 〈Dx1Dx2Dy3Dy4 J1 J2 J3 J4 〉

− 2

4!

∫
dx

∫
dy DF (x− y)DF (0) 〈Dx1Dy2Dy3Dy4 J1 J2 J3 J4 〉

+
1

2(3!)2

∫
dx

∫
dy DF (x− y)

× 〈Dx1Dx2Dx3Dy4Dy5Dy6 J1 J2 J3 J4 J5 J6 〉

The resulting connected Green’s functions follow from the definitions

W [ J ]
def
= ~

∞∑
n=1

in−1

n!

∫
dx1 J(x1) · · ·

∫
dxn J(xn)

× G(n)
c (x1, · · · , xn) (2.18)

G(n)
c (x1, · · · , xn)

def
=

i

~
(− i)n δ (n)W [ J ]/δJ(x1) · · · δ J(xn)

⌋
J=0
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The perturbative expansion of the n−point connected Green’s function does
follow directly from the series expansion (2.10): namely,

G(2)
c (x1 − x2) = G

(2)
0 (x1 − x2)−

∞∑
k=1

λk δ (2)Yk
δ J(x1) δ J(x2)

⌋
J=0

(2.19)

while for n > 2 we have

G(n)
c (x1, · · · , xn) = (− i)n

∞∑
k= 1

λk δ (n)Yk [ J ]/δJ(x1) · · · δ J(xn)

⌋
J=0

(2.20)

Here below we list the lowest order 2-point connected Green’s function, which
is usually named the full propagator, as well as the 4-point and 6-point
connected Green’s functions, viz.,

G(2)
c (x1 − x2) = G

(2)
0 (x1 − x2)−

∞∑
n=1

λn δ (2)Yn
δ J(x1) δ J(x2)

⌋
J=0

= DF (x1 − x2)

− iλ

2

∫
dy DF (x1 − y)DF (0)DF (y − x2)

− λ2

6

∫
dx

∫
dy DF (x1 − x)D3

F (x− y)DF (y − x2)

− λ2

4

∫
dx

∫
dy DF (x1 − x)DF (0)D2

F (x− y)DF (x− x2)

− λ2

4

∫
dx

∫
dy DF (x1 − x)D2

F (0)DF (x− y)DF (y − x2)

+ O(λ3) (2.21)

G(4)
c (x1, x2, x3, x4) =

∞∑
n=1

λn δ (4)Yn
δ J(x1) δ J(x2) δ J(x3) δ J(x4)

⌋
J=0

− iλ
∫

dx DF (x1 − x)DF (x2 − x)DF (x3 − x)DF (x4 − x)

− λ2

2

∫
dx

∫
dy D2

F (x− y) ×[
DF (x1 − x)DF (x2 − x)DF (x3 − y)DF (x4 − y)

+ DF (x1 − x)DF (x3 − x)DF (x2 − y)DF (x4 − y)

+ DF (x1 − x)DF (x4 − x)DF (x2 − y)DF (x3 − y)
]
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− λ2

2

∫
dx

∫
dy DF (x− y)DF (0) ×[

DF (x1 − x)DF (x2 − x)DF (x3 − x)DF (x4 − y)

+ cyclic permutations
]

+ O(λ3) (2.22)

and finally

G(6)
c (x1, . . . , x6) = −λ2

∫
dx

∫
dy DF (x− y) ×∑

( ı  κ )

DF (xı − x)DF (x − x)DF (xκ − x)

× DF (x` − x)DF (xm − x)DF (xn − x) + O(λ3) (2.23)

where the sum in the last expression runs over the triples ( ı  κ ) in which
ı <  < κ , with ı, , κ = 1, 2, . . . , 6 , while the triples ( `mn ) take the
complementary values, i.e. , ( `mn ) = (456) when ( ı  κ ) = (123) et cetera.
The remaining Green’s functions get no contributions up to this order in λ .

The Fourier transformation of the relativistic wave field field functions in
the four dimensional Minkowski space are defined by

uA(x) =

∫
d4k

(2π)4
ũA(k) exp{− ik · x} (2.24)

ũA(k) =

∫
d4x uA(x) exp{ ik · x} (2.25)

where the index A = 1, 2, . . . , N labels, as usual, the components of the real
or complex wave field functions.

The Fourier transforms of the n−point Green’s functions, connected and
disconnected, i.e. the momentum space Green’s functions, are defined by

G̃(n)
c (k1, . . . , kn) (2π)4 δ (k1 + k2 + · · ·+ kn ) =∫

dx1 · · ·
∫

dxn G
(n)
c (x1, . . . , xn) exp{ ik1 · x1 + · · ·+ ikn · xn } (2.26)

in such a manner that the total momentum conservation encoded by the
δ−distribution does vindicate the space-time translation invariance. If we
remember the momentum space scalar Feynman propagator

D̃F (k) = G̃
(2)
0 (k,− k) =

i~c
k2 − (mc/~)2 + iε
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it is straightforward to derive the perturbative expansion of the momentum
space Green’s functions. We find

G̃(2)
c (k,− k) = D̃F (k) +

1

2
(− iλ) D̃2

F (k)

∫
d4 `

(2π)4

i

`2 −m2 + iε

+
1

6
(− iλ)2 D̃2

F (k)

∫
d4 `1

(2π)4

∫
d4 `2

(2π)4

∫
d4 `3

(2π)4

(2π)4 δ (k − `1 − `2 − `3 )

× i

` 2
1 −m2 + iε

· i

` 2
2 −m2 + iε

· i

` 2
3 −m2 + iε

+
1

4
(− iλ)2 D̃2

F (k)

∫
d4 `2

(2π)4

i

`2
2 −m2 + iε

×
∫

d4 `1

(2π)4

(
i

` 2
1 −m2 + iε

)2

+
1

4
(− iλ)2 D̃3

F (k)

(∫
d4 `

(2π)4

i

`2 −m2 + iε

)2

+ O(λ3) (2.27)

G̃(4)
c (k1, k2, k3, k4) =

4∏
a=1

i

k2
a −m2 + iε

{
(− iλ)

+
1

2
(− iλ)2

4∑
=1

i

k2
 −m2 + iε

∫
d 4 `

(2π)4

i

`2 −m2 + iε

+
1

2
(− iλ)2

∫
d4 `1

(2π)4

i

`2
1 −m2 + iε

∫
d4 `2

(2π)4

i

`2
2 −m2 + iε

×
∑
( ı  )

(2π)4 δ (`1 + `2 − kı − k ) + O(λ3)
}

(2.28)

where the sum ( ı  ) runs over the three pairs (12), (13), (14) . Finally

G̃(6)
c (k1, . . . , k6) =

[ 6∏
a=1

i

k2
a −m2 + iε

]
(− iλ)2

×
∑

( ı  κ )

i

(kı + k + kκ )2 −m2 + iε
+ O(λ3) (2.29)

where again the sum is over the same triples as in equation (2.23).
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2.2 Self-Interacting Neutral Scalar Field

The above expressions are admittedly rather cumbersome and unwieldy. One
urgently needs to device some clever code to generate them to any order in
perturbation theory. This is precisely what the genious of Richard Phillips
Feynman achieved for us: those rules of correspondence which are universally
known as the Feynman rules

Richard Phillips Feynman
The Theory of Positrons
Phys. Rev. 76, 749 - 759 (1949) [ Issue 6 – September 1949]
Space-Time Approach to Quantum Electrodynamics
Phys. Rev. 76, 769 - 789 (1949) [ Issue 6 – September 1949 ]

Keeping in mind the applications to the scattering processes, it is more
convenient to express the Feynman rules in the momentum space. Hence, we
shall represent the Feynman propagator in momentum space for the neutral
spin-less field φ(x) by a solid line. Moreover, when four lines meet at a
vertex, we always understand the momentum flow as running towards the
vertex. Then we are left with the Feynman rules in the momentum space
to build up the connected n−point Green’s functions G̃

(n)
c (p1, . . . , pn) to all

orders in perturbation theory for the λφ4
4 model: namely,

1. For each Feynman propagator DF (k) = i~c [ k 2− (mc/~)2 + iε ]−1 draw
a solid line with a four-momentum flow

2. For each self-interaction term draw a four-legs vertex and multiply by
− iλ/~2c2

3. Impose energy-momentum conservation with all momenta incoming at
each interaction vertex

p1 + p2 + p3 + p4 = 0

4. Integrate over each internal momentum, i.e. each momentum ` which
is not an argument of the Green’s function∫

d4 `

(2π)4

5. In order to get the contribution to G̃
(n)
c (p1, . . . , pn) , draw all possible

arrangements which are topologically nonequivalent, after identification
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DF (k) = i~c [ k 2 − (mc/~)2 + iε ]−1

Figure 2.1: − iλ/~2c2 ( p1 + p2 + p3 + p4 = 0 )

of the so called external legs corresponding to the external momenta
k1, . . . , kn . The number of ways a given diagram can be drawn is the
topological weight w of the diagram. The symmetry factor S of the
diagram is equal to its topological weight divided by 4!, i.e. S = w/4!.

To give an example, consider the so called Tadpole diagram. We need
one vertex and three propagators. There are four ways to attach the
first propagator from 1 to the vertex, three ways to attach the second
propagator from 2 to the vertex. Hence the topological weight is w =
4 · 3 and the symmetry factor S = 4 · 3/4! = 1

2
.

Other examples for 2-loops diagrams are illustrated in the figures. Let
` the momentum circulating around the closed loop: then the Feynman

Figure 2.2: the scalar tadpole diagram
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Figure 2.3: Double-Scoop diagram: we need two vertexes; there are four ways to attach
the first leg of the first vertex to 1, three ways to link the second leg of the first vertex
to 2, four ways to attach the third leg of the first vertex to the first leg of the second
vertex and, finally, three ways to tie the fourth leg of the first vertex with anyone of the
remaining three legs of the second vertex. Hence the topological weight is 4 · 3 · 4 · 3 so
that the symmetry factor is 1/4

Figure 2.4: Saturn diagram: we need two vertexes; there are four ways to attach the
first leg of the first vertex to 1, four ways to link the first leg of the second vertex to 2; this
leaves three ways to connect with an internal leg the two vertexes and two further ways
to tie the internal lines. Hence the topological weight is 4 · 4 · 3 · 2 so that the symmetry
factor is 1/6

47



Figure 2.5: Glasses diagram: we need two vertexes; there are four ways to attach the
first leg of the first vertex to 1, four ways to link the first leg of the second vertex to 2;
this leaves three legs for each vertex free to be tied together. Hence the topological weight
is 4 · 3 · 4 · 3 so that the symmetry factor is 1/4

rules give

1

2
(− iλ)

i

k 2 −m2 + iε

∫
d4 `

(2π)4

i

`2 −m2 + iε
· i

k 2 −m2 + iε

Thus we see that the Feynman rules reduced essentially the problem of setting
up the perturbative expansion of the Green’s functions to that faced by a
child assembling a Lego set. More important, the structure of the propagator
and of the vertex, i.e. the main tools of the game, can be directly read off
of the classical Lagrange density. Consider in fact the functional integral
representation of the generating functional

Z [ J ] = exp{(i/~)W [ J ]}

= N
∫

Dφ exp

{
i

~
S0 [φ ]− i

~
V [φ ] + i

∫
d4xφ(x)J(x)

}
(2.30)

and let me focus on the first two addenda in the exponent, viz.,

i

~
S0 [φ ] =

i

2~c

∫
d4x

{
g µν ∂µφ(x) ∂ ν φ(x)− m2c2

~2
φ 2 (x)

}
− i

~
V [φ ] =

− iλ
4!~2c2

∫
d4x φ 4(x)

Taking the Fourier transform after a partial integration we come to

i

~
S0 [φ ] =

1

2

∫
d4k

(2π )4
φ̃(−k)

i

~c
(
k2 −m2c2/~2

)
φ̃(k)
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− i

~
V [φ ] =

− iλ
4!~2c2

4∏
=1

∫
d4k

(2π )4
φ̃(k ) (2π )4 δ (k1 + k2 + k3 + k4 )

whence it appears quite manifest that the momentum space Feynman rules
1.− 3. can be directly read off of the classical Action. More precisely,

• the Feynman propagator is just equal to the opposite of the inverse of
the kinetic operator, the inverse being actually defined by the causal
prescription, viz.

D̃F (k) = (−1)

[
i

~c

(
k2 − m2c2

~2
+ iε

)]−1

in the present scalar field case

• the vertex −i λ/~2c2 as well as the overall momentum conservation are
evidently encoded in the classical interaction potential in momentum
space.

2.3 Yukawa Theory

The Feynman rules for spinor fields can be rather easily gathered from the
paradigmatic simple model known as the Yukawa theory

Hideki Yukawa
On the Interaction of Elementary Particles. I
Supplement of the Progress of Theoretical Physics No. 1 (1935) pp. 1-10

The Yukawa model involves a real scalar field interacting with a complex
Dirac spinor field, the classical Lagrangian being given by

LYukawa = 1
2
g µν ∂µφ ∂ ν φ−

m2c2

2~2
φ 2 + 1

2
ψ̄ γ µ i

↔
∂µψ −

(
Mc

~
+

yφ√
~c

)
ψ̄ ψ

where y is the dimensionless Yukawa coupling parameter. Notice that the
spinor field in the physical C.G.S. system of units has engineering dimensions
given by [ψ ] = eV

1
2 cm−1 . Turning to the momentum space we find

i

~
SYukawa [φ, ψ, ψ̄ ] =

i

~c

∫
d4x LYukawa [φ, ψ, ψ̄ ]

=
i

~c

∫
d4k

(2π )4
1
2
φ̃(−k)

(
k2 − m2c2

~2

)
φ̃(k)
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− iy ( p1 + k − p2 = 0 )

+
i

~c

∫
d4p

(2π )4
ψ̃ † (p) γ0

(
p/− Mc

~

)
ψ̃ (p)

− iy√
(~c)3

∫
d4p1

(2π )4

∫
d4p2

(2π )4
φ̃(p2 − p1)ψ̃ †(p2)γ0ψ̃(p1)

in such a manner that the scalar and spinor propagators correspond, as
explained before, to the opposite of the inverse of the Klein-Gordon and Dirac
kinetic operators respectively. On the other side, the vertex is clearly given by
−iy/

√
(~c)3, the energy momentum conservation being here k+ p− q = 0 .

Several comments are now in order.

1. It is worthwhile to notice that the direction of the energy momentum
on a fermion line is always significant. On a fermion propagator, the 4-
momentum must be assigned in the direction of the charge flow. Here,
the momentum of a particle is always taken towards the vertex, the
particles being assumed to carry negative elementary charge − e with
e > 0 . Hence, the direction of the momentum is always understood
by definition to follow the negative charge flow. Thus, the momentum
of the antiparticle will go out of the vertex, which corresponds to the
term − q in the argument of the energy momentum δ−distribution.

2. The diagrams of the Yukawa theory never exhibit topological weights
nor symmetry factors, since the three fields (φ ψ̄ ψ ) in the interaction
Lagrangian can not be interchanged one another.

3. Finally, the Graßmann nature of the spinor field is reflected in one
crucial change in the Feynman rules : whenever a closed fermion line,
which is usually named a fermion cycle or more commonly a fermion
loop, appears in a diagram, then one must multiply the diagram by a
factor (−1) for each fermion loop of the diagram. This latter rule can
be illustrated by the following enlightening example.
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DF (k) = i [ k 2 −m2 + iε ]−1

SFαβ(p) = i(p/+M)αβ (p2 −M2 + iε)
−1

2.3.1 Yukawa Determinant

Consider the generating functional for the Yukawa field theory

Z [ ζ , ζ̄ , J ]
def
= N

∫
Dφ

∫
Dψ

∫
Dψ̄ exp

{
i SYukawa [ ψ̄ , ψ , φ ]

}
× exp

{
i
∫

dx
[
ζ̄(x)ψ (x) + ψ̄ (x) ζ(x) + J (x)φ(x)

]}
(2.31)

By making use of the same trick I have employed before in the case of the
perturbative definition of the generating functional for the self-interacting
real scalar field theory I can write

Z [ J , ζ , ζ̄ ] = exp{− i V [ δ /i δ J , δ /i δ ζ̄ , δ /i δ ζ ] } Z0 [ ζ , ζ̄ , J ]

V = y

∫
dx (δ /i δ J (x)) (δ /i δ ζα (x))

(
δ /i δ ζ̄ α (x)

)
(2.32)

while

Z0 [ ζ , ζ̄ , J ] = Z F
0 [ ζ , ζ̄ ] · Z B

0 [ J ] = exp{ iW B
0 [ J ] + iW F

0 [ ζ , ζ̄ ] }

Z F
0 [ ζ , ζ̄ ] = exp

{
−
∫

dx
∫

dz ζ̄ (x)SF (x− z) ζ (z)
}

Z B
0 [ J ] = exp

{
− 1

2

∫
dx
∫

dz J (x)DF (x− z) J (z)
}

It is important to remark that in the definition (2.32), where I have explicitly
written the repeated summed spinor indexes for the sake of clarity, the order
of the anti-commuting Graßmann-like functional derivatives is crucial.

Now, to our task, it turns out to be convenient to rewrite the generating
functional in the following equivalent form: namely,

Z[ J , ζ , ζ̄ ] = N ′
∫

Dφ exp

{
i S0[φ ] + i

∫
dz J(z)φ(z)

}
× exp

{
iy

∫
dxφ(x)

(
δ (2)/δζ x δζ̄ x

)}
Z F

0 [ ζ , ζ̄ ]
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where S0[φ ] denotes the classical Action for the real Klein-Gordon field. As
a consequence, if we set

exp{− i Vφ [ δ /i δ ζ̄ , δ /i δ ζ ] } ≡

exp

{
− iy

∫
dx φ(x)

(
δ (2) /i δ ζ x i δ ζ̄ x

)}
Z F
φ [ ζ , ζ̄ ] = exp{− i Vφ [ δ /i δ ζ̄ , δ /i δ ζ ] } Z F

0 [ ζ , ζ̄ ] (2.33)

we obtain the functional integral representation

Z F
φ [ ζ , ζ̄ ] = Nφ

∫
Dψ

∫
Dψ̄

exp

{
i

∫
dx ψ̄ (x)

[
1
2
γ µ i

↔
∂µ −M − yφ(x)

]
ψ (x)

}
× exp

{
i

∫
dx
[
ζ̄(x)ψ (x) + ψ̄ (x) ζ(x)

]}
(2.34)

with

Z F
φ [ 0 , 0 ] = Nφ

∫
Dψ

∫
Dψ̄

exp

{
i

∫
dx ψ̄ (x)

[
1
2
γ µ i

↔
∂µ −M − yφ(x)

]
ψ (x)

}
def
= Nφ det ‖ i ∂/−M − y φ ‖ (2.35)

the latter definition being understood, as usual, up to the Wick rotation to
the Euclidean space. Notice that the constant Nφ is conveniently fixed by
the requirement that in the limit φ→ 0 we recover Z F

0 [ 0 , 0 ] = 1 .
As a consequence, we eventually come to the symbolic equality

det ‖ i ∂/−M − y φ ‖
det ‖ i ∂/−M ‖

= det ‖ I− y ( i ∂/−M )−1φ ‖ (2.36)

= exp{Tr ln ‖ I− y ( i ∂/−M )−1φ ‖ }

= exp
{

(−1)
∞∑
n=1

1

n
Tr [ ( i ∂/−M )−1 yφ ]n

}
in which we understand

〈x1 |( i ∂/−M )−1 |x2 〉 =
1

i
SF (x1 − x2 )

while the symbol [ Tr ] indicates the sum over spinor indexes and integration
over space-time coordinates. After setting

X n
φ = (−1) Tr [ ( i ∂/−M )−1 yφ ]n
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in such a manner that we can write

ln det‖ i ∂/−M − y φ ‖= ln det‖ i ∂/−M ‖ +
∞∑
n=1

n−1X n
φ (2.37)

explicit evaluation for n = 1 yields

X 1
φ = (−1) Tr [ ( i ∂/−M )−1 yφ ]

= − y
∫

dx1 〈x1 |tr ( i ∂/−M )−1 φ |x1 〉

= − y
∫

dx1

∫
dx2 〈x1 |tr ( i ∂/−M )−1 |x2〉〈x2 |φ |x1 〉

= iy

∫
dx1

∫
dx2 φ(x1) δ (x1 − x2) trSF (x1 − x2 )

= iy

∫
dx1 φ(x1) trSF (x1 − x1 )

= iy

∫
dx1 φ(x1) trSF (0)

def
= iy Tr (φSF ) (2.38)

in which the symbol [ tr ] denotes the sum over spinor indexes. The next
term can be handled in a quite similar way by making repeatedly use of the
completeness relation ∫

dx |x〉〈x | = I

Then we obtain

X 2
φ = (− iy )2

∫
dx1

∫
dx2 φ(x1)φ(x2)

× (−1) tr SF (x2 − x1 )SF (x1 − x2 ) (2.39)

It is convenient to introduce the center of mass and relative coordinates

x̄ =
1

2
(x1 + x2 ) x = x1 − x2

∂ (x1, x2 )

∂ (X, x)
= 1

so that

X 2
φ = y 2

∫
dx̄

∫
dx φ( x̄+ x/2)φ( x̄− x/2) tr SF (−x)SF (x)

= y 2

∫
dx̄

∫
dx

∫
d`

(2π)4
φ̃(`)

∫
dk

(2π)4
φ̃(k)

× exp{− ix̄ · (`+ k)− ix · (`− k)/2}
∫

dp

(2π)4

∫
dq

(2π)4
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× exp{ i(p− q ) · x} tr

[
i

p/−M + iε
· i

q/−M + iε

]
= − y 2

∫
dk

(2π)4
φ̃(k) φ̃(−k)

∫
dp

(2π)4

∫
dq

(2π)4

× tr [ (p/+M )(q/+M ) ]

(p2 −M 2 + iε)(q 2 −M 2 + iε)
(2π)4 δ (k + p− q )

= (− iy )2

∫
dk

(2π)4
φ̃(k) φ̃(−k)

× (−1)

∫
dp

(2π)4
tr

[
i

p/−M + iε
· i

p/+ k/−M + iε

]
the very last line corresponding to a fermion loop with two propagators.

• Hence, whenever a fermion loop appears, it always involves a trace
operation over the spinor indexes as well as a multiplication by a factor
(−1) , the ultimate reason of which being due to the anti-commuting
Graßmann-like nature of the fermion fields. This is the Feynman rule
for fermion loops.

A little thought will convince the reader 1 that the iteration of the above
machinery leads to the result

X n
φ = (− iy )n

∫
dk1

(2π)4
φ̃(k1) · · ·

∫
dkn−1

(2π)4
φ̃(kn−1 ) φ̃(k1 + · · ·+ kn−1 )

× (−1)

∫
dp

(2π)4
tr
[
S̃F (p)SF (p+ k1 ) · · · SF (p+ k1 + · · ·+ kn−1 )

]
= (−1) (− iy )n Tr (φSF )n ( kn = k1 + · · ·+ kn−1 ) (2.40)

which corresponds to a fermion loop with n−external legs associated to the
scalar field vertexes, as depicted in the figure. As a consequence, we can
see by direct inspection that the symbolic equality (2.36) can be understood
in a perturbative sense as a power series in the Yukawa coupling, the n−th
coefficient of which does involve the 1-loop fermion boxes with n−external
scalar legs with momenta k1, k2, . . . , kn : namely,

det ‖ i ∂/−M − y φ ‖
det ‖ i ∂/−M ‖

= exp

{
(−1)

∞∑
n=1

1

n
(− iy )n Tr (φSF )n

}
1 The trick is to introduce a change of variables to a new system of coordinates with

the center of mass and (n− 1) relative coordinates with a unit Jacobian.
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Figure 2.6: The n−point Yukawa 1-loop box yielding the factor (−1)

or even

det ‖ i ∂/−M − y φ ‖ = det ‖ i ∂/−M ‖ exp{Tr ln(I + iy φ SF ) }

as indeed expected by taking into account the suggestive symbolic relation
( i ∂/−M )−1 = − iSF and the cyclic property of the [Tr] operation Tr (φSF ) =
Tr (SFφ) . Notice that the first four 1-loop fermion cycles of the perturbation
expansion, that is n = 1, 2, 3, 4 , do appear to be ultraviolet divergent by
näıve power counting: namely,

iy

∫
d4 p

(2π)4
tr S̃F (p)

y 2

∫
d4 p

(2π)4
tr
[
S̃F (p) S̃F (p+ k)

]
− iy 3

∫
d4 p

(2π)4
tr
[
S̃F (p) S̃F (p+ k1) S̃F (p+ k1 + k2)

]
− y 4

∫
d4p

(2π)4
tr
[
S̃F (p) S̃F (p+ k1) S̃F (p+ k1 + k2) S̃F (p+ k1 + k2 + k3)

]
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with S̃F (p) = i( p/−M + iε )−1 . Hence, they call for some regularization
method in order to be properly defined. I shall deal at length with this in
the sequel.

Effective Action. I conclude this paragraph by introducing the very customary and
useful concepts and definitions of effective Action and effective Potential related to the
Yukawa determinant. These latter encode the effects of the coupling of quantized matter,
described by fermionic fields, on some external bosonic fields – typically scalar or vector.
We can start from (1.61) that gives the effective Action for the (free) Dirac operator

det‖ (i ∂/−M) /µ ‖ ≡ exp
{
iΓ

(0)
eff

}
(2.41)

Γ
(0)
eff =

VM4

8π 2

(
ln
M

µ
− 3

4

)
(2.42)

Thus we can suitably set

det ‖ (i ∂/−M − y φ) /µ ‖ ≡ exp {iΓeff [φ ]} (2.43)

Γeff [φ ] = Γ
(0)
eff − iTr ln(I + iy φSF ) = Γ

(0)
eff +

∞∑
n=1

Γ
(n)
eff [φ ] (2.44)

Γ
(n)
eff [φ ] = − i

n
X n
φ =

i

n
(− iy )n Tr (φSF )n (n ∈ N ) (2.45)

In the case of a constant external field configuration

φ(x) = constant ≡ ϕ

we can write the constant effective Action, which turns out to be an ordinary function,

Γeff(ϕ) = − i ln det‖ (i ∂/−M − y ϕ)/µ ‖
= Γ

(0)
eff − iTr ln[I + iy ϕSF ]

= (M + yϕ)4 V

8π 2

[
ln(M + yϕ)− lnµ− 3

4

]
(2.46)

and the quantity

Veff(ϕ) = (M + yϕ)4 1

8π 2

(
3

4
− ln

M + yϕ

µ

)
(2.47)

Γeff(ϕ) = −
∫

d4xVeff(ϕ) = −V4 Veff(ϕ) = − (2π)4 δ(0)Veff(ϕ) (2.48)

that is called the effective Potential of the Yukawa determinant. Of course we find

Γeff(0) = Γ
(0)
eff

while we have

Γ
(1)
eff (ϕ) = − iX (1)

ϕ = yϕ
∫

dx trSF (0) = yϕV4

∫
d4p

(2π)4
tr S̃F (p)

= iyϕV4 M

∫
d4p

(2π)4
tr I

(
p2 −M2 + iε

)−1 ≡ ϕ
d

dϕ
Γeff(0)
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Hence in order to match with the McLaurin expansion of the ζ−function regularization
result (2.46) we must assign a finite value to a formally divergent integral: namely,

M2

2π2

(
ln
M

µ
− 1

2

)
≡ i

∫
d4p

(2π)4
tr I

(
p2 −M2 + iε

)−1
⌋

finite part

Next we get

Γ
(2)
eff (ϕ) = − i

2
X 2
ϕ =

i

2
(− iy ϕ)2 TrS 2

F

=
i

2
(yϕ)2 V4

∫
d4 p

(2π)4
tr S̃ 2

F (p)

and, once again, if we want to reproduce the output of the Zeta function regularization

Γ
(2)
eff (ϕ) =

V4

4π2
(yϕM)2

(
3 ln

M

µ
− 1

2

)
= 1

2 ϕ
2 d2

dϕ2
Γeff(0)

we have to set

M2

2π2

(
3 ln

M

µ
− 1

2

)
≡ i

∫
d4 p

(2π)4
tr S̃F (p) S̃F (p)

⌋
finite part

(2.49)

We can thereby proceed in the same way to give a finite value to the two further formally
divergent quantities: namely,

Γ
(3)
eff (ϕ) = − i

3
X 3
ϕ =

i

3
(− iyϕ)3 TrS 3

F

= − 1

3
( yϕ )3 V4

∫
d4 p

(2π)4
tr S̃ 3

F (p)

⌋
finite part

=
V4

2π2
(yϕ)3M

(
ln
M

µ
+

1

3

)
= 1

6 ϕ
3 d3

dϕ3
Γeff(0)

Γ
(4)
eff (ϕ) = − i

4
X 4
ϕ =

i

4
(− iyϕ)4 TrS 4

F

=
i

4
( yϕ )4 V4

∫
d4 p

(2π)4
tr S̃ 4

F (p)

⌋
finite part

=
V4

24π2
(yϕ)4

(
3 ln

M

µ
− 2

)
= 1

24 ϕ
4 d4

dϕ4
Γeff(0)

Notice that, since the trace of an odd number of gamma matrices is null, we get

tr S̃ 3
F (p) =

tr ( p/+M )3

( p2 −M2 + iε )3
=

M(3p2 +M2)

( p2 −M2 + iε )3
tr I

tr S̃ 4
F (p) =

tr ( p/+M )4

( p2 −M2 + iε )4
=

(p2)2 + 6p2M2 +M4

( p2 −M2 + iε )4
tr I

Moreover one can readily check that all the coefficients Γ
(n)
eff (ϕ) with n ≥ 5 are finite and

do not depend upon the arbitrary mass scale µ of the Zeta function regularization.
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2.4 Quantum ElectroDynamics (QED)

Let me finally come to a fully realistic and fundamental field theoretic model:
the Spinor Quantum ElectroDynamics, i.e. the Lorentz covariant theory of a
Dirac spinor quantum matter interacting with the electromagnetic radiation
quanta. The electromagnetic field is described by the vector potential Aµ =
(ϕ,A) with

B = ∇×A E = −∇ϕ− 1

c
Ȧ

To this aim, let us first recall the canonical engineering dimensions of some
quantities in the Heaviside-Lorentz C. G. S. electromagnetic system of units.
We have

[Aµ ] = Gauss cm = eV
1
2 cm−

1
2

[ E ] = [ B ] = [Fµν ] = Gauss = eV
1
2 cm−

3
2

because

W = cP0 =
∫

dx 1
2

[ E2(t,x) + B2(t,x) ] P0 =| P |

is the energy of the radiation field2. Notice that Aµ shares the very same
dimensions with a scalar field, i.e. [Aµ ] =

√
eV/cm. The positive proton

charge e > 0 has dimensions [ e ] = eV
1
2 cm

1
2 = Gauss cm2 , while the unit

of quantum magnetic flux reads

Φ0 ≡
hc

e
' 4.136× 10−7 Gauss cm2 [ Φ0 ] = eV

1
2 cm

1
2

Finally we recall the fine-structure constant

α =
e2

4π~c
= 7.297 352 568(24)× 10−3 ' 1

137

as well as the electron current density

µ(x) = − e

~
ψ(x)γ µψ(x)

[ µ ] = esu cm−2 s−1 = eV
1
2 cm−

3
2 s−1 = Gauss/s

where 1 esu = Gauss cm2. Then the corresponding Lagrange density is
provided by

L = − 1

4
F µν Fµν + ψ̄

(
1
2

↔
i ∂/ −Mc

~
+

e

~c
A/

)
ψ (2.50)

=̇ − 1

4
F µν Fµν + ψ̄

(
γ ν i∂ν −

Mc

~

)
ψ − 1

c
µAµ

2The key dimensional equality in the Heaviside-Lorentz C. G. S. electromagnetic system
of units are [W ] = Gauss2 cm3 = [ e2 ]/cm = eV = [ e ] Gauss cm .
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and turns out to be invariant under the so called local phase transformations
and gauge transformations, i.e. the space-time point dependent symmetry

Aµ (x) 7→ A ′µ (x) = Aµ (x) + ∂µ f(x)
ψ (x) 7→ ψ ′ (x) = exp{(ie/~c)f(x)}ψ (x)
ψ̄ (x) 7→ ψ̄ ′ (x) = ψ̄ (x) exp{(− ie/~c)f(x)}

(2.51)

in which f(x) is any arbitrary real function with the dimensions of a magnetic
flux. Notice that in the limit of a constant value

f(x) −→ f =
Φ0

2π
θ 0 ≤ θ < 2π

the gauge transformation for the spinor field reduces to the ordinary U(1)
phase transformations

ψ (x) 7−→ ψ ′ (x) = e iθ ψ (x)

leading to the Nöther tetra-current

δL
δ ∂µ ψ

∆ψ = −ψ γ µ ψ δθ ≡ J µ δθ =⇒  ν =
e

~
J ν

The Lagrangian (2.51) gives rise to the Euler-Lagrange coupled and gauge
invariant field equations

∂µ F
µν(x) = − e

~c
ψ(x) γ ν ψ(x) =

1

c
 ν(x) (2.52)(

i ∂/− Mc

~

)
ψ(x) = − e

~c
A/(x)ψ(x) (2.53)

It is worthwhile to remark that the QED spinor Lagrangian can also be
written, up to a boundary term, in the form

LQED =̇ ψ̄

(
γ µ iDµ −

Mc

~

)
ψ − 1

4
F ρν F ρν (2.54)

where the gauge covariant derivative

Dµ ≡ ∂µ +
iq

~c
Aµ (2.55)

has been introduced for a charged particle of charge q , that corresponds to
the well known minimal substitution

pµ −→ pµ −
q

c
Aµ (2.56)
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in order to introduce the electromagnetic interaction in the classical and
quantum physics of point-like particles with a charge q .

Now, just owing to the gauge symmetry, the kinetic term for the vector
potential

− 1

4
F µν Fµν =̇

1

2
Aµ (gµν �− ∂µ∂ν )Aν

can not be inverted and thereby a Feynman propagator can not be defined.
Hence, in the aim to develop Lorentz covariant perturbation theory, the so
called general covariant gauge fixing Lagrangian must be added, viz.

L g.f. = Aµ (x) ∂µB (x) +
ξ

2
B 2 (x) (2.57)

where B(x) is an auxiliary non-physical scalar field of canonical engineering

dimension [B ] = erg
1
2 cm−

3
2 , while the dimensionless parameter ξ ∈ R is

named the gauge fixing parameter, the Abelian field strength being as usual
Fµν(x) = ∂µA ν(x)− ∂ν Aµ(x) , in such a manner that the action results to
be Poincaré invariant. If we definitely make the simplest choice ξ = 1 , that
is called the Feynman gauge, after turning to the momentum space we find

i

~
S [Aµ, ψ, ψ̄ ] = − i

2~c

∫
d4k

(2π )4
Ãµ (k) k2 gµν Ã

ν (−k)

+
i

~c

∫
d4p

(2π )4
ψ̃ † (p) γ0

(
p/− Mc

~

)
ψ̃ (p)

+
ie

(~c)2

∫
d4p

(2π )4

∫
d4q

(2π )4
Ãµ (q − p) ψ̃ † (q) γ0 γ µ ψ̃ (p)

in such a manner that, in close resemblance with the Yukawa theory, we
immediately come to the Feynman rules in the Feynman gauge: namely,

spinor propagator :

(
i~c

p/+ iε−Mc/~

)
αβ

(2.58)

photon propagator : − i~c g µν

k 2 + iε
(2.59)

vertex :
ie

(~c)2
γ µαβ ( k + p− q = 0 ) (2.60)

while the energy momentum conservation is again (2π )4 δ (k + p− q ) and a
factor (−1) must be included for each fermion loop.

Gauge Fixing Lagrangian. It is worthwhile to notice that an alternative and very useful
method to obtain a gauge fixing Lagrange density L g.f. is as follows. Let us begin from
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Figure 2.7: Feynman rules for the spinor propagator Sαβ(p) , the photon
propagator Dµν(k) and fermion-fermion-photon vertex γ µαβ

the expression (2.57) and substitute the equations of motion for the auxiliary non-physical
field ∂ ·A = ξB : then we get, up to an irrelevant boundary term,

L g.f. =̇
1

2ξ
Aµ (x) ∂µ ∂νA

ν (x) (2.61)

This entails that, if we sum the latter gauge fixing Lagrangian with the gauge invariant
Lagrange density of the radiation field, then we eventually get

L ξ [Aµ ] =̇ 1
2 A

ν ( δµν �− ∂ µ∂ν )Aµ + 1
2 ξ
−1Aµ ∂µ ∂νA

ν

=̇ 1
2 A

ν
[
δµν �−

(
1− ξ−1

)
∂ µ ∂ν

]
Aµ

It follows that the momentum space kinetic operator is provided by

Kµν = − δµν k 2 +
(

1− ξ−1
)
k µ kν

In order to find its algebraic inverse for k 2 6= 0 let us set

K−1
λµ =

A

k 2

(
gλµ −

a

k 2
kλ kµ

)
so that

K−1
λµ K

µ
ν =

A

k 2

(
gλµ −

a

k 2
kλ kµ

) [
− δµν k 2 +

(
1− ξ−1

)
k µ kν

]
= −Agλν +

kλ k ν
k 2

A

[
1− 1

ξ
+
a

ξ

]
= gλν
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and consequently
A = − 1 a = 1− ξ

K−1
λµ =

1

k 2

(
− gλµ +

1− ξ
k 2

kλ kµ

)
This drives to the Wick propagator or causal Green’s function

D̃ c
λµ(k ; ξ) =

i~c
k 2 + iε

(
− gλµ +

1− ξ
k 2 + iε

kλ kµ

)
where the causal Feynman prescription has been endorsed allowing for the Wick rotation
and thereby

D c
λµ(x− y ; ξ) =

i~c
(2π)4

∫
d4k

e− ik ·(x−y)

k 2 + iε

(
− gλµ +

1− ξ
k 2 + iε

kλ kµ

)
which satisfies[

δµν �−
(

1− ξ−1
)
∂ µ ∂ν

]
D c
λµ(x− y ; ξ) = i~c g νλ δ (4)(x− y)

For ξ = 1 one gets the photon propagator in the Feynman gauge, which turns out to be

the simplest and most convenient choice, while for ξ = 0 one gets the so called Landau

gauge photon propagator, which fulfill the Lorenz condition ∂µA
µ(x) = 0 as an operator

equality at the quantum level.

As a final important remark, I recall the Euler-Lagrange field equations,
that hold true in the Feynman gauge, for the operator valued tempered
distributions Aµ (x) , B (x) and ψ (x) : namely,

c�Aµ (x) = µ (x) (2.62)

i ∂/ ψ (x) +
e

~c
A/(x)ψ (x) =

Mc

~
ψ (x) (2.63)

∂µA
µ (x) = B (x) (2.64)

where the local electric current quantum operator is defined as

µ (x) = − e

~
lim
ε→0

1
2

(
ψ̄ (x+ ε)γ µψ (x)− ψ̄ (x)γ µψ (x+ ε)

)
in such a manner to avoid the ill-defined product of tempered distribution at
the same space-time point, the relative minus sign being due to the canonical
equal time anti-commutation relations

{ψ(t,x) , ψ †(t,y)} = ~c δ (x− y)

all the other anti-commutators vanishing. From the 4-divergence of equation
(2.62) and taking equation (2.64) into account we find

c�B (x) = ∂µ 
µ (x)
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On the other side, from the invariance of the Lagrangian with respect to the
U(1) global, i.e. space-time point independent, phase transformations{

ψ (x) 7→ ψ ′ (x) = exp{ iθ}ψ (x)
ψ̄ (x) 7→ ψ̄ ′ (x) = ψ̄ (x) exp{− iθ}

it follows that the electric current density four vector satisfies the continuity
equation and the total electric charge is conserved, which is nothing but the
Nöther’s theorem. Hence

∂µ 
µ (x) ≡ 0 ⇔ �B (x) = 0 (2.65)

which means that the auxiliary scalar B(x) is still a free field obeying the
d’Alembert wave equation even in the presence of the interaction. It
follows that it is still possible to select the Hilbert space of the physical states,
with a positive semi-definite norm, from the subsidiary condition

B (−) (x) |phys〉 = 0

just like in the Gupta-Bleuler or Nakanishi-Lautrup formalism for the free
radiation quantum field.

Scalar Electrodynamics. Consider a complex scalar field of mass m and electric
charge q interacting with the electromagnetic field, the dynamics being governed by the
classical Lagrangian in the Feynman gauge

L = g µν Dµφ (Dν φ )
∗ −m2 φφ∗ − λ (φφ∗)

2 − 1
4 F

µν Fµν − 1
2 ∂µA

µ ∂νA
ν

Dµφ ≡ ( ∂µ + iqAµ )φ Fµν ≡ ∂µAν − ∂ νAµ

with λ and q positive coupling constants. The Lagrangian can be rewritten in the more
explicit form

L = ∂ µφ∂µφ
∗ −m2 φ∗ φ− λ (φ∗ φ)

2 − 1
2 ∂

µAν ∂µAν

− iq Aµ (φ∗ ∂µφ− φ∂µφ∗ ) + q 2Aµ φAµ φ
∗

Then we evidently have

δL/δ∂ µφ = (Dµφ )
∗

= ∂µφ
∗ − iq Aµφ

∗

δL/δ∂ µφ∗ = Dµφ = ∂µφ+ iq Aµφ

δL/δ∂µAν = − ∂ µAν

δL/δφ = iq A · (Dφ)
∗ −m2φ∗ − 2λφ∗ (φφ∗ )

δL/δφ∗ = − iq A ·Dφ−m2φ− 2λφ (φφ∗ )

δL/δ∂ µAν = − ∂µA ν

δL/δAν = − q φ∗ i
↔
∂ν φ+ 2q 2Aν φφ

∗

= − iq (φ∗Dν φ− φD∗ν φ∗ ) ≡ − iq φ∗
↔
Dν φ
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so that the Euler-Lagrange field equations read

D∗µ (D µφ)
∗

+m2φ∗ + 2λφ∗φφ∗ = 0

D µDµφ+m2φ+ 2λφφ∗φ = 0

�Aµ = iq φ∗
↔
Dµ φ ≡ Jµ

The Lagrangian is invariant under the full non-homogeneous Lorentz group IO(1,3) and
the internal U(1) phase transformations

φ(x) 7→ φ ′(x) = φ(x) e− iq θ ( 0 ≤ θ < 2π )

in such a manner that the electric current does satisfy the continuity equation

∂µJ
µ = 0 = ∂ µ

(
φ∗ i

↔
Dµ φ

)
which guarantees charge conservation in time

Q ≡ q
∫

dr φ∗(t, r) i
↔
Dtφ(t, r) Q̇ = 0

Notice that, by taking the four divergence of the equations of motion

∂ ν (�Aν − Jν ) = 0 ⇒ � ∂ ·A = 0

which means that ∂ · A is always a free field even in the presence of interaction with
the charged scalar matter. It is also important to realize that the covariant derivative
Dµφ of the charged scalar field transforms homogeneously with respect to the local phase
transformations, i.e. the gauge transformations: namely,

φ(x) 7→ φ ′(x) = φ(x) exp{− iq θ(x)}
Aµ(x) 7→ A ′µ(x) = Aµ(x) + ∂µ θ(x)

In fact we obtain

D ′µφ
′(x) = ∂µ [φ(x) exp{− iq θ(x)} ]

+ iq [Aµ(x) + ∂µ θ(x) ]φ(x) exp{− iq θ(x)}
= exp{− iq θ(x)}Dµφ(x)

which entails that the electric current is also gauge invariant, viz.,

J ′µ(x) =

(
iq φ∗ (x)

↔
Dµφ(x)

) ′
= Jµ(x)

Let us calculate the canonical energy-momentum tensor, as provided by Nöther theorem

Tµν ≡ ( δL/δ∂ µφ ) ∂ν φ+ ( δL/δ∂ µφ∗ ) ∂ν φ
∗

+ ( δL/δ∂ µAλ ) ∂ν Aλ − L gµν
= (Dµφ)

∗
∂ν φ+ (Dµφ) ∂ν φ

∗ − ∂µAλ ∂ν A
λ − L gµν
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Then we obtain the energy of the classical system

P0 =

∫
dr
{
φ̇(t, r)D∗0φ

∗(t, r) + φ̇∗(t, r)D0φ(t, r)

− ϕ̇2(t, r) + Ȧ2(t, r)− L(t, r)
}

where we have set
Aµ(t, r) ≡

(
ϕ(t, r) , A(t, r)

)
and taking into account that we have the canonical field momenta

δL/δ φ̇(t, r) ≡ Π∗(t, r) = D∗0φ
∗(t, r)

δL/δ φ̇∗(t, r) ≡ Π(t, r) = D0φ(t, r)

δL/δ ϕ̇(t, r) ≡ Πϕ(t, r) = − ϕ̇(t, r)

δL/δ Ȧ(t, r) ≡ Π(t, r) = Ȧ(t, r)

so that
φ̇(t, r) = Π(t, r)− iq ϕ(t, r)φ(t, r)

we find the classical Hamiltonian

H =

∫
dr
{[

Π(t, r)− iq ϕ(t, r)φ(t, r)
]

Π∗(t, r)− L(t, r)

+
[

Π∗(t, r) + iq ϕ(t, r)φ∗(t, r)
]

Π(t, r)− Ȧµ(t, r)Ȧµ(t, r)
}

Since we can write
V (φφ∗) ≡ m2φφ∗ + λ(φφ∗ )2

L(t, r) = Π(t, r) Π∗(t, r)−D kφ(t, r)D∗kφ
∗(t, r)− V (φφ∗)

− 1
2 Ȧµ(t, r)Ȧµ(t, r) + 1

2 ∇Aµ(t, r) · ∇Aµ(t, r)

= Π(t, r) Π∗(t, r)−D kφ(t, r)D∗kφ
∗(t, r)− V (φφ∗)

− 1
2 Π2

ϕ(t, r) + 1
2 Π2(t, r) + 1

2 ∇ϕ(t, r) · ∇ϕ(t, r)

− 1
2 ∇Ak(t, r) · ∇Ak(t, r)

we eventually obtain the classical Hamiltonian as a functional of the fields and their
conjugate momenta, viz.,

H =

∫
dr
{

Π(t, r) Π∗(t, r) +D kφ(t, r)D∗kφ
∗(t, r) + V (φφ∗)

− iq ϕ(t, r)φ(t, r) Π∗(t, r) + iq ϕ(t, r)φ∗(t, r) Π(t, r)

− 1
2 Π2

ϕ(t, r)− 1
2 ∇ϕ(t, r) · ∇ϕ(t, r)

+ 1
2 Π2(t, r) + 1

2 ∇Ak(t, r) · ∇Ak(t, r)
}

which in not positive semi-definite owing to the presence of the electric potential ϕ(t, r) ,
as well as the total momentum

P = −
∫

dr
{

Πϕ(t, r)∇ϕ(t, r) + Π k (t, r)∇A k (t, r)

+ Π∗(t, r)∇φ(t, r) + Π(t, r)∇φ∗(t, r)
}
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The Feynman rules can be obtained in a straightforward manner from the classical Action
multiplied by the imaginary unit. Actually we get the scalar propagator in momentum
space – with an arrow because the charged scalar particles and antiparticles have opposite
charges

D̃(p) =
i

p2 −m2 + iε

the usual photon propagator in the Feynman gauge

D̃ µν(k) =
− ig µν

k2 + iε

Furthermore, after setting as usual

φ(x) =

∫
d4 p

(2π)4
φ̃( p) e− ip·x Aµ (x) =

∫
d4k

(2π)4
Ãµ (k) e− ik·x

we obtain the particle antiparticle photon 3–point vertex

− iq (p+ p ′ )
µ

( p+ k − p ′ = 0 )

the four point scalar vertex with two particles and two antiparticles

− 4iλ ( p+ q − p ′ − q ′ = 0 )

and the particle antiparticle two photons four point vertex

2iq 2 g µν ( p+ k − p ′ + k ′ = 0 )

As already noticed, it turns out that the d’Alembert equation � ∂µAµ(x) = 0 holds true
even in the interacting case, so that we can select the physical subspace Hphys of the
indefinite metric Fock space F by the subsidiary condition

∂ µA(−)
µ (x)|phys 〉 = 0

which guarantees a positive semi-definite metric of the physical Hilbert space Hphys ⊂ F .

2.5 Non-Abelian Gauge Theories

The setting up of quantum electrodynamics can be generalized to the so
called non-Abelian gauge field theories. To this purpose, let us consider a
classical Action invariant under an internal symmetry Lie group G of local,
i.e. space-time point dependent, transformations. We assume the non-Abelian
gauge group G to be simple and compact: without loss of generality we shall
choose SU(N) with N ≥ 2 .

2.5.1 Covariant Derivative and Related Properties

To start up, let me denote by ψ(x) a column multiplet of N Dirac spinor fields
which transforms according to an irreducible fundamental representation of

66



SU(N) , which is identified by a set of generators or infinitesimal operators
τ a
F ( a = 1, . . . , N2 − 1 ) in such a manner that

ψ (x) ≡


ψ1 (x)
ψ2 (x)

...
ψN (x)

 (2.66)

ψ (x) 7→ ψω(x) = exp{ ig ω a(x)τ a
F}ψ(x) ≡ Uω(x)ψ(x) (2.67)

with
U −1
ω (x) = exp{− ig ω a(x)τ a

F} = U †ω(x) = U−ω(x)

Since the fundamental representations of SU(N) have dimension N it follows
that the number of independent real functions in the spinor multiplet (2.66)
is 8N . Thus, the Hermitean N × N matrices τ a

F ( a = 1, . . . , N2 − 1 ) form
an N−dimensional representation of the su(N) Lie algebra. The SU(N)
structure constants fabc are completely anti-symmetric real quantities defined
by the commutation relations or inner Lie products

[ τ a
F , τ

b
F ] = ifabc τ c

F ( a, b, c = 1, . . . , N2 − 1 ) (2.68)

For example, the structure constants of the unitary group SU(2), which is
the universal covering of the proper rotation group SO(3), are provided by
fabc = − εabc , while the Hermitean generators τ a

F are nothing but half the
Pauli matrices 1

2
σa .

Conjugated representations. For any finite dimensional representation {T (g) |g ∈ G}
of a Lie group G of finite dimension n

T (g1)T (g2) = T (g1g2) (∀ g1, g2 ∈ G )

it follows that there always exist its complex conjugate representation {T (g) |g ∈ G} of the
same dimension and with matrix elements

T ı(g) ≡ T ∗ı(g) (∀ g ∈ G )

because

T ı(g1g2) = T ∗ı(g1g2) = T ∗ıκ(g1)T ∗κ(g2) = T ıκ(g1)Tκ(g2) (2.69)

Now, if we denote by Ia ( a = 1, . . . , n ) and Īa ( a = 1, . . . , n ) the corresponding generators,
it turns out that the finite dimensional representations of a Lie group fall into three
categories: real, pseudo-real and complex.
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• Real representations: a representation is said to be real iff there exists a non-singular
symmetric matrix S which realizes the transformations

Īa = −SIaS−1 S = S> (∀ a = 1, . . . , n )

This is for example the case of the adjoint representation SO(3) of the rotation
group.

• Pseudo-real representations: a representation is said to be pseudo-real iff there
exists a non-singular anti-symmetric matrix S which realizes the transformations

Īa = −SIaS−1 S = −S> (∀ a = 1, . . . , n )

This is for example the case of the fundamental representation SU(2) of the rotation
group.

• Complex representations: a representation is said to be complex iff its set of the
generators {Ia | a = 1, . . . , n} and that one of its conjugated {Īa | a = 1, . . . , n}
are never related by a similarity transformation. As an example one can take the
two non-equivalent three dimensional fundamental representations 3 and 3 of the
unitary group SU(3).

In order to build a gauge invariant Action, we need the covariant derivative of
the spinor multiplet ψ(x), which generalizes the concept of minimal coupling
from the electromagnetic Abelian case to the non-Abelian framework. This
can be readily achieved by setting up a matrix-valued derivative operator Dµ

such that Dµ ψ(x) transforms like ψ(x) itself. To this aim we define

Dµ ψ (x) ≡
(
∂µ − ig Aaµ(x) τ a

F

)
ψ (x) (2.70)

where we have introduced the non-Abelian real vector potentials

Aaµ(x) ( a = 1, . . . , N2 − 1 )

the number of which is equal to the dimension of the local symmetry group
SU(N) . As a matter of fact, if we impose the homogeneous transformation
law

ψ (x) 7→ Uω(x)ψ (x) ⇔ Dµ ψ (x) 7→ Uω(x)Dµ ψ (x) (2.71)

we necessarily obtain the non-homogeneous transformation law for the gauge
vector potentials: namely,

Aµ(x) 7→ Aωµ(x) = Uω(x)Aµ(x)U †ω(x)− i

g
[ ∂µUω(x) ] U †ω(x) (2.72)

in which I have introduced as customary the matrix valued vector potential
in the fundamental irreducible representations of the su(N) Lie algebra, viz.

Aµ(x) = Aaµ(x) τ a
F (2.73)
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Notice that the homogeneous transformation law (2.71) actually entails

D ′µ ψ
′(x) = D ′µ Uω ψ (x) = Uω(x)Dµ ψ (x) (2.74)

and consequently

U †ω(x)D ′µ Uω(x) = Dµ D ′µ = Uω(x)Dµ U
†
ω(x) (2.75)

In order the gauge potentials acquire the role of dynamical fields, we need an
Action that describes their dynamics and is invariant under local, i.e. space-
time point dependent, SU(N) transformations. This task is most easily
achieved in terms of the so called non-Abelian field strength anti-symmetric
matrix valued tensor Fµν(x) = −Fνµ(x) defined by

Fµν(x) = F a
µν(x) τ a

F ≡
i

g
[Dµ , Dν ]

=
i

g

[
∂µ − ig Aaµ(x) τ a

F , ∂ν − ig Abν(x) τ b
F

]
= [ ∂µA

a
ν(x)− ∂ν Aaµ(x) ]τ a

F − ig Aaµ(x)Abν(x)
[
τ a
F , τ

b
F

]
= τ a

F

(
∂µA

a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x)

)
= ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x) , Aν(x) ] (2.76)

and which evidently transforms in a homogeneous way

F ′µν(x) =
i

g

[
D ′µ , D

′
ν

]
= Uω(x)Fµν(x)U †ω(x) (2.77)

This means that the field strengths tensor transforms according to the adjoint
representation of the gauge group. In fact we find

F ′µν(x) = exp{ ig ω a(x)τ a
F}Fµν(x) exp{− ig ω a(x)τ a

F}
= Fµν(x) + ig ω a(x) [ τ a

F , Fµν(x) ] +O(ω2)

=
(
F c
µν(x)− gfabc ω a(x)F b

µν(x) + O(ω2)
)
τ c
F

that yields, after reshuffling of the group indexes,

δ F a
µν(x) = g‖ Ia ‖bc F c

µν(x)ω b(x) (2.78)

where I used the well known property of the anti-Hermitean infinitesimal
operators in the N2 − 1 dimensional adjoint representation, viz.

‖ Ia ‖bc ≡ facb ( a, b, c = 1, 2, . . . , N2 − 1 )
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with Ia+I †a = 0 – see the first chapter of the notes of the first semester course.
Hence, if we introduce the anti-symmetric tensor field strengths multiplet

{F a
µν(x) | a = 1, 2, . . . , N2 − 1}

we can write its finite transformation law by raising the infinitesimal one
(2.78) to the exponential form, viz.,(

F a
µν(x)

) ′
= ‖ exp{− gIc ω c(x)} ‖ab F b

µν(x)

=
(
δab + gf cab ω c(x) + · · ·

)
F b
µν(x) (2.79)

= F a
µν(x) + gfabc F b

µν(x)ω c(x) +O(ω2) (2.80)

which is fully equivalent to equation (2.77). Notice that one can also define
the adjoint covariant derivative, i.e. the covariant derivative in the adjoint
representation: namely,

∇µ = ∂µ + gAcµ Ic ∇ab
µ ≡ ∂µ δ

ab − gfabcAc
µ(x)

Then we obtain

1

g
[∇µ , ∇ν ] = ∂µA

c
ν(x) Ic − ∂ν Acµ(x) Ic + g Aaµ(x)Abν(x) [ Ia , Ib ]

=
(
∂µA

c
ν(x)− ∂ν Acµ(x) + gfabcAaµ(x)Abν(x)

)
Ic

=
(
∂µA

a
ν(x)−∇ ab

ν Abµ(x)
)
Ia = F a

µν(x) Ia (2.81)

in close analogy with the corresponding formula (2.76) for the fundamental
representation. If we rewrite the above commutator (2.81) by exhibiting the
group indexes we evidently obtain[

∇ ab
µ , ∇ bc

ν

]
= g F d

µν(x) ‖ Id ‖ac = − g f acd F d
µν(x) (2.82)

It is also very useful to collect the infinitesimal form of the non-Abelian
gauge transformations that reads, up to the first order in the small parameter
functions δω a(x)

δψ (x) = ig δω a(x) τ a
F ψ (x)

δAµ(x) = ∇µ δω (x) = τ a
F δA

a
µ(x) = τ a

F ∇ ab
µ δω

b(x)
δFµν(x) = gfabc F b

µν(x) δω c(x) τ a
F{

δAaµ(x) = ∂µ δω
a(x)− gfabc δω b(x)Acµ(x)

δF a
µν(x) = − gfabc δω b(x)F c

µν(x)
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2.5.2 Classical Dynamics of Non-Abelian Fields

According to the general requirements to set up a local and gauge invariant
classical Lagrange density, which describes the dynamics of the non-Abelian
gauge fields interacting with the matter spinor fields, we are necessarily driven
to the Yang-Mills construction

LYM ≡ − 1
2

tr [Fµν(x)F µν(x) ] + ψ̄(x) (iD/−M)ψ(x) (2.83)

where
D/ ≡ γ µDµ = ∂/− ig γ µAµ(x) = ∂/− ig γ µAaµ(x) τ a

F

tr
(
τ a
F τ

b
F

)
= 1

2
δ ab

Chen-Ning Franklin Yang & Robert Laurence Mills
Conservation of Isotopic Spin and Isotopic Gauge Invariance
The Physical Review 96, 191 (1954)

The Euler-Lagrange field equations can be easily obtained and read{
g µλ∇ab

µ F b
λν(x) = aν (x)

(iD/−M)ψ(x) = 0
(2.84)

where the so called non-Abelian fermionic vector current reads

aν (x) ≡ (− g) ψ̄(x)γ ρ τ a
F ψ(x) g νρ

Proof: in fact we find

[ δLYM/δ∂µA
a
ν(x) ] = [ δ/δ∂µA

a
ν(x) ]

{
− 1

4 F
λκd
(
∂λA

d
κ − ∂κAdλ + gfdbcAbλA

c
κ

)}
= − Fµνa(x)

[ δLYM/δA
a
ν(x) ] = − Fµνd(x) gfdbaAbµ(x) + gψ̄(x)γντ aFψ(x)

= gfabdAbµ(x)Fµνd(x) + gψ̄(x)γντ aFψ(x)

so that consequently[
∂µδ

ad + gfabdAbµ(x)
]
Fµνd(x) + gψ̄(x)γντ aFψ(x) = 0

and thereby
∇ab
µ F

µνb(x) = (−g)ψ̄(x)γντ aFψ(x)

which is the claim to be proved �

Then it can be readily proved by symmetry reasons that the non-Abelian
fermionic vector current

aν (x) ≡ (− g) ψ̄(x)γ ρ τ a
F ψ(x) g νρ
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does satisfy the covariant continuity equation, which means

∇ab
µ µb(x) = 0 (2.85)

As a matter of fact, from the commutator (2.82) and the Yang Mills field
equations (2.84) we immediately obtain

∇ab
λ 

λb(x) = ∇ab
ν ∇bc

µ F
µνc(x) = 1

2
[∇ab

ν , ∇bc
µ ]F µνc(x)

= 1
2
g f acd F µνc(x)F d

µν(x) ≡ 0

owing to the complete anti-symmetry of the group structure constant. It is
worthwhile to remark that in the non-Abelian case the classical equations of
motion can also be rewritten as

∂ µx F
a
µν(x) = aν (x)− gf abcAb

µ(x)F c
λν(x) g µλ (2.86)

in such a manner that one can always define a new non-Abelian current

J aν (x) ≡ (− g)
{
ψ̄(x)γ ρ τ a

F ψ(x) g νρ + f abcAb
µ(x)F c

λν(x) g µλ
}

(2.87)

that actually involves both matter and gauge fields and satisfies the usual
continuity equation

∂ µJ aµ (x) = 0 (2.88)

which drives via the Nöther theorem to the multiplet of conserved charges

Qa ≡
∫

dx J a0 (t,x) ( a = 1, 2, . . . , N2 − 1 ) (2.89)

Proof: the classical Yang-Mills Lagrangian (2.83) is invariant under non-Abelian gauge
transformation so that, a fortiori, it turns out to be invariant under global, i.e. space-time
point independent, transformations of the unitary SU(N) Lie group. It follows that, from
the classical Nöther theorem, we can extract the corresponding N2 − 1 Nöther vector
currents, their number being equal to the dimension of the symmetry Lie group: namely,

J aµ (x) δωa = [ δLYM/δ∂
µAaν(x) ] ∆Aaν(x) + [ δLYM/δ∂µψ(x) ] ∆ψ(x)

Now, owing to the space-time point independence of the internal symmetry group SU(N)
the infinitesimal global variations do coincide with the local ones, i.e.

δψ (x) = ig τ aF ψ (x) δω a

δAaµ(x) = gfabcAbµ(x) δω c

δF a
µν(x) = gfabc F b

µν(x) δω c

and thereby we get

J aµ (x) = (− g)
{
fabc g νρ F b

µρ(x)Acν(x) + ψ(x) γ µ τ aF ψ (x)
}
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which entails

∆SYM = ∆
∫

d4xLYM(x) = 0 ⇐⇒ ∂ µJ aµ (x) = 0 ( a = 1, 2, . . . , N2 − 1 )

that proves the above statement �

The matrix-valued field strength dual tensor keeps the very same definition
also in the non-Abelian case: in the adjoint representation, for example, from
the identity (2.81) we can write

F µν
∗ ≡ 1

2
εµνρσ I a F a

ρσ = εµνρσ [∇ρ ,∇σ ] g−1 (2.90)

so that
F 01
∗ = −E ∗x = 1

2
ε 0123 F 23 = −Bx

E a
∗(t,x) = B a(t,x) B a

∗(t,x) = E a(t,x) ( a = 1, 2, . . . , N2 − 1 )

From the very definition of the matrix-valued field strength dual tensor it
immediately follows that the non-Abelian generalization of the first couple
of Maxwell equations holds true: namely,

g∇µ F
µν
∗ (x) = εµνρσ∇µ [∇ρ ,∇σ ] ≡ 0 (2.91)

The above differential geometric identity, which is called the Bianchi identity
and does not change even in the presence of matter sources, is nothing but
the non-Abelian generalization of the Faraday-Lenz law and the absence of
magnetic monopoles in the electromagnetic theory. However, owing to the
presence of the covariant derivative, the non-Abelian generalization of the
first pair of Maxwell equations is highly nontrivial. Moreover it is possible
to show that

trF µν
∗ Fµν = ∂λK

λ (2.92)

where
K λ = ελνρσ tr

(
FνρAσ + 2

3
i Aν AρAσ

)
(2.93)

Proof. For the sake of simplicity and without loss of generality, let us normalize the
generators in the adjoint representation according to Shur’s lemma

tr (I aI b) = g ab tr IA ≡ 2κ δ ab

where the Cartan-Killing metric is provided by

gab = fadcfbcd gab g
ab ≡ n = N2 − 1
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for SU(N), while κ is a suitable normalization constant. Then we find

κ−1 trF µν
∗ Fµν = εµνρσ F a

µν F
a
ρσ = εµνρσ

(
∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

)
F a
ρσ

= 2εµνρσ ∂µ
(
Aaν F

a
ρσ

)
− 2εµνρσ Aaν ∂µF

a
ρσ + gfabcεµνρσ AbµA

c
ν F

a
ρσ

= 2εµνρσ ∂µ
(
Aaν F

a
ρσ

)
− 2gfadeεµνρσ Aaν ∂µ

(
AdρA

e
σ

)
+ gfabcεµνρσ AbµA

c
ν F

a
ρσ

= εµνρσ ∂µ tr (Aν Fρσ)− 2gfadeεµνρσ ∂µ
(
Aaν A

d
ρA

e
σ

)
+ 2gfadeεµνρσ(∂µA

a
ν)AdρA

e
σ

+ 2gfabcεµνρσ AbµA
c
ν ∂ρA

a
σ + g 2fabc fade εµνρσ AbµA

c
ν A

d
ρA

e
σ

Now the very last term of the last equality identically vanishes owing to symmetry. As a
matter of fact, consider the anti-Hermitean infinitesimal operators of the n−dimensional
irreducible adjoint representation with n = N2 − 1 . We find

Ia Ib = 1
2 {Ia , Ib}+ 1

2 [ Ia , Ib ] tr (Ia Ib) = gab = 1
2 tr {Ia , Ib}

where gab is the non-singular Cartan-Killing metric of the semi-simple group SU(N), so
that we can write

Ia Ib = n−1gab I + 1
2 f

abcIc

with matrix elements

fadcf bce = n−1gab δde + 1
2 f

abcf ced = n−1gab δde + 1
2

(
f bcefadc − feacf cbd

)
or even

f bcef adc + f acef bdc =
2

n
gab δde

Now the RHS of the above relation is manifestly symmetric under the exchange of a and
b indexes, for the Cartan-Killing metric is symmetric, so that we can definitely write

f acef bdce = − n−1 gab δcd

and thereby
fabc fade εµνρσ AbµA

c
ν A

d
ρA

e
σ ≡ 0

Furthermore one gets, for instance,

fade εµνρσ(∂µA
a
ν)AdρA

e
σ = 1

3 f
ade εµνρσ ∂µ

(
Aaν A

d
ρA

e
σ

)
Hence we definitely obtain

trF µν
∗ Fµν = εµνρσ ∂µ tr (Aν Fρσ)− 2

3 gf
ade εµνρσ ∂µ

(
Aaν A

d
ρA

e
σ

)
= ελνρσ ∂λ tr

(
FνρAσ + 2

3 i Aν AρAσ

)
which is the result because

tr (Aν AρAσ) = 1
2 tr (Aν [Aρ , Aσ ]) = 1

2 i f
abcAbρA

c
σ tr (Aν τ

a
F ) = i fabcAaν A

b
ρA

c
σ

as claimed. �
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The Yang-Mills Lagrangian can be split into the free quadratic part and
the cubic and fourth-order interaction Lagrangian, i.e.

LYM = L0 + L int (2.94)

L0 = − 1
2
g µρ g νσ

(
∂µA

a
ν(x)− ∂ν Aaµ(x)

)
∂ρA

a
σ(x)

+ ψ̄(x)(i∂/−M)ψ(x) (2.95)

L int = g ψ̄(x)γ µ τ a
F ψ(x)Aaµ(x)

− g fabc g µρ g νσ Abρ(x)Acσ(x) ∂µA
a
ν(x)

− 1
4
g2 fabc fade g µρ g νσ Abµ(x)Acν(x)Adρ(x)Aeσ(x) (2.96)

Once again, as in the Abelian case, in order to invert the kinetic term and
to obtain the free propagator for the non-Abelian vector potential, one has
to suitably introduce a gauge fixing Lagrangian

L g.f. = g µν Aa
µ(x) ∂νB

a(x) + 1
2
ξ B a(x)B a(x)

where B(x) = B a(x) τ a
F ( a = 1, 2, . . . , N 2 − 1 ) is a multiplet of auxiliary,

non-physical, ghost-like scalar fields which transform in accordance with the
adjoint representation of the gauge symmetry group

B(x) 7−→ Bω(x) = Uω(x)B(x)U †ω(x) δB a(x) = gfabcB b(x)ω c(x)

while the dimensionless parameter ξ ∈ R is again the gauge fixing parameter.
Then the field equations become

g µλ ∂µ F
a
λν(x) = J aν (x)− ∂νB a(x)

(iD/−M)ψ(x) = 0
∂ µAa

µ(x) = ξ B a(x)
(2.97)

Notice however that the non-Abelian vector currents J aµ (x) no longer fulfill
the continuity equation, because the gauge fixing Lagrangian gives rise to an
extra term in the Nöther theorem for the global SU(N) transformations, that
is

[ δL g.f./δ∂
µB a(x) ] ∆B a(x) = Aa

µ(x) gfabcB b(x) δω c

in such a manner that we can write

J
a

µ(x) = J a
µ (x)− gfabcAb

µ(x)B c(x)

whence

∂ µJ
a

µ(x) = 0 ⇐⇒ ∂ µJ aµ (x) = gfabcAb
µ(x) ∂ µB c(x)
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where use has been made of the last field equation (2.97). Thus, taking the
divergence of the first field equation (2.97) we get

∇ab
µ ∂ µB b(x) = �B a(x) + gf abcAb

µ(x) ∂ µB c(x) = 0 (2.98)

whence it appears that the non-physical auxiliary fields are no longer free
fields as it happened in the Abelian case – see eq. (2.65). On the contrary,
the ghost auxiliary fields B a(x) are directly as well as indirectly coupled
to the gauge potentials Aa

µ(x) and to the fermionic matter fields multiplet
ψ(x) through the field equations. Hence, the covariant quantization of the
non-Abelian gauge theories will require some new tools: the introduction of
Lorentz scalar but anti-commuting non-physical fields, the Faddeev Popov
ghost-antighost fields, and the so called Becchi-Rouet-Stora-Tyutin (BRST)
symmetry, an algebraic graded continuous symmetry involving the whole set
of physical and non-physical quantized field.
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The covariant quantization and renormalization of the non-Abelian gauge
theories are the cornerstones of the Standard Model of the Electroweak and
Strong Interactions. According to this model the gauge symmetry group is
the unitary group SU(3)×SU(2)×U(1) of dimensions 8 + 3 + 1 = 12, which
is a non-semi-simple Lie group. Thus the fermion multiplets which undergo
strong interactions will posses three degrees of freedom named colors (red,
green and blue) associated to the SU(3) symmetry governing the nuclear
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strong interactions, while the SU(2) spinor multiplets do exhibit two weak
isospin degrees of freedom named flavors, that will be attached to the nuclear
weak interactions together with the U(1) hypercharge that will be related to
the electromagnetic interactions.

Gauge fields and scalar Matter. The coupling of the non-Abelian gauge fields with
matter scalar fields runs along the very same steps of fermionic matter. To be general,
consider a multiplet of N complex scalar fields

Φ(x) =


φ1(x)
φ2(x)

...
φN (x)

 (2.99)

where φı : M −→ C (∀ ı = 1, 2, . . . , N ) and transform according to a fundamental
representation of SU(N)

Φ ′(x) = Uω(x) Φ(x) (2.100)

The covariant derivative is the same

DµΦ(x) = ∂µΦ(x)− igAaµ(x) τ aF Φ(x) (2.101)

and fulfills
D ′µ = Uω(x)Dµ U

−1
ω (x)

so that the quantity

[DµΦ(x) ]†D µ Φ(x) = ∂µΦ†(x) ∂ µ Φ(x)

− ig [ ∂µΦ†(x) ]Aµ(x) Φ(x) + igΦ†(x)Aµ(x) ∂ µ Φ(x) + g 2 Φ†(x)Aµ(x)Aµ(x) Φ(x)

is a Poincaré invariant and gauge invariant quantity. It follows that the most general
Poincaré invariant and gauge invariant Lagrangian, which involves non-Abelian vector
fields and complex scalar fields and which satisfies all the general requirements of the local
quantum field theory, including power-counting renormalizability, is provided by

L = − 1
2 tr (Fµν F

µν) + (DµΦ)†D µ Φ∓m2 Φ†Φ− λ(Φ†Φ)2 (2.102)

the lower sign in the mass term just corresponding to the spontaneous breaking of the
U(N) gauge symmetry. The Euler-Lagrange field equations can be easily found to be

g µλ∇ab
µ F b

λν =  aν

{( ∂ µ + igAµ )Dµ ±m2 + 2λ(Φ†Φ)}Φ = 0
(2.103)

where the so called non-Abelian bosonic vector current reads

aν (x) ≡ gΦ†(x) τ aF i
↔
∂νΦ(x) + 2g 2Φ†(x)τ aF Aν(x)Φ(x)

As a matter of fact we find

[ δL/δ∂µAaν(x) ] = − Fµνa(x)

[ δL/δAaν(x) ] = − Fµνd(x) gfdbaAbµ(x)−  aν(x)

= gfabdAbµ(x)Fµνd(x)−  aν(x)
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so that consequently
∇ab
µ F

µνb(x) =  aν(x)

as claimed. Then it can be readily proved by symmetry reasons that the non-Abelian
bosonic vector current does stil satisfy the covariant continuity equation, which means

∇ab
µ µb(x) = 0

Actually, from the commutator (2.82) and the Yang Mills field equations (2.84) we get

∇ab
λ 

λb(x) = ∇ab
ν ∇bc

µ Fµνc(x) = 1
2 [∇ab

ν , ∇bc
µ ]Fµνc(x)

= 1
2 g f

acd Fµνc(x)F d
µν(x) ≡ 0

owing to the complete anti-symmetry of the group structure constant. It is worthwhile to
remark that in the non-Abelian case the classical equations of motion can also be rewritten
as

∂ µx F
a
µν(x) =  aν (x)− gf abcAb

µ(x)F c
λν(x) g µλ (2.104)

in such a manner that one can always define a new non-Abelian current

J aν (x) ≡  aν (x)− gf abcAb
µ(x)F c

λν(x) g µλ (2.105)

that actually involves both matter and gauge fields and satisfies the usual continuity
equation

∂ µJ aµ (x) = 0 (2.106)

which drives via the Nöther theorem to the multiplet of conserved charges

Qa ≡
∫

dx J a0 (t,x) ( a = 1, 2, . . . , N2 − 1 ) (2.107)

It turns out that the above classical Lagrangian (2.83) is invariant under non-Abelian

gauge transformation as well as ordinary local phase transformations so that, a fortiori, it

turns out to be invariant under global, i.e. space-time point independent, transformations

of the unitary U(N) Lie group. It follows that, from the classical Nöther theorem, we

can extract the corresponding N2 Nöther vector currents, their number being equal to the

dimension of the symmetry Lie group.

2.6 Euclidean Field Theories

The Feynman rules for Euclidean field theories can be readily obtained in
accordance with the main guidelines I have discussed in the framework of
the quantum field theories in the Minkowski space. To be definite, let me
consider the model of the Euclidean scalar and fermion fields interacting à
la Yukawa, which is described by the Euclidean Action

SE [φE , ψE , ψ̄E ] =

∫
dxE

(
1
2
∂µφE ∂µφE + 1

2
m2 φ2

E + λ
4!
φ4
E

)
+

∫
dxE ψ̄E (∂/E +M + gφE )ψE (2.108)
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where as usual

xEµ = (x , x4 = i x0 ) ∂µ =
∂

∂ xEµ
xEµ yEµ = x · y + x4 y4

i ∂/E = γ µ
∂

∂ xEµ

{
γ µ , γ ν

}
= 2δµν γ µ = γ †µ

The generating functional for Euclidean disconnected correlation functions
will be defined by

ZE [ JE , ζ̄E , ζE ] = exp
{
−WE [ JE , ζE , ζ̄E ]

}
= exp

{
−VE [δ /δJE , δ /δ ζE , δ /δ ζ̄E ]

}
× Z 0

E [ JE , ζ̄E , ζE ]
def
= exp

{
−VE [δ /δJE , δ /δ ζE , δ /δ ζ̄E ]

}
× exp

{
−W 0

E [ JE , ζE , ζ̄E ]
}

(2.109)

where

Z 0
E [ JE , ζ̄E , ζE ] = N

∫
DφE DψE Dψ̄E exp

{
−S 0

E [φE , ψE , ψ̄E ]
}

× exp

∫
dxE

(
φE JE + ψ̄E ζE + ζ̄E ψE

)
(2.110)

S 0
E [φE , ψE , ψ̄E ] =∫

dxE
[

1
2
∂µφE ∂µφE + 1

2
m2 φ2

E + ψ̄E (∂/E +M )ψE
]

(2.111)

W 0
E [ JE , ζE , ζ̄E ] =

〈
1
2
JExD

E
xy JEy + ζ̄Ex S

E
xy ζEy

〉
in which

DE (xE) =
1

(2π)4

∫
dkE

exp{ i kE · xE }
k 2
E +m2

SE
αβ (xE) =

∫
dkE

(2π)4
exp{ i kE · xE }

 i

− p/E + iM


αβ

Then the Feynman rules immediately follows and read

euclidean scalar propagator :
1

k 2
E +m2

euclidean spinor propagator :
i

− p/E + iM
=
− i p/E +M

p2
E +M 2
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euclidean scalar vertex : −λ
(
k̄1 + k̄2 + k̄3 + k̄4 = 0

)
euclidean Yukawa vertex : − g

(
p̄+ q̄ + k̄ = 0

)
where all momenta are supposed to be incoming 3 while kE ≡ k̄ and pE ≡ p̄

euclidean scalar loop :

∫
d4k̄

(2π)4

euclidean spinor loop : (−1)

∫
d4p̄

(2π)4

the symmetry factors being obviously the same as in Minkowski space. The
Euclidean formulation of quantum electrodynamics is also achieved after a
straightforward generalization of the above recipe. To be specific we have

Āµ = (A , A4 = − i A0 ) F̄µν = ∂µ Āν − ∂ν Āµ (2.112)

i γ µ [ ∂µ + iq Aµ(x) ] 7→ γ µ
[
− ∂E µ − iq Āµ (xE)

]
(2.113)

SE [ Āµ , BE , ψ̄E , ψE ] =

∫
dx̄
{

1
4
F̄µν F̄µν −BE ∂µ Āµ + 1

2
B 2
E

+ ψ̄E
(
∂/E +M − ieγ µĀµ

)
ψE

}
and thereby

euclidean photon propagator :
δµν
k 2
E

euclidean photon− spinor vertex : eγ µ (pE + kE + qE = 0)

The connected Euclidean Green’s functions are named correlation functions
or Schwinger’s functions and are given by

G
(n)
E ( x̄1 , . . . , x̄n ) = − δ (n)WE [ JE ]/δJE(x̄1) · · · δ JE(x̄n)

⌋
JE=0

(2.114)

Now it is very instructive to compare the Feynman rules for quantum
field theories in the Minkowski and Euclidean spaces. In the case of the
self-interacting scalar field we find

1

k 2
E +m2

propagator
i

k2 −m2 + iε

3We have to remember that ψE and ψ̄E are truly independent.
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− λ vertex − iλ∫
d4 `E
(2π)4

loop integration

∫
d4 `

(2π)4

while for Yukawa neutral meson theory and quantum electrodynamics

i

− p/E + iM
propagator

i

p/−M + iε

δµν
k 2
E +m2

propagator
− i gµν

k2 −m2 + iε

− g δ (pE + kE + qE ) vertex − ig δ (p+ k − q )

ieγ µδ (pE + kE + qE ) vertex ie γ µ δ (p+ k − q )

(−1)

∫
d4 pE
(2π)4

spinor loop integration (−1)

∫
d4 p

(2π)4

As a consequence, the transition from a connected n−point Schwinger’s
function to a connected n−point Green’s function in momentum space can
be readily achieved. We shall see how to proceed in the forthcoming sections.
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2.7 Problems

Evaluate the fermion determinant in the presence of a background classical
Abelian real vector field Aµ(x) .

Solution. By proceeding in close analogy with the Yukawa case, we start
from the functional integral representation

Z F [ ζ , ζ̄ ;Aµ ] = NA

∫
Dψ

∫
Dψ̄

exp
{
i
∫

dx ψ̄(x) [ γ µ i∂µ −M − q γ νAν(x) ]ψ(x)
}

× exp
{
i
∫

dx
[
ζ̄(x)ψ(x) + ψ̄(x) ζ(x)

]}
where q is the electric charge of the spinor particle while

Z F [ 0 , 0 ;Aµ ] = NA

∫
Dψ

∫
Dψ̄

exp
{
i
∫

dx ψ̄ (x) [ γ µ i∂µ −M − q γ νAν(x) ]ψ (x)
}

def
= NA det ‖ i ∂/−M − q A/ ‖

the latter definition being understood, as usual, up to the transition to the
Euclidean formulation. Notice that the constant NA is conveniently fixed by
the requirement that in the limit of a pure gauge vector potential

Aν(x)→ ∂ νf(x)

we recover Z F[ 0 , 0 ; 0 ] = 1 . Actually it is very easy to recognize that the
above fermionic determinant is gauge invariant. As a matter of fact, from
the legitimate manipulations of the functional integral we get

Z F [ 0 , 0 ;Aν + ∂ νf ] = NA

∫
Dψ

∫
Dψ̄

exp
{
i
∫

dx ψ̄(x) [ γ µ i∂µ −M − q γ νAν(x)− q γ µ∂µf(x) ]ψ(x)
}

= NA

∫
Dψ

∫
Dψ̄ exp

{
i
∫

dx ψ̄(x) e−iqf(x)

× [ γ µ i∂µ −M − q γ νAν(x) ] e iqf(x) ψ(x)
}

Changing the functional integration variables according to

ψ ′(x) = e iqf(x) ψ(x) ψ̄ ′(x) = e−iqf(x) ψ̄(x)∫
Dψ

∫
Dψ̄ =

∫
Dψ ′

∫
Dψ̄ ′
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we come to the conclusion that

Z F [ 0 , 0 ;Aν + ∂νf ] = Z F [ 0 , 0 ;Aν ] (2.115)

which amounts to the endorsement of gauge invariance. As a consequence,
we eventually come to the symbolic equality

det ‖ i ∂/−M − q A/ ‖
det ‖ i ∂/−M ‖

= det ‖ I− q ( i ∂/−M )−1A/ ‖

= exp{Tr ln ‖ I− q ( i ∂/−M )−1A/ ‖ }

= exp
{

(− 1)
∞∑
n= 1

1

n
Tr [ ( i ∂/−M )−1 q A/ ]n

}
in which we understand

〈x | ( i ∂/−M )−1 | y 〉 =
1

i
SF (x− y )

while the symbol [ Tr ] indicates the sum over spinor indexes and integration
over space-time coordinates. After setting

X n
A = (−1) Tr [ ( i ∂/−M )−1 q A/ ]n

explicit evaluation for n = 1 yields

X 1
A = (−1) Tr [ ( i ∂/−M )−1 q A/ ]

= − q
∫

dx1 〈x1 | tr ( i ∂/−M )−1A/ |x1 〉

= − q
∫

dx1

∫
dy tr 〈x1 | ( i ∂/−M )−1 | y〉 〈 y |A/ |x1 〉

= iq

∫
dx1

∫
dy tr [A/(x1)SF (x1 − y) ] δ(x1 − y)

= iq

∫
dx1 tr [A/(x1)SF (x1 − x1) ]

= iq

∫
dx1 tr [A/(x1)SF (0) ]

def
= iq Tr (A/SF )

in which the symbol [ tr ] denotes the sum over spinor indexes. The next
term can be handled in a quite similar way by making repeatedly use of the
completeness relation ∫

dx |x 〉 〈x | = I
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Figure 2.8: the tadpole graph X 1
A

Then we obtain

X 2
A = q 2

∫
dx1

∫
dx2 tr [SF (x1 − x2)A/(x1)SF (x2 − x1)A/(x2) ]

It is convenient to introduce the center of mass and relative coordinates

x̄ =
1

2
(x1 + x2) x = x1 − x2

∂(x1, x2)

∂(X, x)
= 1

so that

X 2
A = q 2

∫
dx̄

∫
dx tr [SF (x)A/(x̄+ x/2)SF (−x)A/(x̄− x/2) ]

= q 2

∫
dx̄

∫
dx

∫
d`

(2π)4

∫
dk

(2π)4

∫
dp

(2π)4

∫
dq

(2π)4

× exp{− ix̄ · (`+ k)− ix · (`− k)/2 + i(p− q) · x}

× tr

[
i

p/−M + iε
Ã/(`)

i

q/−M + iε
Ã/(k)

]
= − q 2

∫
dk

(2π)4
Ãµ(k) Ãν(− k)

∫
dp

(2π)4

∫
dq

(2π)4

× tr [ ( p/+M )γ µ( q/+M )γ ν ]

( p 2 −M 2 + iε )( q 2 −M 2 + iε )
(2π)4 δ (k + p− q)

= (− iq)2

∫
d4k

(2π)4
Ãρ(k) Ãσ(− k)

× (−1)

∫
d4p

(2π)4
tr

[
i

p/−M + iε
γ ρ

i

p/+ k/−M + iε
γ σ
]

the very last line corresponding to a fermion loop with two propagators and
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Figure 2.9: the self-energy graph X 2
A

Figure 2.10: the n−point QED 1-loop box X n
A

two vertexes. A little thought will convince the reader 4 that the iteration of
the above machinery leads to the result

X n
A = (− iq)n

∫
d4k1

(2π) 4
· · ·
∫

d4kn−1

(2π)4
(−1)

∫
d4p

(2π)4

× tr
[
S̃F (p) Ã/(k1)SF (p+ k1) Ã/(k2)SF (p+ k1 + k2) · · ·

· · · Ã/(kn−2)SF (p+ k1 + · · ·+ kn−2) Ã/(kn−1)SF (p+ kn) Ã/(kn)
]

= (−1) (− iq)n Tr (SF A/)
n ( kn = k1 + · · ·+ kn−1 ) (2.116)

which corresponds to a fermion loop with n−external legs associated to the
vector field vertexes. As a consequence, we can see by direct inspection that
the symbolic equality (2.116) can be understood in a perturbative sense as
a power series in the electric charge q the n−th coefficient of which does

4 The trick is to introduce a change of variables to a new system of coordinates with
the center of mass and (n− 1) relative coordinates with a unit Jacobian.
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involve the 1-loop fermion boxes with n−external vector legs with momenta
(k1, k2, . . . , kn = k1 + k2 + · · ·+ kn−1): namely,

det ‖ i ∂/−M − q A/ ‖
det ‖ i ∂/−M ‖

= exp

{
(− 1)

∞∑
n= 1

1

n
(− iq)n Tr (SF A/)

n

}
or even

det ‖ i ∂/−M − q A/ ‖ = det ‖ i ∂/−M ‖ exp{Tr ln(1 + iq SF A/)}

as näıvely expected by taking into account the suggestive symbolic relation
( i ∂/ − M )−1 = − iSF , as well as Tr (A/SF ) = Tr (SF A/) , i.e. the cyclic
property of the Tr operation. Notice however that the first two coefficients
of the perturbation expansion, that is

iq

∫
d4p

(2π)4
tr

[
i

p/−M + iε
γ µ
]

q 2

∫
d4p

(2π) 4
tr

[
i

p/−M + iε
γ µ

i

p/+ k/−M + iε
γ ν
]

appear to be ultraviolet divergent. Hence, they call for some regularization
method in order to be properly defined, in such a manner that we can write
the formal expression

X1
A = iq

∫
d4k

(2π)8
Ãν(k)

∫
d4p

tr [ (p/+M)γ ν ]

p 2 −M 2 + iε

= iq

∫
d4k

(2π)8
Ãν(k)

∫
d4p p ν/( p 2 −M 2 + iε ) = 0

owing to symmetric integration, while

X2
A = − q 2

∫
d4k

(2π)4

∫
d4p

(2π)4
Ãµ(k) Ãν(− k)

× tr [ ( p/+M ) γ µ ( p/+ k/+M ) γ ν ]

( p 2 −M 2 + iε )[ ( p+ k )2 −M 2 + iε ]
(2.117)

Actually it can be shown that all 1-loop fermion cycles with an odd number
of vector vertexes do vanish for symmetry reasons: this is known as the
Furry theorem5 of quantum electrodynamics. Thus we can eventually write
the expansion

ln det ‖ i ∂/−M − q A/ ‖ = ln det ‖ i ∂/−M ‖+
∞∑
n=1

1

2n
X2n
A

5W. H. Furry, A Symmetry Theorem in the Positron Theory, The Physical Review,
Vol. 51, pp. 125-129 (1937)
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which leads to the perturbative expansion of the 1-loop effective action for
QED in the presence of a background real vector potential, viz.,

Γeff [Aµ] =
VM4

8π 2

(
ln
M

µ
− 3

4

)
+
∞∑
n=1

i

2n
(− iq)2n Tr (SF A/)

2n

Notice that in the case of a constant gauge potential Aµ(x) = aµ = constant
we find

Γeff(aµ) = Γ
(0)
eff =

VM4

8π 2

(
ln
M

µ
− 3

4

)
because a constant vector potential can always be removed by means of a
gauge transformation with gauge function f(x) = a · x .
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Chapter 3

Scattering Operator

In this chapter I will analyze the basic concepts which lie at the ground of
the perturbation theory for collisions. This is the most important topic of
the Quantum Field Theory since it provides the bridge to connect theory
and experimental High Energy Particle Physics.

3.1 The S-Matrix in Quantum Mechanics

In the framework of Non-Relativistic Quantum Mechanics one can rigorously
formulate the so called asymptotic condition1. Consider an isolated system
with a time independent self-adjoint Hamiltonian operator

H = H0 + V

acting upon the Hilbert space H of the system, and let ψ ∈ H a proper state
of this quantum mechanical system. Without loss of generality, the free
Hamiltonian operator H0 is supposed to be self-adjoint, time independent
and endowed with a purely continuous spectrum. Moreover, the interaction
potential is supposed to fall down to zero at large distances according to

V (r)
r→∞∼ O

(
r− 3/2−ε ) (r = |r | ε > 0)

which corresponds to sufficiently short range interactions. Then, the proper
asymptotic states ψ as exist, which are related to the proper states ψ ∈ H ,
characterized by the following behavior

exp {− (i/~)H t} |ψ 〉 | t |→∞∼ exp {− (i/~)H0 t} |ψ as 〉
1See for instance the textbook by John R. Taylor, Scattering Theory: The Quantum

Theory on Nonrelativistic Collisions, John Wiley & Sons, New York (1972).
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In other terms, the asymptotic in and out states are defined by

s− lim
t→∓∞

exp {(i/~)H0t} exp {−(i/~)Ht} |ψ〉 def
=

{
|ψin〉 (t→ −∞)
|ψout〉 (t→ +∞)

where the symbol s− lim stands for the limit in the strong topology of the
Hilbert space H , that is

‖ exp {(i/~)H0 t} exp {−(i/~)H t}ψ − ψ as ‖ → 0 | t | → ∞

Hence, in so doing, we can define the isometric asymptotic wave operators

Ω as
def
= s− lim | t | → ∞ exp {(i/~)H0 t} exp {−(i/~)H t} (3.1)

where
Ω as : H −→ H as ≡ HrB

in which the subset B ⊂ H of the Hilbert space is spanned by the bound
states of the Hamiltonian operator H , i.e. the eigenstates belonging to the
purely discrete part of the spectrum of H . Hence, in general, the asymptotic
wave operators are not unitary but only isometric because

‖ ψ as ‖ = ‖ Ω as ψ ‖ = ‖ ψ ‖ Ω †as Ω as = I

Ω as |ψ 〉 = |ψ as 〉 ∈ HrB

Ω as |ψ b 〉 = 0 ∀ |ψ b 〉 ∈ B H |ψ b 〉 = E b |ψ b 〉
Notice that, according to the fundamental theorem for self-adjoint operators,
the complementary sub-spaces B and HrB are mutually orthogonal.

The Scattering Operator or Collision Operator or S−matrix is a unitary
operator S : Hin −→ Hout which is defined by

S
def
= Ω out Ω†in = U int (∞ , −∞)

= w − lim
t→+∞

lim
t ′→−∞

exp {(i/~)H0t} U ( t , t ′ ) exp {−(i/~)H0t
′}

where U ( t , t0 ) ≡ exp {−(i/~)H (t− t0)} is the time evolution operator,
whereas the limits are now understood in the weak topology of the Hilbert
space, that is

(ϕ |ψ ) = 〈ϕ out |S ψ in 〉 ∀ϕ , ψ ∈ H

while the time evolution operator in the interaction picture is just provided by

U int ( t f , t ı ) = exp {(i/~)H0 t f} U ( t f , t ı ) exp {−(i/~)H0 t ı}
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In the interaction picture the time evolution of operators is governed by the
free part H0 of the complete self-adjoint Hamiltonian operator H = H0 + V
of the quantum mechanical system, i.e.

A int (t) = exp {(i/~)H0 t} A(0) exp {−(i/~)H0 t}

where A is any linear operator acting on the Hilbert space H , while the state
vectors obey the evolution equation

i~ ∂ t |ψ int (t)〉 = V int (t) |ψ int (t)〉

where
|ψ(t)〉 = e−iHt/~ |ψ(0)〉 |ψ int (t)〉 = e iH0t/~ |ψ(t)〉

with the formal solution

|ψ int (t)〉 = U int ( t , t0 ) |ψ int (t0 )〉

U int ( t , t0 ) = T exp

{
− i

~

∫ t

t0

dτ V int (τ)

}
Hence, the scattering operator can be written in the very suggestive form

S = U int (∞ , −∞) = T exp

{
− i

~

∫ ∞
−∞

d t V int (t)

}
(3.2)

which apparently maps the incoming states from t → −∞ into outgoing
states at t → +∞ , as näıvely expected.

3.2 S-Matrix in Quantum Field Theory

Let me consider, for the sake of simplicity but without loss of generality, the
simplest interacting quantum field theory model, i.e. , the λφ4

4 scalar field
model described by the classical Lagrange density

L = 1
2
g µν ∂µφ(x) ∂ ν φ(x)− 1

2
(mc/~)2 φ 2 (x)− 1

24
(λ/~c)φ 4 (x)

leading to the conjugate momentum field

Π(x) =
δL
δφ̇(x)

= φ̇(x)/c2 = ∂0φ(x)/c

and to the classical functional

H = H0 + V ≥ 0

H0 =

∫
dx 1

2

[
c2 Π 2 (x)− φ(x)∇ 2φ(x) + (mc/~)2φ 2(x)

]
V[φ ] = λ

∫
dx φ 4(t,x)/4!~c (λ > 0)

90



3.2.1 Fields in the Interaction Picture

To the aim of understanding the meaning of the interaction representation
in the quantum field theory of the interacting fields, let me begin with the
general Fourier representation of a real scalar self-interacting quantum field
on the 3-dimensional ordinary Euclidean space at a given time x0 = ct = 0 :

φ(0 , x) =
c
√
~c

(2π)3

∫
dk

2ωk

[
a(k) e ik·x + a†(k) e− ik·x

]
≡ φ(x) (3.3)

where
[ a(k) , a†(k ′ ) ] = 2(2π)3 ωk

c
δ (k− k ′ )

ωk = c
√

k2 + (mc/~)2

all other commutators being null. Notice that in the physical C. G. S. system
of units the creation and destruction operators have canonical engineering
dimensions given by [ a(k) ] = [ a†(k) ] = cm . Next I can introduce the field
conjugate momentum in a similar way, by means of the equality

Π(0 , x) =

√
~/c

(2π)3

∫
dk

2i

[
a(k) e ik·x − a†(k) e− ik·x

]
≡ Π(x)

in such a manner to satisfy the canonical commutation relations

[φ(x) , Π(y ) ] = i~ δ (x− y )

all the other commutators vanishing. Then we can easily build up the free
Hamiltonian quantum operator at x0 = t = 0 that reads

H0 =
1

2

∫
dx : c 2 Π 2 (x) + |∇φ(x)|2 + (mc/~)2 φ 2(x) :

where the normal ordering means here that, when I substitute the normal
mode expansions for Π ( x ) and φ ( x ) in the quadratic expression H0 , the
creation operators a†(k) stand always to the left of the destruction operators
a(k) , in such a manner that H0 | 0 〉 = 0 . The perturbative (λ = 0) vacuum
state at x0 = t = 0 is defined by a(k) | 0 〉 = 0 = 〈 0 | a†(k) (∀k ∈ R3 ) .

We can define the Hermitean spin-less quantum field in the interaction
representation by the evolution law

φ int (x) = e (i/~)H0 t φ(x) e− (i/~)H0 t (3.4)

which entails the free field theory relationships

cΠ int(x) = ∂0φ int(x) =
i

}c
[ H0 , φ int(x) ] (3.5)
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From the canonical commutation relation, it follows that the self-interacting
real scalar quantum field operator in the interaction representation fulfills
the Klein-Gordon equation(

�+m2c2/~2
)
φ int (x) = 0

so that we can write at any time x0 = t its normal mode decomposition

φ int (x) =
√
~c
∫
Dk

[
a(k) e− ikx + a† (k) e ikx

]
= φ

(−)
int (x) + φ

(+)
int (x)

∫
Dk

def
=

∫
c dk

(2π)3 2ωk

=

∫
d4k

(2π)3
θ (k0) δ

(
k2 −m2c2/~2

)
ck 0 = ωk = c

√
k2 +m2c2/~2[

a(k) , a† (k ′ )
]

= 2(2π)3 ωk

c
δ (k− k ′ )

[ a(k) , a(k ′ ) ] = 0 =
[
a† (k) , a† (k ′ )

]
In so arguing, the transition and the correspondence from the non-relativistic
quantum mechanics to the relativistic quantum field theory seem to be quite
natural and straightforward. Actually, a deeper inspection neatly shows that
things are far more complicated, see the comments at the end of this section.

3.2.2 S-Matrix in Perturbation Theory

We can now use the suggestive relationship (3.2) in order to express the
scattering operator for the self-interacting real scalar field model in terms of
the creation and annihilation operators and, moreover, calculate its matrix
elements between states containing scalar field quanta of sharply definite
energy momentum. To the aim of calculating those matrix elements it is
convenient to deal with normal ordered products, in the interaction picture,
with all the creation parts φ

(+)
int (x) of the scalar field operators standing to

the left of the destruction parts φ
(−)
int (x) . This can be done by means of the

Wick’s theorem

Giancarlo Wick ( Torino, 15 October 1909 – Torino, 20 April 1992 )
Evaluation of the collision matrix
Physical Review 80 (1950) 268

Wick’s theorem for chronological products states that the T− product of a
system of n linear free field operators is equal to the sum of their normal
products with all possible chronological pairings including the term with no
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pairings – each pairing of free field operators does correspond to the related
Feynman propagator, viz.,︷ ︸︸ ︷

φ int(xı)φ int(x) = DF (xı − x)

When applied to the chronologically ordered product of n field operators,
then Wick’s theorem takes the well known form

T φ int (x1) . . . φ int (xn) = : φ int (x1) . . . φ int (xn) :

+
∑

1≤ ı<≤n

DF (xı − x ) :
∏
κ 6= ı , 

φ int (xκ) : + · · ·

+ DF (x1 − x2)DF (x3 − x4) : φ int(x5)φ int(x6) · · ·φ int(xn) : + · · ·
+

∑
1≤ ı1<1≤n

. . .
∑

1≤ ır<r≤n

DF (xı1 − x1 ) · · ·DF (xır − xr )

×
{

1 for n = 2` (` ∈ N)
φ int (xs) for n = 2`+ 1 ( s 6= ı1 6= · · · 6= r )

(3.6)

Notice that for n = 2` , ` ∈ N , the very last term in the RHS contains the
sum of (2` − 1)!! products of n/2 propagators, the arguments of which are
always distinguished.

The above rather cumbersome formula can be readily checked by direct inspection for n = 2
and can be proved by induction in the general case. For a very detailed and exhaustive
proof, which also includes the cases of the spinor and vector fields, see the classic textbook
by N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields,
Interscience Publishers, New York, 1959, §16.2 pp. 159–168, §19.2 pp. 233–235.
Check. For n = 2 we find

T φ int (x)φ int (y) = θ(x0 − y0)
(
φ

(−)
int (x) + φ

(+)
int (x)

)(
φ

(−)
int (y) + φ

(+)
int (y)

)
= θ(y0 − x0)

(
φ

(−)
int (y) + φ

(+)
int (y)

)(
φ

(−)
int (x) + φ

(+)
int (x)

)
and from the canonical commutation relations

[φ
(−)
int (x) , φ

(−)
int (y) ] = 0 [φ

(+)
int (x) , φ

(+)
int (y) ] = 0

[φ
(−)
int (x) , φ

(+)
int (y) ] = (− i)D (−)(x− y)

we obtain

T φ int (x)φ int (y) =
{
θ(x0 − y0)

[
φ

(−)
int (x)φ

(−)
int (y) + φ

(+)
int (x)φ

(+)
int (y)

]
+ θ(x0 − y0)

[
φ

(+)
int (x)φ

(−)
int (y) + φ

(+)
int (y)φ

(−)
int (x)

]
+ θ(x0 − y0)(− i)D (−)(x− y)

}
+ {x � y }

= : φ int (x)φ int (y) : +DF (x− y)
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where use has been made of the well known relationships

: φ int (x)φ int (y) : = : φ int (y)φ int (x) :

θ(x0 − y0)(− i)D (−)(x− y) + θ(y0 − x0)(− i)D (−)(y − x) = DF (x− y)

This completes our check. �

A much more compact and convenient functional expression is

T F[φ int] = exp
{

1
2

∫
dxdyDF (x− y)

(
δ(2)/δφ int(x)δφ int(y)

)}
: F[φ int] :

where F [ φ int ] is any functional of the real scalar field in the interacting
representation. Functional differentiation with respect to the operator φ int

has been introduced here. It is a straightforward generalization of the usual
functional differentiation, the only important difference being that one must
keep in mind that the field operators at different times do not commute.

Proof. To start with consider for example

: φ(x1)φ(x2) : = : φ(x2)φ(x1) : = 1
2 : φ(x1)φ(x2) + φ(x2)φ(x1) :

where we understand in what follows the quantum scalar fields evolving in accordance with
the interaction picture, which means that their evolution is governed by the Klein-Gordon
differential equation, in such a manner to omit the label int for the sake of simplicity. If
we take the quadratic functional

: F2[φ ] : =

∫
dx1dx2 F2(x1, x2) : φ(x1)φ(x2) :

where F2 is any regular and symmetric function of the two variables (x1, x2), then we get

exp
{

1
2

∫
dx dy DF (x− y)

[
δ(2)/ δφ(x) δφ(y)

]}
: F2[φ ] :

=

∫
dx1dx2 F2(x1, x2) : φ(x1)φ(x2) :

+ 1
2

∫
dxdy DF (x− y)

[
δ(2)/δφ(x) δφ(y)

] ∫
dx1dx2 F2(x1, x2) : φ(x1)φ(x2) :

= : F2[φ ] : + 1
2

∫
dxdy dx1dx2 F2(x1, x2)DF (x− y)

× [ δ(x− x1) δ(y − x2) + δ(x− x2) δ(y − x1) ]

=

∫
dx1dx2 F2(x1, x2) [DF (x1 − x2) + : φ(x1)φ(x2) : ]

=

∫
dx1dx2 F2(x1, x2) T φ(x1)φ(x2) = T F2[φ ]

Consider now the cubic normal ordered functional

: F3[φ ] : =

∫
dx1dx2dx3 F3(x1, x2, x3) : φ(x1)φ(x2)φ(x3) :
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so that we obtain

exp
{

1
2

∫
dx dy DF (x− y)

[
δ(2)/ δφ(x) δφ(y)

]}
: F3[φ ] :

= : F3[φ ] : + 1
2

∫
dx dy dx1dx2dx3 F3(x1, x2, x3)DF (x− y)

×
{

[ δ(x− x1) δ(y − x2) + δ(x− x2) δ(y − x1) ]φ(x3)

+ [ δ(x− x2) δ(y − x3) + δ(x− x3) δ(y − x2) ]φ(x1)

+ [ δ(x− x3) δ(y − x1) + δ(x− x1) δ(y − x3) ]φ(x2)
}

=

∫
dx1dx2dx3 F3(x1, x2, x3)

[
DF (x1 − x2)φ(x3) +DF (x2 − x3)φ(x1)

+ DF (x3 − x1)φ(x2)+ : φ(x1)φ(x2)φ(x3) :
]

=

∫
dx1dx2dx3 F3(x1, x2, x3) T φ(x1)φ(x2)φ(x3) = T F3[φ ]

Hence one can readily convince oneself and check that the very same manipulations lead
to the very same formula for the n−th normal ordered functional: namely,

: Fn[φ ] : =

∫
dx1dx2 . . . dxn Fn(x1, x2, . . . , xn) : φ(x1)φ(x2) · · ·φ(xn) :

exp
{

1
2

∫
dy dz DF (y − z)

[
δ(2)/ δφ(y) δφ(z)

]}
: Fn[φ ] :

= : Fn[φ ] : +

[n/2 ]∑
=1

2−

 !

∫
dy1 dz1 . . . dy dzDF (y − z)

[
δ(2)/ δφ(y) δφ(z)

]
×

∫
dx1dx2 . . . dxn Fn(x1, x2, . . . , xn) : φ(x1)φ(x2) · · ·φ(xn) :

=

∫
dx1dx2 . . . dxn Fn(x1, x2, . . . , xn) Tφ(x1)φ(x2) · · ·φ(xn) = T Fn[φ ]

where we have taken into account that the functional derivatives vanish for all  greater
than the integer part of n/2 . Thus, for any analytic functional of the form

F[φ ] = F0 +

∞∑
n=1

1

n!
Fn[φ ]

the above relation holds true, viz.

exp
{

1
2

∫
dxdy DF (x− y)

[
δ(2)/ δφ(x) δφ(y)

]}
: F[φ ] : = T F[φ ]

which endorses the most general functional expression of the Wick theorem. �

Now, in particular, if we take the functional

F[φ int ] = exp
{
i
∫

dx φ int (x) J (x)
}

J (x) being as usual some classical external source, we find

T exp
{
i
∫

dx φ int (x) J (x)
}

= exp
{
− 1

2

∫
dxdyDF (x− y)J(x)J(y)

}
: exp

{
i
∫

dx φ int (x) J (x)
}

:

= : exp
{
i
∫

dx φ int (x) J (x)
}

: Z0 [J ] (3.7)

95



where Z0 [J ] is the previously introduced generating functional of the Green’s
functions for the free field theory, whereas a repeated use has been made of
the identity

δ

δφ int (x)
: exp

{
i
∫

dw φ int (w) J (w)
}

:

= i J(x) : exp
{
i
∫

dw φ int (w) J (w)
}

: (3.8)

It is worthwhile to recall the Symanzik functional identity (1.6)

~ J (x)Z0 [J ] = Kx (δ /i δ Jx ) Z0 [J ] (3.9)

in which I have denoted the Klein-Gordon differential operator as

Kx
def
=

(
�x +m2c2/~2

)
Proof: as a matter of fact, on the one hand we have

J (x)Z0 [J ] = J (x) exp
{
− 1

2

∫
dy
∫

dzDF (y − z)J(y)J(z)
}

while on the other hand we get

(δ /i δ J (x)) Z0 [J ] = i

∫
dy DF (x− y)J(y)Z0 [J ]

Application of the Klein-Gordon operator yields

Kx (δ /i δ J (x)) Z0 [J ] = iKx
∫

dy DF (x− y)J(y)Z0 [J ]

= i

∫
dy (− i~) δ(x− y) J(y)Z0 [J ]

= ~ J(x)Z0 [J ]

which completes our proof. �

Hence, we can rewrite the functional relationship (3.7) in the form

T exp
{
i
∫

dx φ int (x) J (x)
}

= (3.10)

: exp

{
i

~

∫
dx φ int (x) Kx (δ /i δ Jx )

}
: Z0 [J ]

Now, once again, we can take profit of the very same expedient which led
us to the Feynman rules. Let me start from the basic definition (3.2) – which
holds rigorously true in non-relativistic quantum mechanics – and let’s try
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to understand it within the framework of perturbative quantum field theory.
After turning to natural units we get

S = Uint(∞,−∞) = T exp

{
− i
∫ ∞
−∞

dt V int(t)

}
≡ T exp

{
− i
∫ ∞
−∞

dt

∫
dx

λ

4!
φ4

int ( t,x)

}
(3.11)

= exp

{
− iλ

4!

∫
d4x

(
δ

δJx

)4
}

T exp

{
i

∫
d4y φ int (y) J (y)

} ∣∣∣∣
J=0

It is worthwhile to stress that the very last line expression for the collision
matrix turns out to be manifestly Lorentz invariant, at variance with the
expressions in the first line of the above equality chain. As a consequence,
we can eventually express the scattering operator (3.2) in the suggestive form

S ≡ exp
{

(− iλ/4!)
∫

d4z (δ /i δ Jz)
4 }

× : exp
{
i
∫

d4xφ int (x) Kx (δ /i δ Jx )
}

: Z0

⌋
J=0

= : exp
{
i
∫

d4xφ int (x) Kx (δ /i δ Jx )
}

:

× exp
{

(− iλ/4!)
∫

d4z (δ /i δ Jz)
4 } Z0

⌋
J=0

def
= : exp

{
i

∫
d4xφ int (x) Kx (δ /i δ Jx )

}
: Z

⌋
J=0

(3.12)

in which I have used in the last step the formal definition (2.5) with ν = 1 of
the generating functional for the Green’s functions of the real self-interacting
scalar field theory.

As a matter of fact, it turns out that in perturbation theory one can safely identify the
Fock spaces Fin and Fout of the asymptotic spaces for the self-interacting quantum scalar
field to be isomorphic to the Fock space of the Klein-Gordon field. This means in turn that
in perturbation theory the absence of bound states and the asymptotic completeness of the
scattering states is always tacitly assumed. In the present context, owing to the repulsive
nature of the λφ4

4 contact interaction for λ > 0 , the above assumption is admittedly
legitimate and coherent. Hence, within the framework of the perturbation theory we can
always safely and suitably assume that | 0 in 〉 = | 0 out 〉 = | 0 〉 and thereby

Z[ J ] = 〈 out 0 | 0 in 〉J = 〈 0 | T exp
{
i
∫

dx φ(x) J(x)
}
| 0 〉

≡ exp
{

(− iλ/4!)
∫

d4z (δ /i δ Jz)
4
}
Z0[ J ]

Notice that the above form of the generating functional differs from the previous one

(2.5) only in the (divergent) normalization constant, which appears to be irrelevant in the

calculation of the relevant connected n−point Green’s functions.
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From the exponential Taylor’s expansion (1.1)

Z [J ] =

〈
T exp

{
i

∫
dx φ(x) J(x)

}〉
0

def
=

∞∑
n=0

in

n!

∫
dx1 J(x1) · · ·

∫
dxn J(xn)

× 〈0 |T φ(x1) · · ·φ(xn) |0〉 (3.13)

we eventually come to the fundamental and celebrated formula that relates
the scattering operator, which describes spin-less massive particles collisions,
to the n−point Green’s functions of the self-interacting neutral spin-less field

S =
∞∑
n=0

in

n !

∫
dx1

∫
dx2 . . .

∫
dxn

: φ int (x1)φ int (x2) . . . φ int (xn) :

K (x1)K (x2) . . . K (xn)

〈 0 |T φ(x1)φ(x2) . . . φ(xn) | 0 〉 (3.14)

in which the symbol K (x ) = (� +m2 ) (  = 1, 2, . . . , n ) denotes the
kinetic differential operator, i.e. specifically the Klein-Gordon operator. As
a final remark it is worthwhile to stress that the above definition (3.14) of the
scattering or collision operator is merely formal, since in perturbation theory
the Green’s functions as derived from the Feynman rules out of the classical
Lagrangian are plagued by severe ultraviolet divergences and mathematically
ill-defined. It turns out that only after the procedure of the removal of the
ultraviolet divergences from the Green’s functions in perturbation theory it
will be possible to set up a renormalized S−matrix, the matrix elements of
which could be eventually and actually compared with the experimental data.

3.2.3 LSZ Reduction Formulas

The calculation of the matrix elements of the scattering operator is now
straightforward. Let the initial state involve N identical spin-less massive
particles while the final state N ′ of such a kind of particles: then we have

|Ki 〉 = | k1 k2 · · · kN 〉 = (N ! )−1/2

N∏
ı=1

a† (k ı ) | 0 〉

〈K ′f | = 〈 k ′1 k ′2 · · · k ′N ′ | = 〈 0 |
N ′∏
=1

a(k ′ ) (N ′ ! )−1/2
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If we suppose that k ı 6= k ′ for all pairs2 ( ı ,  ) , then solely the term in the
series with

: φ int (x ′1)φ int (x ′2) . . . φ int (x ′N ′)φ int (x1)φ int (x2) . . . φ int (xN) :

will indeed contribute – see Exercise here below. Among the (N +N ′ ) field
operators in the interaction representation, N will act with their destruction
parts

φ
(−)
int (x ı) ( ı = 1, 2, · · · , N )

whilst N ′ with their creation parts

φ
(+)
int (x ′ ) (  = 1, 2, · · · , N ′ )

Owing to the identical nature of the scalar neutral bosons attending the
scattering process, the number of term which is produced in the reduction of
the matrix element

〈K ′f | : φ int (x ′1) . . . φ int (x ′N ′)φ int (x1) . . . φ int (xN) : |Ki 〉

is just ( N + N ′ ) ! . As a matter of fact, the result is that the only non-
vanishing matrix element is provided by

〈 k ′1 · · · k ′N ′ |φ
(+)
int (x ′1) . . . φ

(+)
int (x ′N ′)φ

(−)
int (x1) . . . φ

(−)
int (xN) | k1 · · · kN 〉

= exp{− ik1 · x1 · · · + ik ′N ′ · x ′N ′} + permutations (3.15)

all the others being equal to zero, the total number of terms being equal to
(N + N ′ ) ! as expected. Hence, turning back to the expression (3.14), we
can write

〈 k ′1 k ′2 · · · k ′N ′ |S | k1 k2 · · · kN 〉 =

iN+N ′ (N !N ′ ! )
− 1/2 ∫

dx ′1 . . .
∫

dx ′N ′
∫

dx1 . . .
∫

dxN

exp{− ik1 · x1 − · · · − ikN · xN + ik ′1 · x ′1 + · · · + ik ′N ′ · x ′N ′}
K(x ′1) . . . K(x ′N ′)K(x1) . . . K(xN)GN ′+N (x ′1, . . . , x

′
N ′ ; x1, . . . , xN )

(3.16)

in which all the temporal components of the incoming and outgoing momenta
are understood to be on the mass shell, i.e. ,

k 0
ı = ω (k ı ) ( ı = 1, 2, . . . , N )

2This means that we disregard the case in which any of the incident particles is not
scattered at all.
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k ′ 0 = ω (k ′ ) (  = 1, 2, . . . , N ′ )

It is now convenient to introduce the Green’s functions in momentum space
according to the standard definition

〈 0 |T φ(x1)φ(x2 ) . . . φ(xn ) | 0 〉 =

∫
d4p1

(2π)4

∫
d4p2

(2π)4
· · ·

∫
d4pn
(2π)4

(2π)4 δ (P ) G̃n (p1, p2 . . . , pn )
n∏

= 1

exp { i p · x }

= Gn (x1, x2 . . . , xn ) (3.17)

where the δ−distribution of the total energy momentum

P ≡ p1 + p2 + . . . + pn

does vindicate the translation invariance of the n−point Green’s functions
in the configuration space. Notice that the canonical engineering dimensions
of the Green’s functions in natural units are

[Gn (x1 . . . , xn ) ] = eV n

[ G̃n (p1 . . . , pn ) ] = cm3n−4

Then, by substituting the Fourier transform (3.17), it is straightforward to
recast the above equation (3.16) into the final form

〈 k ′1 k ′2 · · · k ′N ′ |S | k1 k2 · · · kN 〉 =

iN+N ′ (N !N ′ ! )
− 1/2

(2π)4 δ (K i −K ′f ) ×
N ′∏
= 1

lim
k ′ 2 →m2

(
m2 − k ′ 2

) N∏
ı= 1

lim
k2
ı →m2

(
m2 − k 2

ı

)
× G̃N ′+N (k1, . . . , kN ;− k ′1, . . . ,− k ′N ′ ) (3.18)

This remarkable formula is known as the LSZ reduction formula, the
acronym being associated to the names of Harry Lehmann, Kurt Symanzik
and Wolfhart Zimmermann who originally derived that fundamental relation.

H. Lehmann, K. Symanzik and W. Zimmermann
Zur Formulierung Quantisierter Feldtheorien
Nuovo Cimento 1, January 1955, pp. 205-225.

If the initial and final states do not truly correspond to sharply definite
values of energy and momentum, then some normalized wave packets have
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to be suitably introduced according to

|N initial 〉 = (N ! )−1/2

N∏
ı=1

∫
Dk ı f̃ ı (k ı ) a

† (k ı ) | 0 〉

〈N ′ final | = (N ′ ! )−1/2

N ′∏
=1

∫
Dk ′ g̃

∗
 (k ′ ) 〈 0 | a(k ′ )

where I used the previously introduced notations

ck0 = ω (k) = c
√

k2 +m2c2/~2

Dk ı =
dk ı

(2π)3 2 k 0
ı

=
c dk ı

(2π)3 2ω(k ı)

Dk ′ =
dk ′

(2π)3 2 k ′ 0
=

c dk ′
(2π)3 2ω(k ′)

(3.19)

[
a(k) , a† (k ′ )

]
= 2(2π)3 ωk

c
δ (k− k ′ ) et cetera

f(t,x) =

∫
c dk

(2π)3 2ω(k)
f̃(k) exp{− i tω (k) + ik · x}

( f , f ) =

∫
dx f ∗(t,x) i

↔
∂0 f(t,x) =

∫
Dk | f̃(k) |2 = 1

It is worthwhile to recall that, according to the above definitions, we have to
assign the following canonical dimensions in physical units: namely,

[ a(k) ] = [ a†(k) ] = cm [Dk ] = cm−2

[ f ] = cm−1 [ f̃ ] = cm

[ | k1 k2 · · · kN 〉 ] = cmN [ |N initial 〉 ] = dimensionless

[Gn ] =
(√

eV/cm
)n [

G̃n

]
= cm−4+7n/2 eV n/2

As a consequence, the LSZ reduction formula for the dimensionless matrix
elements of the perturbative scattering operator between normalizable states
and in natural units becomes

〈N ′ final | S |N initial 〉 =
iN+N ′

√
(N !N ′ ! )

× (3.20)

N ′∏
= 1

∫
Dk ′ g̃

∗
 (k ′ ) lim

k ′ 2 →m2

(
m2 − k ′ 2

)
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N∏
ı= 1

∫
Dk ı f̃ ı (k ı ) lim

k2
ı →m2

(
m2 − k 2

ı

)
× G̃N+N ′ (k1, . . . , kN ;− k ′1, . . . ,− k ′N ′ ) (2π)4 δ (K i −K ′f )

The disconnected n−point Green’s functions do involve also trivial parts,
that correspond to the absence of any scattering process. Hence, what we
are really interested for is the reduction formula for the connected Green’s
functions, that means, the truly interacting part which actually contribute to
the scattering amplitudes. For example, in the 4-point Green’s function we
find terms which are related to the products of two 2-point Green’s functions,
i.e. two full propagators: such terms do not describe neither scattering nor
interaction. To see this, I first decompose the 4-point Green’s function into
disconnected and connected parts as shown graphically in the figure. The
first three graphs represent the non-scattered or straight through or even
forward propagation of the particles, albeit with fully interacting or dressed
propagators, i.e. 2-point Green’s functions that include all order radiative
corrections which describe emission and absorption of virtual particles, in
accordance with the energy-time uncertainty relation of quantum mechanics.

The final graph represents the processes that give rise to the scattering,
once we have again removed the four dressed propagator factors to define an
amplitude which is named truncated or amputated 4-point Green’s function.
In conclusion, from the reduction formulæ we have learned that the basic
ingredients we have to build up in perturbation theory by means of the
Feynman rules, in the aim of computing the scattering cross sections to be
compared with the experimental data, are the connected, truncated, on shell
n−point Green’s functions in momentum space.

One of the fundamental inadequacies of the previously discussed and
presently known as the customary perturbative approach to the quantum
field theory of truly interacting field is the necessity to introduce into the
formulation fictitious non-interacting particles, states and fields and to treat
the interaction as some additional small perturbation, which slightly modifies
the dynamical quantum system and which may be switched on or switched
off ad hoc and ad libitum. At first glance it might appear that this procedure
does not give rise to any basis for criticism of the theory. Indeed we know
that the elementary particles interact intensively with each other only if they
are extremely close, typically at a relative distance of few fm. Therefore, it
would appear that at large distances among the particles, where large might
have the realistic size of few µm, the field interaction could be disregarded
and in a certain reliable approximation it is legitimate to neglect it and to
regard the particles realistically as being free.
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Figure 3.1: the full 4-point Green’s function in the φ4
4 theory

However, by arguing in this way we omit from consideration the crucial
fact that the particles continuously interact with the vacuum, as it were a sort
of a material medium through which the particles move. This is a typical
quantum mechanical and relativistic effect, an unavoidable consequence of
the Heisenberg uncertainty relations and of the equivalence between mass
and energy in the Special Theory of Relativity.

It appears therefore to be rather longing for a development of the theory
to deal from the outset with real interacting particles and to avoid carefully
the introduction of such a kind of artificial concepts like the fictitious free
particles, fields and corresponding quantum states. As a matter of fact, the
separation between the free and interacting parts of the total Hamiltonian,
as well as the very existence of a well defined total Hamiltonian operator, are
non-covariant and frame dependent assumptions. The free Hamiltonian H0

would be an ill defined part of the total energy-momentum vector – the true
generator of space-time translations – and it won’t be neither conserved in
time nor referable to any observable quantity. Hence, owing to these reasons,
the interaction picture in the quantum field theory is merely a poorly defined
fictitious device to recover the collision matrix and the reduction formulas.
Actually, it has been rigorously proved by Rudolf Haag 3 that the interaction

3R. Haag, On quantum field theories, Det Kongelige Danske Videnskabernes Selskab
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picture does not exist at all in Quantum Field Theory, once a few very basic
and general features are postulated about the nature of the interacting fields,
viz. covariance, locality, micro-causality and spectrum conditions. The above
sketched serious criticisms have led to some important developments such as
e.g. an axiomatic non-perturbative formulation of the theory of collisions
for massive interacting fields, the main pillars of which are the Lehmann-
Symanzik-Zimmermann asymptotic conditions and the adiabatic switching
of the interaction. Nonetheless, admittedly, the ultimate reason why all the
above considerations have to be trusted stands in the comparison with the
experimental data.

Exercise. Evaluate the quantity

〈 a(k ′1 )a(k ′2 ) : φ(x ′2 )φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0

where φ(x) = φ(−)(x) + φ(+)(x) is a real scalar free field with

φ(−)(x) =

∫
Dk a(k) e−ikx φ(+)(x) =

∫
Dk a†(k) e ikx

k0 = ωk Dk =
dk

(2π)3 2ωk
=

d4k

(2π)3
θ(k0) δ(k2 −m2)

[ a(k) , a†(p) ] = (2π)3 2ωk δ(k− p) [ a(k) , a(p) ] = 0

Solution

Let us first calculate the simpler quantity

〈 a(k ′1 ) : φ(x ′1 )φ(x1) : a†(k1) 〉0 =

〈 a(k ′1 )φ(−)(x ′1 )φ(−)(x1)a†(k1) 〉0 + 〈 a(k ′1 )φ(+)(x ′1 )φ(+)(x1)a†(k1) 〉0
+ 〈 a(k ′1 )φ(+)(x ′1 )φ(−)(x1)a†(k1) 〉0 + 〈 a(k ′1 )φ(+)(x1)φ(−)(x ′1 )a†(k1) 〉0

Now we have the non-vanishing commutation relations

[φ(−)(x), a†(k) ] = e−ikx [ a(k), φ(+)(x) ] = e ikx

whence we readily obtain that the first line in the right hand side of the previous equality
does vanish, while the very last line yields

〈 a(k ′1 ) : φ(x ′1 )φ(x1) : a†(k1) 〉0 = exp{−ik1 · x1 + ik ′1 · x ′1 }
+ exp{−ik1 · x ′1 + ik ′1 · x1}

Next we find

〈 a(k ′1 ) : φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0 =

〈 a(k ′1 )φ(−)(x ′1 )φ(−)(x1)φ(−)(x2)a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x ′1 )φ(−)(x1)φ(−)(x2)a†(k2)a†(k1) 〉0 +

Matematisk-Fysiske Meddelelser 29 (1955) nr. 12, 1-37
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〈 a(k ′1 )φ(+)(x1)φ(−)(x2)φ(−)(x ′1 )a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x2)φ(−)(x ′1 )φ(−)(x1)a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x ′1 )φ(+)(x1)φ(−)(x2)a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x1)φ(+)(x2)φ(−)(x ′1 )a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x2)φ(+)(x ′1 )φ(−)(x1)a†(k2)a†(k1) 〉0 +

〈 a(k ′1 )φ(+)(x ′1 )φ(+)(x1)φ(+)(x2)a†(k2)a†(k1) 〉0

The last four lines evidently vanish so that we are left with

〈 a(k ′1 ) : φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0
= 〈 a(k ′1 )φ(−)(x ′1 )φ(−)(x1)a†(k2) 〉0 exp{−ik1 · x2}
+ 〈 a(k ′1 )φ(−)(x ′1 )φ(−)(x1)a†(k1) 〉0 exp{−ik2 · x2}
+ exp{ik ′1 · x ′1 } 〈φ(−)(x1)φ(−)(x2)a†(k2)a†(k1) 〉0
+ exp{ik ′1 · x1} 〈φ(−)(x2)φ(−)(x ′1 )a†(k2)a†(k1) 〉0
+ exp{ik ′1 · x2} 〈φ(−)(x ′1 )φ(−)(x1)a†(k2)a†(k1) 〉0

Again, the first two lines in the right hand side of the above equality do vanish and going
on with the process of reduction we obtain

〈 a(k ′1 ) : φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0
= exp{ik ′1 · x ′1 } 〈φ(−)(x1)a†(k2)φ(−)(x2)a†(k1) 〉0 + k1 ↔ k2

+ cyclic permutations of x ′1, x1, x2

= exp{ik ′1 · x ′1 − ik1 · x1 − ik2 · x2} + k1 ↔ k2

+ cyclic permutations of x ′1, x1, x2 ( 3! terms )

Turning now to the evaluation of the quantity

〈 a(k ′1 )a(k ′2 ) : φ(x ′2 )φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0

the iteration of the above described process of reduction clearly shows that the only non-
vanishing contributions read

〈 a(k ′1 )a(k ′2 ) : φ(x ′2 )φ(x ′1 )φ(x1)φ(x2) : a†(k2)a†(k1) 〉0
= 〈 a(k ′1 )a(k ′2 ) : φ(+)(x ′2 )φ(+)(x ′1 )φ(−)(x1)φ(−)(x2) : a†(k2)a†(k1) 〉0
+ permutations ( 4! terms )

= exp{ik ′1 · x ′1 + ik ′2 · x ′2 − ik1 · x1 − ik2 · x2}+ permutations

3.2.4 Feynman Rules for External Legs

The fundamental LSZ reduction formula for the scattering operator matrix
elements actually entails the formulation of the so called Feynman rules for
the external legs. The latter ones are essentially determined by the process
of reduction of the matrix elements of the type (3.15) that appear indeed
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in the generalization of the master formula (3.18) to the case of fields with
arbitrary spin and internal quantum numbers, such as U(1) electric charge,
SU(2) flavor, SU(3) color, U(1) lepton number, U(1) baryon number and so
on. To this concern, it is very convenient to write the most general covariant
normal mode decomposition for a generic quantum field, which transforms
according to some given representation of the Poincaré group IO(1,3) and of
a general internal symmetry group G: namely,

Φı (x) =

∫
Dk

[
Aσ (k)u ıσ (k) e− ikx +B †σ (k) υ ıσ (k) e ikx

]
Φ†ı (x) =

∫
Dk

[
Bσ (k) υ ∗ıσ (k) e− ikx + A †σ (k)u∗ıσ (k) e ikx

]
in which repeated indexes are summed over and I have set as usual∫

Dk =
1

(2π)3

∫
dk θ (k0) δ

(
k 2 −m2

)
=

1

(2π)3

∫
dk

2ωk

Here the quantum field multiplet index ı ∈ I , where I is some discrete
and finite set, does label the number of components of the charged quantum
field multiplet. For example, a charged scalar field has ı = 1, a Weyl left
spinor field has ı = 1L, 2L, while any flavor doublet of Dirac spinors in the
fundamental representation of SU(2)flavour has {4 = (1L, 2L, 1R, 2R)}×{2 =
(up, down)} = 8 components, in such a way that ı = 1, 2 . . . , 8 . A gluon
vector field

{Aaµ(x) |µ = 0, 1, 2, 3, a = 1, . . . , 8}
is a set of eight real vector fields that transform according to the adjoint
representation of SU(3)color so that ı = {µ, a} = (1, . . . , 32) .

Conversely, the inner quantum number σ = 1, 2, . . . , n does label the
number of polarization states, or helicity eigenstates. It is worthwhile to
stress that this number is in general gauge dependent, i.e. , it depends upon
the subsidiary condition which is imposed in order to define the perturbative
expansion for the gauge dependent vector potential. For instance, a mass-less
left Weyl spinor, e.g. a mass-less neutrino, has only one single left polarization
state σ = L of negative helicity h = −1

2
, a massive bispinor, e.g. an electron,

has two polarization states σ = 1, 2 . In the case of the massive vector boson
triplet V a

µ (x) ( a = 1, 2, 3 ) which mediates weak interactions with

W ±
µ (x) ≡ V 1

µ (x)± i V 2
µ (x) Z 0

µ (x) ≡ V 3
µ (x)

the inner quantum number takes the values σ = 1, 2, 3 because we have three
polarization states for each component – the two massive charged W ±

µ (x) and
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the massive neutral Z 0
µ (x) – gauge boson triplet, while the index ı = {µ, a}

takes 12 possible values.

The generic quantum field Φı (x) is supposed to evolve in the interaction
picture, so that it satisfies a homogeneous free field equation

K 
ı(x) Φ (x) = 0

where K 
ı(x) is a general matrix-like differential operator such as e.g. the

Klein-Gordon or Dirac operators, while canonical commutation relations (−)
or canonical anti-commutation relations (+) are assumed to hold true

[Aσ (k) , A†σ ′ (k
′ ) ]± = (2π)3 2ωk δσσ ′ δ (k− k ′ ) (3.21)

[Bσ (k) , B †σ ′ (k
′ ) ]± = (2π)3 2ωk δσσ ′ δ (k− k ′ ) (3.22)

all the other commutators or anti-commutators being null. Finally, in the
case of self-conjugated Hermitean fields there is only one type of creation
and destruction operators, because the particles and antiparticles actually
coincide.

The smeared normalizable 1-particle polarized states of a general quantum
field are defined by

| fσ 〉 = A†σ (f) | 0 〉 =

∫
Dk f (k)A†σ (k) | 0 〉 (3.23)

| gσ 〉 = B †σ (g) | 0 〉 =

∫
Dk g (k)B †σ (k) | 0 〉 (3.24)

〈 0 | 0 〉 = 1 ⇔ 〈 fσ | fσ ′ 〉 = 〈 gσ | gσ ′ 〉 = δσσ ′ (3.25)

The normalizable wave functions or wave packets read

fıσ(x) = 〈 0 |Φı(x) | fσ 〉

=
〈 [

Φı(x) , A†σ (f)
]
±

〉
0

=

∫
Dk f (k)u ıσ (k) e− ikx

g ıσ(x) = 〈 0 |Φ†ı (x) | gσ 〉

=
〈 [

Φ†ı (x) , B †σ (g)
]
±

〉
0

=

∫
Dk g (k) υ>∗ıσ (k) e− ikx

where, as usual, k0 = ωk =
√
m2 + k2 . Notice that, by construction, the

normalizable wave packets are solutions of the very same free field equation
satisfied by the general quantum field Φı(x) in the interaction picture, viz.,

K 
ı(x) fσ(x) = K 

ı(x) gσ(x) = 0 (∀σ = 1, . . . , n, ı ∈ I )
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In the case ofM different particles andN different antiparticles it is necessary
to consider the states

| fσ1 , . . . fσM ; gσ1 , . . . gσN 〉 =
M∏
a= 1

N∏
c= 1

A†σa (fa )B †σc (gc ) | 0 〉

If the 1-particle wave packets are normalized to unit and if the particles are
indeed different – which is necessarily true in the case of anti-commuting
fields – then the many-particle states are also normalized to one.

In the case of quantum fields with integer spin, i.e. boson fields that
satisfy canonical commutation relations, we have to treat separately the case
in which among the inner quantum numbers σ1, σ2 , . . . , σN there are some
identical ones, i.e. when among the N particles there are several groups of
identical particles. In the case of several groups ν1, ν2 , . . . , νa of identical
particles we shall correspondingly obtain

| f1f2 . . . fM 〉 =
(∏

[ ν ! ]
)− 1

2

M∏
i= 1

A†as (fi ) | 0 〉 (3.26)

where the following notation has been used∏
[ ν ! ] = ν1! ν2! · · · νa! (3.27)

and a quite analogous formula evidently holds true for antiparticles.

Spinor Examples. To understand how to handle the reduction of the matrix elements
of normal ordered products of quantum fields in the interaction representation, let me
consider some simple enlightening examples. Let us first calculate the simplest quantity
involving a pair of Dirac bispinor fields, viz.,

〈 0 | cr ′ (p ′ ) : ψ̄(x ′ )ψ(x) : c†r (p) | 0 〉

= 〈 0 | cr ′ (p ′ ) :
(
ψ̄ (−)(x ′ ) + ψ̄ (+)(x ′ )

)(
ψ (−)(x) + ψ (+)(x)

)
: cr (p) | 0 〉

= 〈 0 | cr ′ (p ′ ) ψ̄ (−)(x ′ )ψ (−)(x) c†r (p) | 0 〉
+ 〈 0 | cr ′ (p ′ ) ψ̄ (+)(x ′ )ψ (+)(x) c†r (p) | 0 〉
− 〈 0 | cr ′ (p ′ )ψ (+)(x ′ ) ψ̄ (−)(x) c†r (p) | 0 〉
+ 〈 0 | cr ′ (p ′ ) ψ̄ (+)(x ′ )ψ (−)(x) c†r (p) | 0 〉 (3.28)

where of course

ψ (−)(x) =

∫
Dq cs (q)us (q) e− iqx

ψ (+)(x) =

∫
Dq d†s (q) vs (q) e iqx

ψ
(−)

(x) =

∫
Dq ds (q) v̄s (q) e− iqx
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ψ
(+)

(x) =

∫
Dq c†s (q) ūs (q) e iqx

with
{ψα(x) , ψ̄β(y)} = Sαβ(x− y) (α, β = 1L, 2L, 1R, 2R )

{cr ′ (p ′ ) , c†r (p)} = {dr ′ (p ′ ) , d†r (p)} = (2π)3 2ωp δ(p− p ′ ) δr r ′

all the other anti-commutators being null. A little though is sufficient to gather that only
the very last term in the right hand side of equation (3.28) does contribute and gives

〈 0 | cr ′ (p ′ ) : ψ̄(x ′ )︸ ︷︷ ︸ ψ(x) : c†r (p)︸ ︷︷ ︸ | 0 〉
≡ 〈 0 | {cr ′ (p ′ ) , ψ̄ (+)(x ′ )} {ψ (−)(x) , c†r (p)} | 0 〉
= ūr ′ (p ′ )ur (p) exp{− ip · x+ ip ′ · x ′} (3.29)

A quite similar calculation for antiparticle states immediately yields

(−1) 〈 0 | dr ′ (p ′ ) : ψ(x ′ )︸ ︷︷ ︸ ψ̄(x) : d†r (p)︸ ︷︷ ︸ | 0 〉
≡ (−1)〈 0 | {dr ′ (p ′ ) , ψ (+)(x ′ )} {ψ̄ (−)(x) , d†r (p)} | 0 〉
= (−1) v̄r (p) vr ′ (p ′ ) exp{− ip · x+ ip ′ · x ′} (3.30)

the minus sign being due to the anti-commutation of the spinor field operators. Of course,
had we employed normalizable wave packets it is immediate to obtain

〈 0 | cr ′ (f ′ ) : ψ̄(x ′ )︸ ︷︷ ︸ ψ(x) : c†r (f)︸ ︷︷ ︸ | 0 〉
≡ 〈 0 | {cr ′ (f ′ ) , ψ̄ (+)(x ′ )} {ψ (−)(x) , c†r (f)} | 0 〉
= ūr ′ (p ′ )ur (p) exp{− ip · x+ ip ′ · x ′} [ f̃ ′ (p ′ ) ]∗ f̃ (p) (3.31)

together with

(−1) 〈 0 | dr ′ (g ′ ) : ψ(x ′ )︸ ︷︷ ︸ ψ̄(x) : d†r (g)︸ ︷︷ ︸ | 0 〉
≡ (−1)〈 0 | {dr ′ (g ′ ) , ψ (+)(x ′ )} {ψ̄ (−)(x) , d†r (g)} | 0 〉
= (−1) v̄r (p) vr ′ (p ′ ) exp{− ip · x+ ip ′ · x ′} g̃ ∗ (p) g̃ ′ (p ′ ) (3.32)

Hence we end up with the following momentum space Feynman rules for the external legs
of a Dirac bispinor quantum field: namely,

ψ | − r p︸ ︷︷ ︸ 〉 ↔ ur (p) incoming particle (3.33)

ψ̄ | + r p︸ ︷︷ ︸ 〉 ↔ v̄r (p) incoming antiparticle (3.34)

〈 p r − | ψ̄︸ ︷︷ ︸ ↔ ūr (p) outgoing particle (3.35)

〈 p r + |ψ︸ ︷︷ ︸ ↔ vr (p) outgoing antiparticle (3.36)

and the corresponding ones for normalizable 1-particle and 1-antiparticle states, viz.,

ψ | − r f︸ ︷︷ ︸ 〉 ↔ ur (p) f̃(p) incoming particle (3.37)
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ψ̄ | + r g︸ ︷︷ ︸ 〉 ↔ v̄r (p) g̃ ∗(p) incoming antiparticle (3.38)

〈 f r − | ψ̄︸ ︷︷ ︸ ↔ ūr (p) f̃ ∗(p) outgoing particle (3.39)

〈 g r + |ψ︸ ︷︷ ︸ ↔ vr (p) g̃(p) outgoing antiparticle (3.40)

Furthermore, the number of anti-commutations necessary to embed all the field operators

at the right place will settle the overall sign of any matrix elements of normal ordered

products involving anti-commuting spinor fields in the interaction representation.

A straightforward extension of the above described procedure, leading to the
Feynman rules for the so called external legs of a Dirac bispinor field, can be
simply implemented to treat the general field Φı (x) and yields

Φı | − σ f︸ ︷︷ ︸ 〉 ↔ u ıσ (p) f̃(p) incoming particle (3.41)

Φ†ı | + σ g︸ ︷︷ ︸ 〉 ↔ v>∗ıσ (p) g̃ ∗(p) incoming antiparticle (3.42)

〈 f σ − |Φ†κ︸ ︷︷ ︸ ↔ u>∗κσ(p) f̃ ∗(p) outgoing particle (3.43)

〈 g σ + |Φκ︸ ︷︷ ︸ ↔ vκσ(p) g̃ (p) outgoing antiparticle (3.44)

For example, the gluons are massless quanta of a real vector field multiplet,
which transforms according to the adjoint representation of the non-Abelian
group SU(3)colour . It turns out that the exchange of virtual gluons between
quarks, antiquarks fermions and gluons themselves does actually produce,
according to the gauge theory of Quantum ChromoDynamics (QCD), the
strong interaction and eventually the nuclear forces. In this case we find
Φı(x) = {A a

µ(x) | a = 1, 2, . . . , 8} with

A a
µ(x) =

∫
Dk ε aµA(k) aA(k) e− ikx + h.c. (3.45)

where the index A = (1, 2, L, S) runs over the two transverse and physical
gluon polarization, as well as over the longitudinal and scalar non-physical
ones. Moreover, in the Feynman gauge we have

[ aA(k) , a†B(k ′ ) ] = ηAB (2π)3 2|k| δ(k− k ′ )

A a
µ |B f︸ ︷︷ ︸ 〉 ↔ ε aµB(k) f̃(k) incoming gluon (3.46)

〈 f B |A a
µ︸ ︷︷ ︸ ↔ ε a∗µB(k) f̃ ∗(k) outgoing gluon (3.47)
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with

ηAB ε
a∗
µA(k) ε bνB(k) + c.c. = − gµν δ ab (3.48)

− g µν ε a∗µA(k) ε bνB(k) + c.c. = ηAB δ
ab (3.49)

As a final remark, it is worthwhile to note that when a field theory involves
both kinds of fields, i.e. quantum free fields in the interaction picture, which
satisfy canonical equal time commutation relation

[ Φı(t,x) ,Φ(t,y) ] = 0

as well as canonical equal time anti-commutation relations

{Ψκ(t,x) ,Ψ`(t,y)} = 0

then it is assumed that they always commute at any times: namely,

[ Φı(x) , Ψ(y) ] = [ Φı(x) , Ψ† (y) ] = 0

3.2.5 Yukawa Potential

Soon after the discovery of the neutron particle by James Chadwick in 1932
at the Cavendish Laboratory in Cambridge (UK) it was Werner Heisenberg
Who immediately put forward the idea the proton and neutrons were two
different states of one single particle called Nucleon.

Heisenberg, W. (1932) Uber den Bau der Atomkerne. I, Z. Phys. 77, pp.
1-11; Über den Bau der Atomkerne. II, Z. Phys. 78, pp. 156-164.

As a matter of fact, the mass of the neutron (symbol n) and the proton
(symbol p) are almost identical: they are nearly degenerate, and both are
thus often called Nucleons. Experimentally one finds

(mn −mp)/(mn +mp) ' 0.7× 10−3

so that we can set mp ≈ mn ≈M ' 939 MeV/c 2. Although the proton has a
positive electric charge while the neutron is neutral, they are almost identical
in all other aspects. The strength of the attractive and very strong interaction
between any pair of Nucleons is the same, independent of whether they are
interacting as protons or as neutrons. According to this phenomenological
framework, the two kinds of Nucleons can be supposed to be point-like and
arranged into a doublet of Dirac fields

Ψ(x) =

 p(x)
n(x)


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Figure 3.2: The lowest order diagram corresponding to Nucleon scattering
in the Yukawa theory
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transforming according to one of the fundamental representations of SU(2)
that is called the Isotopic Spin or Isospin internal symmetry group, according
to the original Heisenberg title to indicate this new quantum number. The
point-like Nucleons are supposed to interact through the Yukava force carried
by a spin-less isoscalar real meson field π0(x), so that the classical Lagrangian
of the present Heisenberg-Yukawa model model for nuclear matter reads

L = Ψ†(x)γ0(i ∂/−M) Ψ(x) + 1
2
∂µπ

0(x)∂ µπ0(x)− 1
2
m2[ π0(x) ]2

− y π0(x)Ψ†(x)γ0Ψ(x) ( y ∈ R )

The Lagrangian is invariant under the full Lorentz group, under the charge
conjugation symmetry, the SU(2) isospin transformations on the spinor fields

Ψ(x) 7−→ Ψ ′(x) = exp
{

1
2
iσa θa

}
Ψ(x) ( a = 1, 2, 3 )

and the overall phase transformation on the SU(2) spinor doublet

Ψ(x) 7−→ Ψ ′(x) = e iϕ Ψ(x)

where σa are the Pauli matrices while

0 ≤ θ < 2π 0 ≤ ϕ < 2π θ =
√
θ2

1 + θ2
2 + θ2

3

are the canonical coordinates of the internal symmetry group SU(2)×U(1).
The invariance under the Abelian group of the phase transformations leads
to conservation of the barion number B. Thus, if we measure the charge Q
in units of the proton charge e, then we can write the relation Q = T3 + 1

2
B

where

T3 =

∫
dx Ψ †(t,x) 1

2
σ3Ψ(t,x)

= 1
2

∫
dx [ p†(t,x) p(t,x)− n†(t,x)n(t,x) ]

B =

∫
dx [ p†(t,x) p(t,x) + n†(t,x)n(t,x) ]

Q

e
=

∫
dx p†(t,x) p(t,x)

The momentum space Feynman rules are the very same for both kinds of
Nucleons as well as the Feynman rules for the incoming and outgoing particles
and antiparticles: namely

• scalar propagator: DF (k) = i [ k 2 −m2 + iε ]−1
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• spinor propagator: SFαβ(p) = i(p/+M)αβ (p2 −M2 + iε)
−1

• meson-Nucleon-Nucleon vertex: − iy ( p1 + k − p2 = 0 )

• for each loop of internal line labeled by ` :
∫

d4`/(2π)4

• a factor (− 1) for each fermion loop

• incoming Nucleon: u r(p1) , us(p2)

• outgoing Nucleon: ū r ′(p
′
1) , us ′(p

′
2)

• incoming anti-nucleon: v̄ r(p1) , vs(p2)

• outgoing anti-nucleon: v r ′(p
′
1) , vs ′(p

′
2)

Let us now consider, for the sake of pedagogical simplicity, the pn collision
for incident Nucleons momenta much below Mc , i.e. in the non-relativistic
approximation. In such a circumstance, by comparing the amplitude for this
process – up to the lowest order in the Yukawa coupling y – to the scattering
amplitude of non-relativistic quantum mechanics in the Born approximation,
we can extract the potential V (r) created by the Yukawa field theory model.

As the two colliding Nucleons are distinguishable, only the diagram of
Fig. 3.2 does contribute to the lowest order y 2 . Actually we understand the
incoming particles as free spinor particles of given energy momentum and
polarization (p, r) and (q, s) , while the outgoing free particles will carry the
energy momentum and polarization labels (p ′, r ′) and (q ′, s ′) respectively.
Hence, the application of the basic formula (3.2) to the Yukawa interaction
with two kinds of spinor fields yields

S = I− iy
∫

dx π0
int(x)[ pint(x) pint(x) + nint(x)nint(x) ]

− y2
∫

dx
∫

dx′ T π 0
int(x) pint(x) pint(x)π 0

int(x
′)nint(x

′)nint(x
′)

+ · · · · · ·

and the further application of the Wick’s theorem to this scattering operator
matrix element gives rise to only a single non-vanishing term, viz.,

(−iy)2 〈 0 | c r ′(p ′ )C s ′(q ′ ) : n̄
(+)
x′ n

(−)
x′ p(+)

x p(−)
x : C †s(q) c

†
r(p) | 0 〉Dxx′

= (−1)(−iy)2 〈 0 | c r ′(p ′ )C s ′(q ′ ) n̄
(+)
x′ n

(−)
x′ c†r(p)︸ ︷︷ ︸ p(+)

x p(−)
x C †s(q)︸ ︷︷ ︸ | 0 〉Dxx′

= (+1) (−iy)2 c r ′(p ′ ) n̄ x′︸ ︷︷ ︸ n x′ c†r(p)︸ ︷︷ ︸ Dxx′ C s ′(q ′ ) p x︸ ︷︷ ︸ p x C †s(q)︸ ︷︷ ︸
⇒ ū r ′(p ′ )u r(p)

− iy2

(p ′ − p)2 −m2
u s ′(q ′ )u s(q ) ( p+ q = p ′ + q ′ )

114



where we have indicated with small and capital letters the creation and
destruction operators of the neutron and proton particles respectively. Here
the Dirac bispinor indexes have been always understood, to avoid too heavy
notations while, of course, we have r, s, r ′, s ′ = 1, 2 , p2 = q 2 = p ′ 2 = q ′ 2 =
M 2. In the non-relativistic limit we can approximate as follows:

~p ≈ (Mc, ~p) ~q ≈ (Mc, ~q)

~p ′ ≈ (Mc, ~p ′ ) ~q ′ ≈ (Mc, ~q ′ )

(p− p ′ )2 ≈ − |p− p ′ |2 u r (p) ≈ ξ r

√
Mc

~
et cetera

ū r ′ (p
′ )u r (p) ≈ 2

Mc

~
δ r r ′ u s ′ (q

′ )u s (q ) ≈ 2
Mc

~
δ s s ′

in such a manner that the particle spin is conserved in the non-relativistic
regime. Putting all pieces together we find from the Feynman graph the
dimensionless transition amplitude

u s ′ (q
′ )u s (q )

− iy 2~2

~2k2 −m2c2
ū r ′ (p

′ )u r (p) ( p+ q = p ′ + q ′ ) (3.50)

where k = p − p ′ = q ′ − q is the so called transferred four momentum; thus,
in the non-relativistic approximation, we are left with

iy 2~2

~2k2 +m2c2

(
2Mc

~

)2

δ r r ′ δ s s ′ ≡ 4πiTk
2Mc2

~c
δ r r ′ δ s s ′

with p + q = p ′+ q ′ , in which I have suitably factorized the non-relativistic
center of mass energy 2Mc2 , as well as the conversion factor ~c , so that the
transition matrix for relative motion in the non-relativistic approximation
reads

}
8πMc

Mp→p ′ ≡ Tk =
y 2

4π
· 2M}c
} 2|p− p ′ | 2 +m2c2

(3.51)

which has the dimensions of a length in physical units. In non-relativistic
quantum mechanics, the scattering amplitude in the Born approximation for a
spin-less particle in a time independent potential V (r) is given by 4

f(θ) = − M

2π}2
〈p ′ |V |p 〉 = − M

2π}2
Ṽ (p− p ′ )

= − M

2π}2

∫
dr exp {−i (p− p ′ ) · r} V (r)

4 See e.g. Eugene Merzbacher, Quantum Mechanics, John Wiley & Sons, New York
(1970) §5 p.497
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where M is the reduced nucleon mass, while θ is the scattering angle for the
elastic process with

p · p ′ = p p ′ cos θ p2 = p ′ 2 = 2ME }− 2

Hence, the differential cross-section for a scattering process by a static fixed
target potential is simply provided by

dσ

dΩ
= |f(θ) |2 dΩ = sin θdθdφ

Consider the attractive Yukawa central potential

V (r) =

{
+∞ for 0 ≤ r < a
− V0(r0/r) e

− r/r0 for r ≥ a

in which a is the hard core repulsive barrier of nucleon impenetrability, while
the characteristic length r0 = ~/µc may be identified with the range of the
potential. Thus we get

f(θ) =
M

~2
V0r0

∫ 1

−1

dτ

∫ ∞
a

rdr exp {− (r/r0) + iτ r |p− p ′ |}

= 2MV0r0

∫ ∞
a

dr
sin( |p− p ′ | r )

~2|p− p ′ |
e− r/r0

a→ 0∼ 2MV0r0

~2|p− p ′ |2 + µ2c2
=

2MV0r0

4~2 p 2 sin 2( θ/2 ) + µ 2c 2

because of the relation p = p ′, which holds true in the non-relativistic limit,
that implies

|p− p ′ | 2 = p 2 + p ′ 2 − 2 pp ′ cos θ = 4 p 2 sin 2( θ/2 )

Now it is apparent that we have to identify

µ = m
V0r0

~c
=
y 2

4π
f(θ) = Tp→p ′

V (r) = − }c
y 2

4πr
e−mc r/} for r ≥ a

in such a manner that we can eventually write

− 2π~2

M
Tk = Ṽ (p− p ′ ) = − ~c

(
~c

2Mc2

)2

Mp→p ′ (3.52)

Ṽ (p− p ′ ) =

(
− 2π~2

M

)
· ~c (y 2/4π) 2Mc

|p− p ′ |2 +m2c2/~2
(3.53)
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and thereby
dσ

dΩ
=

(
y 2

4π
· 2Mc}

4} 2p 2 sin 2( θ/2 ) +m2c 2

)2

Hence, under the assumption of a nuclear force characteristic range of the
order

r0 =
~
mc
∼ 1 fm = 10−15 m

we eventually find a Yukawa meson mass

mc2 =
~c

1 fm
⇔ m ∼ 197 MeV/c2

which is not too far from the neutral pion mass mπ 0 = 134.9766 ± 0.0006
MeV/c2 keeping in mind the crudeness of the approximation. Furthermore,
from the phenomenological evidence that the nuclear force overcomes the
Coulomb force at a distance of 1 fm of a factor thousand, we get the orders
of magnitude of the depth of the nuclear potential well

V0 ≈ e× 10 3 × }c× α

r0

≈ 2.720
}cα
1 fm

' 4× 10 3m p c
2 ≈ 4 GeV (3.54)

and of the Yukawa coupling

y 2

4π
≈ 103 × 2, 72 α ' 20 ⇐⇒ y ' 16

which, unfortunately, is very unsuitable for a good perturbative expansion.
Thus the Yukawa φ−meson exchange model can be used and trusted at
most as an effective description of the nuclear force valid at sufficiently low
energies and momenta. Conversely, the related process of nucleon off anti-
nucleon scattering leads to an amplitude with an opposite overall sign. As a
matter of fact we find

(−iy)2 〈 0 | c r ′(p ′ ) d s ′(q ′ ) : ψ
(+)

x ψ (−)
x Dxx′ Ψ

(−)

x′ Ψ
(+)
x′ : d†s(q) c

†
r(p) | 0 〉

= (−1)(−iy)2 〈 0 | c r ′(p ′ ) d s ′(q ′ ) Ψ
(+)
x′︸ ︷︷ ︸ ψ (+)

x ψ (−)
x Ψ

(−)

x′ d†s(q)︸ ︷︷ ︸ c†r(p) | 0 〉 Dxx′

= (−1) (−iy)2 〈 0 | c r ′(p ′ )ψ
(+)

x︸ ︷︷ ︸ d s ′(q ′ ) Ψ
(+)
x′︸ ︷︷ ︸ Ψ

(−)

x′ d†s(q)︸ ︷︷ ︸ ψ (−)
x c†r(p)︸ ︷︷ ︸ | 0 〉 Dxy

= (−1) (−iy)2 c r ′(p ′ )ψ
(+)

x︸ ︷︷ ︸ ψ (−)
x c†r(p)︸ ︷︷ ︸ Dxx′ Ψ

(−)

x′ d†s(q)︸ ︷︷ ︸ d s ′(q ′ ) Ψ
(+)
x′︸ ︷︷ ︸

⇒ ū r ′(p ′ )u r(p)
− iy2

(p ′ − p)2 −m2
v̄ s(q ) v s ′(q ′ ) (−1) ( p+ q = p ′ + q ′ )

It is precisely this change of the overall sign that ensures, in the non-
relativistic limit, the charge independence of the Yukawa nuclear force for

v̄ s ′ (q
′ ) v s (q ) ≈ − 2

Mc

~
δ s s ′
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Another quite useful example of application of the LSZ reduction formulæ
is the nucleon-anti-nucleon annihilation and production by a virtual neutral
meson N +N −→ π0

∗ −→ N +N that yields

(−iy)2 〈 0 | d r ′(p ′ ) c s ′(q ′ ) ψ̄
(+)
x′ ψ

(+)
x′ Dxx′ ψ̄ (−)

x ψ (−)
x c†s(q) d

†
r(p) | 0 〉

= (−1)4(−iy)2 〈 0 | c s ′(q ′ )ψ
(+)

x′︸ ︷︷ ︸ d r ′(p ′ )ψ
(+)
x′︸ ︷︷ ︸ ψ (−)

x d†r(p)︸ ︷︷ ︸ ψ (−)
x c†s(q)︸ ︷︷ ︸ | 0 〉

⇒ ū s ′(q ′ ) v r ′(p ′ )
− iy2

(p+ q )2 −m2
v̄ r(p)u s(q ) ( p+ q = p ′ + q ′ )

with ~2(p + q)2 = 4M 2
Nc

2 � m2
π0c2 that endorses the virtual nature of the

exchanged π0 neutral meson.

3.2.6 Coulomb Potential

As a simple application of these Feynman rules, let me repeat the analysis
of the non-relativistic scattering amplitude for quantum electrodynamics in
natural units, in close analogy with what I did in the case of the nuclear
Yukawa potential. The perturbative expansion of the collision matrix (3.2)
for QED with two kinds of spinor field carrying equal masses though different
electric charges reads

S = I + ie

∫
dy Aµint(y)ψ int(y)γµψ int(y)

+ iZe

∫
dxAνint(x)Ψ int(x)γνΨ int(x)

− Ze2

∫
dx

∫
dy TAµint(x)ψ int(x)γµψ int(x)Aνint(y)Ψ int(y)γνΨ int(y)

+ · · · · · ·

To the first order in e/
√

2hc some processes might occur in perturbation
theory, in which three physical particles – one photon and two Dirac particles
– would appear in the initial and final states on the mass shells. It can be
readily seen, however, that those kinds of processes are impossible, owing to
energy momentum conservation. If we denote by kµ the photon momentum
and by pν , qρ the Dirac particles momenta respectively, then the energy-
momentum conservation is expressed by the equality k = p± q, the sign plus
being related to a particle-antiparticle pair, the minus sign being instead
referred to a 2-particles or a 2-antiparticles pair. The above equality is in
fact impossible because k2 = 0 while for e.g. q = 0 we get

( p± q )2 = 2(M2 ± p · q) = 2(M2 ± p0q0 ∓ p · q) = 2M(M ± p0)

118



and since p0 > M we find either ( p + q )2 > 0 or ( p − q )2 < 0. Hence, the
first nontrivial term in the collision matrix becomes

S = −Ze2

∫
dx

∫
dy
(
T Aµint(x)Aνint(y)

)
×

(
T ψ int(x)γµψ int(x)Ψ int(y)γνΨ int(y)

)
+ · · · · · ·

owing to the commutation between photon and Dirac field operators.
Thus, for elastic scattering, the Wick’s theorem yields, up to the leading

order and in natural units,

−Ze2 〈 0 | c s( q)C s ′( q ′ ) : ψ̄ (+)
x γµ ψ

(−)
x D µν

xy Ψ
(+)

y γν Ψ (−)
y : C †r ′( p

′ ) c †r( p) | 0 〉

= −Ze2 〈 0 | c s( q) ψ̄ (+)
x γµ ψ

(−)
x C s ′( q ′ ) Ψ

(+)

y︸ ︷︷ ︸ γν Ψ (−)
y C †r ′( p

′ )︸ ︷︷ ︸ c †r( p) | 0 〉D µν
xy

= −Ze2 〈 0 | c s( q) ψ̄ (+)
x︸ ︷︷ ︸ γµ ψ (−)

x c †r( p)︸ ︷︷ ︸ D µν
xy C s ′( q ′ ) Ψ

(+)

y︸ ︷︷ ︸ γν Ψ (−)
y C †r ′( p

′ )︸ ︷︷ ︸ | 0 〉
⇒ −Ze2 ū s( q) γ

µ u r( p)
− i

( p− p ′ )2
U s ′( q ′ ) γµ U r ′( p ′ ) ( p+ p ′ = q + q ′ )

where, of course, we have

r, s, r ′, s ′ = 1, 2 , p 2 = q 2 = p ′ 2 = q ′ 2 = M 2

Putting all pieces together we find from the Feynman graph the dimensionless
transition amplitude

ū s (q ) ( ieγ µ )u r (p)
− i

(p− q )2
U s ′ (q

′ ) ( iZeγµ )U r ′ (p
′ ) (3.55)

Notice that the Feynman gauge photon propagator, which represents the
electromagnetic interaction in the present lowest order amplitude, can be
suitably rewritten in the very suggestive form

Dµν(k) =
gµν
it

where t is the Mandelstam variable which corresponds to the invariant norm
of the transferred 4-momentum k = p− q = q ′ − p ′, viz.,

t ≡ ~2k2 = ~2(p− q )2 = 2M2c2

[
1−

√
1 +

~2q2

M2c2

]
< 0

Here the rest frame of the incoming particle p = (Mc, 0, 0, 0) has been used,
without loss of generality thanks to the Lorentz invariance, to exhibit the
space-like nature of the transferred momentum t. This means in turn that the
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Figure 3.3: Coulomb scattering

exchanged photon, which mediates the electromagnetic interaction between
the two charged Dirac spinor particles, is virtual and space-like, i.e. off its mass
shell k2 = 0 , and that all the four kinds of polarization, physical and non-
physical, do indeed carry the Coulomb interaction in the manifestly covariant
Feynman gauge. In the non-relativistic limit we can approximate as follows:

~p ≈ (Mc, ~p) ~q ≈ (Mc, ~q)

~p ′ ≈ (Mc, ~p ′ ) ~q ′ ≈ (Mc, ~q ′ )

(p− p ′ )2 ≈ − |p− p ′ |2

u1 (p) ≈
√
Mc

~


1
0
1
0

 u2 (p) ≈
√
Mc

~


0
1
0
1


so that

u†s (q )u r (p) ≈ 2
Mc

~
δ rs u†s ′ (q

′ )u r ′ (q
′ ) ≈ 2

Mc

~
δ r ′s ′

ūs(q) γ
k ur(p) = u†s (q )α k u r (p) ≈ 0

ūs ′(q
′) γk ur ′(p

′) = u†s ′ (q
′ )αk u r ′ (p

′) ≈ 0

for r, r ′, s, s ′ = 1, 2 , in such a manner that the particle spin is conserved in
the non-relativistic regime. Then we eventually come to the non-relativistic
approximation

− iZe2c2

~2|p− q |2
2M δ r s 2M δ r ′ s ′ = 4πi Tp ,q 2

Mc

~
δ r s δ r ′ s ′
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and consequently

Tp ,q = f(θ) = − 2McZα

~|p− q |2

which corresponds to the repulsive Coulomb potential 5

V (r) =
Ze2

4πr
= Z

α

r
Ṽ ( |p− q |) =

Ze2

|p− q |2

so that(
dσ

dΩ

)
=

(MZα~c)2

4 |p |4 sin4(θ/2)
=

Z 2α2~2c2

16E 2 sin4(θ/2)
(p2 = 2ME )

which is nothing but the celebrated Rutherford exact cross-section. For an
antiparticle-particle scattering we have to make the replacement

ū s (q ) ( ieγ µ )u r (p) ↔ v̄ r (p) (− ieγ µ ) v s (q )

and owing to
v̄ s (q ) γ0 v r (p) ≈ 2M δ r s et cetera

the sign of the non-relativistic Coulomb potential is opposite as it does. As
a final remark I’d like to argue about gauge invariance. One is always free
to replace the photon propagator in the Feynman gauge with the the most
general expression in a Lorentz invariant non-homogeneous Lorenz gauge
∂µA

µ(x) = ξB(x) that yields

D̃ c
λµ(k ; ξ) =

i~c
k 2 + iε

(
− gλµ +

1− ξ
k 2 + iε

kλ kµ

)
with k = p− p ′ = q ′ − q . Now, if we recall the Dirac equations for the spin
states, viz.,

(p/−M)u r(p) = 0 = ū r ′(p
′ )(p/ ′ −M)

(q/−M)u s(q) = 0 = ū s ′(q
′ )(q/ ′ −M)

then we obtain the matrix general element

ū s (q ) ( ieγ µ )u r (p)
− i

(p− q )2
ū s ′ (q

′ ) ( iZeγ ν )u r ′ (p
′ )

×
[
gµν −

1− ξ
(p− q)2 + iε

(p− q)µ (q ′ − p ′)ν
]

= ū s (q ) γ µ u r (p)
iZe2

(p− q )2
ū s ′ (q

′ ) γµ u r ′ (p
′ ) (3.56)

5 The Coulomb potential is obtained as the limit of the Yukawa potential in which
m → 0 with V0r0 → Zα~c – see e.g. Eugene Merzbacher, Quantum Mechanics, John
Wiley & Sons, New York (1970).
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which endorses gauge invariance, i.e. ξ−independence, of the lowest order
scattering amplitude. However, it turns out that this fundamental feature
holds true to any order, what corresponds to the so called Ward’s identity.
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3.3 Cross Section

3.3.1 Scattering Amplitude

In this section we shall consider, for the sake of simplicity, a self-interacting
real scalar field describing spinless neutral particles without further internal
structure. It is useful to express the scattering operator in the form

S = I + i T (3.57)

where the unit operator I is related to non-scattered, forward, straight-
through particle propagation, while T is the transition matrix, the matrix
elements of which do non-trivially depend upon the field interaction. Then
the S−matrix elements are defined to be

Sfι = 〈 f |S | ι 〉 = δfι + (2π)4 i δ
(
P ′f − Pι

)
Mfι (3.58)

where the invariant T−matrix elements Mfι have been introduced for the
scattering process 1 + 2 + . . .+N 7−→ 1′ + 2 ′ + . . .+N ′ : namely

〈 p ′1 p ′2 . . . p ′N ′ |T | p1 p2 . . . pN 〉 = (2π)4 δ
(
P ′f − Pι

)
M( pι 7→ p ′f ) (3.59)

in which the energy momentum 1-particle eigenstates of all the particles are
normalized according to the standard covariant convention

〈 q | p 〉 = 2(2π)3 ωp δ (p− q) p0 = ωp =
√

p2 +m2

whilst

Pi =
N∑
j=1

pj , P ′f =
N ′∑
k=1

p ′k , (3.60)

are the total momenta of the N incoming and N ′ outgoing particles. It is
worthwhile to notice the canonical dimensions in physical units, i.e.

[Sfι ] = [Tfι ] = cmN+N ′ [Mfι ] = cmN+N ′−4

It turns out that the scattering amplitude for the process N in 7−→ N ′out will
be given by the dimensionless complex quantity

A(f1, f2, . . . , fN 7−→ g1, g2, . . . , gN ′) =
N∏
j=1

∫
dpj

(2π)3 2p0
j

N ′∏
k=1

∫
dp ′k

(2π)3 2p0 ′
k

(2π)4 i δ
(
P ′f − Pi

)
× f̃j(pj) g̃

∗
k (p′k) M(p1, . . . , pN ; p ′1, . . . , p

′
N ′) (3.61)
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where p0
j = ω (pj) , p

0 ′
k = ω (p ′k) are the dispersion laws of the positive energy

incoming and outgoing particles, whereas

f (x) =
1

(2π)3

∫
dp

2ω (p)
f̃ (p ) exp{− i p · x }  = 1, . . . , N

gk(x) =
1

(2π)3

∫
dp ′k

2ω (p ′k)
g̃k(p ′k ) exp{− i p ′k · x } k = 1, . . . , N ′

are the particle wave functions that satisfy the Klein-Gordon wave equation
and may be supposed to be real (e.g. Gaussian-like) without loss of generality.

Klein-Gordon probability current. We remind that for any complex solution f(t,x) of
the Klein-Gordon wave equation one can define the probability current density tetra-vector

µ(t,x)
def
= c f ∗(t,x) i

↔
∂ µ f(t,x) (3.62)

which satisfies by construction the continuity equation

∂ µ µ(t,x) = 0

in such a manner that its temporal component

%(t,x)
def
= 0(t,x)/c = f ∗(t,x) i

↔
∂0 f(t,x) [ % ] = cm−3

will be interpreted as the probability density, i.e. the probability of finding a particle in
the infinitesimal volume dx at the position x and at the instant x0 = t , according to
the orthodox understanding of quantum mechanics. Notice that %̇(t,x) = 0 owing to the
Klein-Gordon wave equation, so that, by integrating over the whole space, we recover the
conservation of the probability during the time evolution because

d

dt

∫
dx %(t,x) = 0

Note that in the limit where f̃(p) is very sharply peaked at some wave vector κ the
probability density can be approximated by

c%(t,x) = (2π)−6

∫
dp

∫
dp ′ f̃ ∗(p ′ ) f̃(p)

× ω(p) + ω(p ′ )

4ω(p)ω(p ′ )
exp{ i(p− p ′ ) · x− it (ωp − ωp ′ )}

≈ 2ωκ | f(t,x) |2 (3.63)

In the same approximation the probability current density takes the form

(t,x) ≈ 2cκ | f(t,x) |2 [ µ ] = cm−2 sec−1

Let me now consider the scattering process

1 + 2 7−→ 1 + 2 + . . .+N (3.64)
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so that the quantity

A(f1, f2 7−→ g1, g2, . . . , gN) =
2∏
j=1

∫
dpj

(2π)3 2ω (pj)
f̃j (pj )

N∏
k=1

∫
Dp ′k g̃

∗
k (p ′k )

× (2π)4 i δ
(
P ′f − p1 − p2

)
M (p1 , p2 ; p ′1, . . . , p

′
N ) (3.65)

will represent the amplitude of the process in which there are N particles in the
final state with wave packets g1, g2, . . . , gN for two incoming particles with wave
packets f1 and f2 . Here, as usual, the invariant measure Dp ′k is provided
by equation (3.19) with P ′f =

∑N
k=1 p

′
k . Moreover, all the incoming and

outgoing tetra-momenta p1, p2; p ′1, . . . , p
′
N are supposed to lie on the mass

shell, as required by the LSZ reduction formula.
At first sight it would appear to be natural to take the square modulus of

the above quantity in order to obtain the probability of the collision process.
However, on the one hand, while we can control in detail the structure of
the wave packets of the incident beams of particles, we have a very little
and roughly approximate knowledge of the particle wave packets after the
collision event. Hence, the above quantity and its square modulus can not
be practically neither evaluated nor measured. On the other hand, had we
attempted to consider the square of the related known and calculable part
of the above density of probability amplitude, i.e.,

f̃1 (p1 )f̃2 (p2 )× (2π)4 i δ
(
P ′f − p1 − p2

)
M (p1 , p2 ; p ′1, . . . , p

′
N )

then one has to face the problem of squaring a Dirac δ−distribution, which
turns out to be a mathematical nonsense. Hence, to circumvent this difficulty,
it is convenient to introduce the quantity with the dimensions of an area, viz.,

F (P ′f ) ≡
2∏
j=1

∫
dpj f̃j (pj )

(2π)3 2ω (pj)
(2π)4 δ (P ′f − p1 − p2)

=
2∏
j=1

∫
dpj [ (2π)3 2ω (pj) ]−1 f̃j (pj )

×
∫

d4x exp{ i (P ′f − p1 − p2) · x}

=
2∏
j=1

∫
d4x exp{ i x · P ′f }

×
∫

dpj [ (2π)3 2ω (pj) ]−1 f̃j (pj ) exp{− i pj · x}
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=

∫
d4x f1(x) f2(x) exp{ i P ′f · x } (3.66)

It follows therefrom that, if the matrix elements of the transition matrix
are smooth functions of the incident momenta, for two very narrow wave
packets f1 and f2 centered around κ1 and κ2 respectively, it is possible to
approximate the above introduced quantity in the form

A(f1, f2 7−→ g1, g2, . . . , gN)

≈
N∏

k= 1

∫
Dp ′k g̃

∗
k (p ′k)F (P ′f ) iM (κ1 , κ2 ; p ′1, . . . , p

′
N)

so that we can suitably define and write down the differential probability of
the process in which there are N particles in the final state within the momentum
space infinitesimal volume elements dp ′k around p ′k , which evidently reads

dW (f1, f2 7−→ p ′1, p
′
2, . . . , p

′
N ) ≡ (3.67)∣∣F (P ′f )M(κ1, κ2 ; p ′1, . . . , p
′
N)
∣∣ 2

N∏
k=1

dp ′k
(2π)3 2ω (p ′k)

with κ0
j = ω(κj) . Notice that, for very narrow wave packets centered around

κ1 and κ2 respectively, we can further approximate

1

(2π)4

∫
d4P |F (P ) | 2

=
1

(2π)4

∫
d4P

∫
d4x

∫
d4y f ∗1 (x) f ∗2 (x) f1(y) f2(y) exp{iP · (x− y)}

=

∫
d4x | f1(x) f2 (x) | 2 ≈ [ 4ω(κ1)ω(κ2) ]−1

∫
d4x %1(x) %2(x)

so that we can approximately set

|F (P ′f ) | 2 ≈ (2π)4 δ (P ′f − κ1 − κ2)

× [ 4ω(κ1)ω(κ2) ]−1

∫
d4x %1(x)%2(x)

because for any test function ϕ ∈ S(R) we approximately get

1

(2π)4

∫
d4p |F (p) | 2 ϕ(p) ≈ ϕ(κ1 + κ2)

4ω(κ1)ω(κ2)

∫
d4x %1(x)%2(x)
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As a consequence we eventually find that, for very narrow incoming wave
packets centered around κ1 and κ2 respectively, we can safely write

dW (f1, f2 7−→ p ′1, p
′
2, . . . , p

′
N ) ≈ (3.68)

(2π)4 δ (Pf − κ1 − κ2) |M(κ1, κ2 ; p ′1, . . . , p
′
N ) | 2

× 1
4

∫
d4x

%1 (x)

ω (κ1)
· %2 (x)

ω (κ2)

N∏
k=1

dp ′k
(2π)3 2ω (p ′k)

(3.69)

where the infinitesimal volume element in the 3N−dimensional space of the
wave vectors of the outgoing quanta is usually called the phase space volume
element of the final state in the particle physicists jargon. It is important to
gather that the quantity∫

d4x [ %1(x) %2(x)/ 4ω(κ1)ω(κ2) ] (3.70)

is dimensionless. In order to compare different experiments, e.g. in a large
high energy colliding machine, it is convenient to define a quantity which does
not depend upon the details of the wave functions of the incoming particles:
the differential cross-section

dσ ≡ 4ω (κ1)ω (κ2)∫
d4x %1(x) %2(x)

dW 1
4

[ (κ1 · κ2)2 − (m1m2)2 ]− 1/2

= 1
4

[ (κ1 · κ2)2 −m2
1m

2
2 ]−1/2 |M(κ1, κ2 ; p′1, . . . , p

′
N ) | 2

× (2π)4 δ (Pf − κ1 − κ2)
N∏
k=1

dp ′k
(2π)3 2ω (p ′k)

(3.71)

which has the dimensions of a surface area and turns out to be manifestly
Lorentz invariant. This provides the Golden Rule for the High Energy Physics
(HEP) and the Quantum Field Theory (QFT).

3.3.2 Luminosity

In an actual scattering experiment one has the situation in which two particle
beams collide, or one beam scatters off of some fixed target. In those cases
the densities %1(x) and %2(x) equal the particle densities in the beams and/or
in the target, up to a normalization constant which accounts of the beams
and/or target geometric structures. With such a kind of normalization, the
proportionality factor in eq. (3.71) is then the integrated luminosity, which
turns out to be Lorentz invariant: namely,∫∞

−∞ dt L ≡ dW (f1, f2 7−→ 1, 2, . . . , N )/dσ

=
√

(κ1 · κ2)2 −m2
1m

2
2

∫
d4x

%1(x)

ω (κ1)
· %2(x)

ω (κ2)
(3.72)

127



for reactions with two incoming massive particles. In physical units we get
[ dσ ] = barn , [L ] = barn−1 s−1, where 1 barn = 10−24 cm2. The luminosity
is the quantity that gives a measure of the magnitude of scattering event
differential rate dR , within experimental settings described by two bunches
of incident particles with the particle densities % ı(x) ( ı = 1, 2) owing to

dẆ ≡ dR = L dσ (3.73)

For instance [1] the luminosity at LHC for proton-proton collisions during the
years 2012-2015 has been designed to be L ∼ 10 34 cm−2 s−1 = 1010 b−1 s−1

and it was first reached in June 2016. In general, present day high energy
colliding storage ring machines (collider in jargon) reach a luminosity within
the range 10 28 ÷ 10 34 cm−2 s−1 . The luminosity is one of the most crucial
parameters for a colliding beam storage ring accelerator machine. Cross-
sections at the GeV scale for the center of momentum energy are usually of
the order of 6 :

• 1 millibarn = 1 mb = 10−27 cm2 for strong interactions

• 1 nanobarn = 1 nb = 10−33 cm2 for electromagnetic interactions

• 1 femtobarn = 1 fb = 10−39 cm2 for weak interactions

Typical event rates in these processes, assuming L ∼ 10 34 cm−2 s−1 are,
therefore, of the order 10 7 s−1 , 10 s−1 , 10−5 s−1 ' 26 month−1 respectively.
These numbers clearly illustrate the difficulty to measure weak interaction
effects in colliding beam experiments.

In order to understand the physical meaning of the cross-section and of the
luminosity, let us consider for instance the case of a fixed target experiment in
the target rest frame. We have a target of volume Vtarget placed in a particle
beam. The particle densities %1 and %2 are supposed to be approximately
homogeneous and the number of target particles is Ntarget = %2 Vtarget , where
%2 is the particle density of the target. Then we have∫

d4x %1(x) %2(x) =

∫ ∞
−∞

dt %1 %2 Vtarget =

∫ ∞
−∞

dt %1Ntarget (3.74)

Let me now rewrite the kinematic factor (κ1 · κ2)2 − m2
1m

2
2 . To this purpose we first

evaluate the related quantity ω1 κ2 − ω2 κ1 with

κ0
1 = E1 =

√
κ2

1 +m2
1 = ω(κ1) = ω1 κ0

2 = E2 =
√
κ2

2 +m2
2 = ω(κ2) = ω2

6 The standard unit of measure for the cross-sections is 1 barn=10−24 cm2 and a typical
paradigmatic quantity is the Thomson cross-section σT = 8πr2

e/3 = 0.665 245 873(13)
barn. Moreover 1 unit of R at 1 GeV of center of mass energy is 0.3 nanobarns.
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that yields

(E1 κ2 − E2 κ1)2 = E2
2κ

2
1 + E2

1κ
2
2 − 2E1E2 κ1 · κ2

= E2
2κ

2
1 + E2

1κ
2
2 + (κ1 · κ2 − E1E2)

2 − (κ1 · κ2 )2 − E2
1E

2
2

= (κ1 · κ2)2 − (κ1 · κ2 )2

+ (κ2
2 +m2

2)κ2
1 + (κ2

1 +m2
1)κ2

2 − (κ2
1 +m2

1)(κ2
2 +m2

2)

= (κ1 · κ2)2 − (κ1 · κ2 )2 + κ2
1 κ

2
2 −m2

1m
2
2 (3.75)

in such a manner that we can eventually write

(κ1 · κ2)2 −m2
1m

2
2 = |ω1κ2 − ω2κ1 |2 + (κ1 · κ2)2 − κ2

1κ
2
2 (3.76)

The last two terms in the right hand side of the above relation can be
dropped in the case of parallel momenta, which is the case in the fixed target
rest frame or in the colliding storage ring in the center of mass rest frame,
so that we can write√

(κ1 · κ2)2 −m2
1m

2
2 = E1E2

∣∣∣∣ κ1

ω1

− κ2

ω2

∣∣∣∣ = ω(κ1)ω(κ2) vrel (3.77)

where the relative velocity in physical units is provided by

vrel =
c2κ1

ω1(κ1)
− c2κ2

ω2(κ2)

in such a manner that in the non-relativistic limit we recover the familiar
formula

vrel ≈
p1

m1

− p2

m2

p = ~κ for |κ | �
m c

~
(  = 1, 2 )

Combining eq.s (3.72),(3.74),(3.77) we eventually find that the luminosity is
given by

L = % beam vrel N target = beam N target (3.78)

where the beam current density beam is obviously defined as the number of
incoming particle passing through a unit area orthogonal the relative velocity
vector per unit of time. The luminosity in a fixed target experiment is much
higher than for colliding beams in a storage ring machine. Typical beam
current densities, also called flux factors, are

• 10 10 cm−2 s−1 for hadron beams

• 10 8 cm−2 s−1 for electron beams

• 10 6 cm−2 s−1 for neutrino beams
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whereas a target contains 10 26 ÷ 10 35 protons. This explains why the huge
number of protons in a target leads to event rates R much higher than those
ones in colliding beam machines. Here, if two bunches containing N1 and
N2 particles collide with frequency f , so that vrel = 2vbeam = 2f R ring where
R ring is the storage ring mean radius, then the luminosity is roughly given
by

L ≈ vrel
N1N2

Vbeam

= f
N1N2

4πσhσv
(3.79)

where σh and σv actually characterize the Gaussian transverse beam profile
in the horizontal and vertical directions, in such a manner that the torus
volume of the two bunches is approximately Vbeam ≈ 4σhσv · 2πR ring . More
precisely, the luminosity of the LHC machine is defined by

L = f

kb∑
ı=1

N1ıN2ı

4πσhσv
(3.80)

where f = 11.2 kHz is the revolution frequency of the single bunch, Nnı =
1011 p/bunch the number protons of the n−th beam, kb = 2808 ÷ 3564 the
number of bunches each ∆t = 25 ns, while σh = 375.2 µm and σv = 16.7 µm .

3.3.3 Quasi-Elastic Scattering

To examine the kinematics further on, let me now consider a quasi-elastic
scattering 1 + 2 7−→ 1′ + 2 ′ of two incident massive scalar particles with
masses m1, m2 in two final massive scalar particles with masses m′1, m

′
2 and

suppose that all masses are different. The space-time translations invariance
entails

p1 + p2 = p ′1 + p ′2

Then, in the center of momentum frame p1 + p2 = 0 , we have that the total
energy square is given by

s ≡ (p1 + p2)2 = (p0
1 + p0

2)2 = [ω1(p1) + ω2(−p1) ]2 (3.81)

(p1 · p2)2 −m2
1m

2
2 = 1

4
[ s− (m1 −m2)2 ] [ s− (m1 +m2)2 ] (3.82)

with [s] = eV2 . Notice that the last quantity vanishes, as it must, at the
reaction threshold s = (m1 +m2)2 . Since the total 4-momentum is conserved
in the scattering process we evidently obtain

s = (p1 + p2)2 = (p′1 + p′2)2 (3.83)
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Figure 3.4: a schematic setup for a quasi-elastic scattering of two particles in the center
of momentum frame
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In addition to the square of the total energy in the center of mass frame, it
is convenient to define the invariant 4-momentum transfer squared variable

t ≡ (p′1 − p1)2 = (p′2 − p2)2 (3.84)

together with the invariant 4-momentum exchange squared variable

u ≡ (p′2 − p1)2 = (p′1 − p2)2 (3.85)

A little algebra shows that

s+ t+ u = m2
1 +m2

2 +m ′ 21 +m ′ 22 (3.86)

The kinematic relativistic invariant quantities s, t, u are the Mandelstam’s
variables 7. For the special case of two particles in the final state, we can
nicely simplify the general expression of eq. (3.71), by partially evaluating
the so called phase space integrals in the center of momentum frame in which

p1 + p2 = 0 = p′1 + p′2
p = p1 = −p2 , p ′ = p′1 = −p′2
E1 + E2 =

√
s = E ′1 + E ′2

so that the square energy factor becomes

4ICM ≡ 4
√

(p1 · p2 )2 −m2
1m

2
2

= 4~c |E1p2 − E2p1 | = 4~c |p |
√
s (3.87)

where use has been made of the previously derived relationship (3.76). On
the other side one can rewrite the so called phase space of the final state in
the center of momentum frame as follows: namely,

2∏
k=1

∫
dp ′k g̃

∗
k (p ′k)

(2π)3 2ω(p ′k )
(2π)4 δ (p ′1 + p ′2 − p1 − p2)

=

∫
dp ′ p ′ 2 dΩ CM

16π 2E ′1 E
′
2

g̃ ∗1 (p ′) g̃ ∗2 (−p ′)

× δ
(√

s− E ′1(p ′ )− E ′2(p ′ )
)

(3.88)

where d Ω CM = dϕ sin θ d θ is the solid angle element of the momentum p ′

in the center of momentum frame of the two outgoing particles, while g̃∗k(p
′
k)

7 Stanley Mandelstam, Determination of the Pion-Nucleon Scattering Amplitude from
Dispersion Relations and Unitarity. General Theory, Phys. Rev. 112 (1958) 1344
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are their momentum space wave packets. Note that this integral vanishes
unless s > (m ′1 + m ′2 )2 , i.e. the incoming energy in the collision must be
actually enough to produce two physical particles at rest with masses m ′1,2 .

In order to calculate the value of p ′(s) for which the argument of the
δ−distribution vanishes, we have to obtain the inversion formulas

s =

(√
p ′ 2 +m ′ 21 +

√
p ′ 2 +m ′ 22

)2

= 2p ′ 2 +m ′ 21 +m ′ 22 + 2E ′1(p ′ )E ′2(p ′ ) (3.89)

that is (
s− 2p ′ 2 −m ′ 21 −m ′ 22

)2
= 4

(
p ′ 2 +m ′ 21

) (
p ′ 2 +m ′ 22

)
(3.90)

which finally yields

|p ′ | 2 =
1

4s

[
s2 + (m ′ 21 −m ′ 22 )2 − 2s (m ′ 21 +m ′ 22 )

]
def
=

[
1

2
√
s
F (s,m ′1,m

′
2 )

]2

= [ p ′(s) ]2 (3.91)

|p | 2 =
1

4s

[
s2 + (m 2

1 −m 2
2 )2 − 2s (m 2

1 +m 2
2 )
]

def
=

[
1

2
√
s
F (s,m1,m2 )

]2

= [ p(s) ]2 (3.92)

In the case of equal masses, i.e. identical incoming or outgoing particles, the
above inversion formulæ reduce to

|p | = 1
2
θ(
√
s− 2m)

√
s− 4m 2 (3.93)

|p ′ | = 1
2
θ(
√
s− 2m ′ )

√
s− 4m ′ 2 (3.94)

where the so called reaction thresholds have been emphasized by the presence
of the Heaviside step distributions. Now we have∫ ∞

−∞
dp ′ θ(p ′)ϕ(p ′) δ (f(p ′)) =

ϕ(p∗)

| f ′(p∗) |
f (p∗) = 0 (3.95)

and applying it to the integral (3.88) in the limit g̃1 , g̃2 −→ 1 we get

1

16π 2

∫
p ′ 2 (s) dΩ CM√

{ [ p ′ 2 (s) +m ′ 2
1 ] [ p ′ 2 (s) +m ′ 2

2 ] }

×
(

p ′ (s)√
[ p ′ 2 (s) +m ′ 2

1 ]
+

p ′ (s)√
[ p ′ 2 (s) +m ′ 2

2 ]

)− 1

=
|p ′ |

16π2
√
s

∫ 2π

0

dφ

∫ π

0

d(− cos θ) (3.96)
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where |p ′ | = p ′ (s) can be expressed as a function of the Mandelstam variable
s by the inversion formula (3.91). Another equivalent memento formula for
the two final particles phase space volume is given by∫

dp ′1
(2π)3 2ω(p ′1 )

∫
dp ′2

(2π)3 2ω(p ′2 )
(2π)4 δ (p ′1 + p ′2 − p1 − p2) =

F (s,m ′ 21 ,m
′ 2
2 )

∫
dΩ CM

32π2 s
=
|p ′(s) |
16π2
√
s

∫ 2π

0

dφ

∫ π

0

d(− cos θ) (3.97)

with

|p ′(s) | =
1

2
√
s
F (s,m ′1,m

′
2 ) s = (p1 + p2)2 = (p ′1 + p ′2 )2

Note that the 2-particle phase space volume is a Poincaré invariant and
dimensionless quantity. Hence we eventually obtain the main formula for the
differential cross-section for the quasi-elastic collision in the center of momentum
frame: namely,(

dσ

dΩ

)
CM

=

(
~c

8πECM

)2

|M(s, t, u) | 2 |p
′ |

|p |
(3.98)

ECM =
√
s = c(p0

1 + p0
2) = c(p0 ′

1 + p0 ′
2 ) p1 + p2 = 0 = p ′1 + p ′2

and taking also into account that the incoming current density or flux factor
can be expressed by (3.87)

4ICM = 4|p |
√
s = 2F (s,m1,m2) (3.99)

the basic formula (3.71) for the two-particles quasi-elastic scattering in the
center of momentum frame takes the form(

dσ

dΩ

)
CM

=
1

4ICM

|M(s, t, u) | 2 1

32π2 s
F
(
s,m ′ 21 ,m ′ 22

)
=

1

64π2s
|M(s, t, u) | 2 F (s,m ′ 21 ,m ′ 22 )

F (s,m 2
1 ,m

2
2 )

(3.100)

which coincides with eq. (3.98). In the special limits of equal masses and
elastic scattering we eventually come to the very suggestive formulæ(

dσ

dΩ

)
=
|M | 2

64π2s
σ =

|M | 2

16πs
(3.101)

It is useful to remark that in the case of equal masses the characteristic
function F (s,m2

1,m
2
2) becomes

F (s,m2) =
√
s(s− 4m2) ≥ 0 ⇔ s ≥ 4m2 (3.102)
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which is positive as it does only above the threshold, i.e. two equal massive
particles at rest. By the way, in the case m1 = m2 = me , m

′
1 = m ′2 = mµ

we have

[
F
(
s,m 2

µ

)
/F
(
s,m 2

e

) ]
=

√
s− 4m 2

µ

s− 4m 2
e

(3.103)

When s & 400 GeV2 and taking into account that (me/mµ)2 ≈ 23 × 10−6

we can safely approximate

F
(
s,m 2

µ

)
F (s,m 2

e )
'

√
1−

(
2mµ

ECM

)2

=

√
1−

(mµ

E

)2

=

(
|p |
E

)
µ

≡ βµ (3.104)

where
ECM = 2

√
p2 +m2

µ

Another very important situation occurs for the collision of a fast and
light particle with mass m off of a much more heavy particle of mass M � m
at rest in the laboratory frame. Then, if we disregard the recoil of the very
heavy particle after collision, the kinematics reads

p1 = p E1 =
√

p2 +m2 = E p (3.105)

p2 = 0 E2 = M (3.106)

p ′2 = p1 − p ′1 ≈ 0 E ′2 ≈ M (3.107)

p ′1 = p ′ E ′1 =
√

p ′2 +m2 = E ′p ′ (3.108)

with |p | ≡ p ≈ |p ′ | . Turning back to the main basic formula (3.71) for the
differential cross-section, in the present case of a 2-particle final state with
one very heavy particle we can use the above kinematics with p·p ′ ≈ p2 cos θ ,
where θ is now the scattering angle of the light particle in the heavy particle
rest frame, so that

4I ≡ 4
√

(p1 · p2)2 −m2M2 = 4 |p |M
2∏

k=1

∫
dp ′k g̃k(p

′
k)

(2π)3 2ω(p ′k )
(2π)4 δ (p′1 + p′2 − p1 − p2)

≈ g̃1(p ′) g̃2(p− p ′)

∫
dΩ(φ, θ)

∫ ∞
0

dp p 2

16π2ME (p)
δ
(
E ′p ′ − E p

)
≈ g̃1(p ′) g̃2(0)

∫
dΩ(φ, θ)

∫ ∞
0

dE p(E )

16π2M
δ (E ′ − E)
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Thus, in the limit g̃1 , g̃2 −→ 1 one eventually finds

2∏
k=1

∫
dp ′k

(2π)3 2ω(p ′k )
(2π)4 δ (p′1 + p′2 − p1 − p2)

≈ |p ′ |
16π 2M

∫
dΩ(φ, θ) ≈ |p |

16π 2M

∫
dΩ(φ, θ) (3.109)

and according to the main formula (3.71) we end up with the remarkably
simple expression

(
dσ

dΩ

)
FT

=
|M(s, t, u) | 2

64π 2 (Mc/~)2
(3.110)

As a final important comment, I remark that the generalization of all
the above formulas to the case of scattering of particles with spin is really
straightforward. In such cases, in fact, the amplitudes have spinor and/or
4-vector indexes, which need thereby to be saturated with the corresponding
suitable quantities describing the polarization states.

Specifically, for spin 1
2

Dirac fermions ( r, s = 1, 2 ) :

• u r(p) for an incoming particle

• v̄ s(q ) for incoming antiparticles

• ū r(p) for outgoing particles

• v s(q ) for an outgoing antiparticle

for spin 1 real vector bosons :

• erµ(k) ( r = 1, 2, 3 ) for incoming massive vector particles

• εAµ (k) (A = 1, 2, S ) for incoming massless vector particles

• [ esν(k
′ ) ]∗ ( s = 1, 2, 3 ) for outgoing massive vector particles

• [ εA
′

µ (k ′ ) ]∗ (A ′ = 1, 2, S ) for outgoing massless vector particles

both in massive and mass-less cases, where the polarization vectors are real
for linear polarization. Let me discuss quite a few enlightening examples.
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3.4 Elementary Scattering Processes

Here below we will see some important collisions involving charged fermions
and photons, to the lowest order in the fine structure constant

α =
e2

4π~c
= 7.297 352 568(24)× 10−3 ' 1

137

These electromagnetic scattering processes play a key role in the development
of Quantum Electrodynamics and of the Standard Model of Particle Physics.

3.4.1 e− e+ into µ+µ− Pairs

The annihilation of an electron positron pair into a muon-antimuon pair is
the simplest of all the quantum electrodynamics processes, but also one of the
most important in high energy physics. It turns out to be fundamental for
the understanding of all reactions which occur in e+e− colliders. As a matter
of fact, it is used indeed to calibrate such a kind of machines. The related
process of the electron positron pair annihilation into a quark anti-quark pair
is extraordinarily useful and crucial to unravel elementary particle physics
properties. Here below, the lowest order non-polarized cross-section will be
obtained, up to the accuracy for the electron mass can be disregarded with
respect to the muon mass – remember that (me /mµ ) ≈ 0.5% . According
to the Feynman rules and the LSZ reduction formulæ we obtain at once the
lowest order O (e2) amplitude, see figure, viz.,

( ie)2 〈 0 |C q , sD q ′, s ′ µ
(+)
y γ ν µ(+)

y e(−)
x γ λ e(−)

x d†p ′, r ′ c
†
p, r | 0 〉∆

xy
λν =

− e2〈 0 | C q , s µ
(+)
y︸ ︷︷ ︸ γ ν D q ′, s ′ µ

(+)
y︸ ︷︷ ︸ e(−)

x d†p ′, r ′︸ ︷︷ ︸ γ λ e(−)
x c†p, r︸ ︷︷ ︸ | 0 〉∆xy

λν

where µ(y) and e(x) are the muon and electron spinor fields respectively,
while the small and capital letters denote the e−e+ and µ−µ+ creation and
destruction operators respectively; moreover ∆xy

λν does indicate the mass-less
photon propagator in the Feynman gauge. Then we get

Mr r ′ss ′(p, p
′; q, q ′ )

= ūµ
−

s (q ) γ ρ vµ
+

s ′ (q ′ )
e2

k 2
v̄ e

+

r ′ (p
′ ) γρ u

e−

r (p) (3.111)

which is dimensionless, where p+ p ′ = k = q+ q ′ is the virtual (i.e. off shell)
photon energy momentum such that

k2 = ( q + q ′ )2 = s ≥ 4m2
µ > 0
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Figure 3.5: the lowest order e+e− annihilation into a µ+µ− pair

the Mandelstam variable s = (p0 + p ′0)2 = 4(p2 +m2
e) being the total energy

in the center of momentum frame of e.g. the e−e+ pair. To compute the
differential cross-section we need an expression for the square modulus of the
above amplitude (3.111) : we find(

v̄ γ λ u
)∗

= u † γ λ† γ 0† v = u † γ0 γ λ
(
γ0
)2
v = ū γ λ v

that vindicates the great advantage of the adjoint spinor notation. Thus the
squared matrix element becomes

|M |2 =
e 4

s 2
gµν g ρσ

×
(
v̄ r ′ (p

′ ) γ µ u r (p) ū r (p) γ ρ v r ′ (p
′ )
)

×
(
ū s (q ) γ ν v s ′ (q

′ ) v̄ s ′ (q
′ ) γ σ u s (q )

)
(3.112)

In this expression any spin state of the involved four fermion Dirac particles
is specified. However, in actual experiments it is very difficult or even not
possible to keep polarization under control. For instance, one should prepare
the initial state from accurately polarized materials and/or analyze the final
state using e.g. spin dependent multiple scattering.
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In most experiments the electron and positrons beams are non-polarized,
in such a manner that the measured cross section is an average over the
incoming electron and positron polarization r and r ′ respectively. On the
other side, muon detectors are usually blind to polarization, so that the
measured cross section is a sum over the negatively and positively charged
muon spin indexes s and s ′ respectively.

In other words, I will be here mainly interested in the squared matrix
element, which greatly simplifies when averaged over the initial electron and
positron polarization and further summed over the final muon spins

1
2

∑
r=1,2

1
2

∑
r ′=1,2

∑
s=1,2

∑
s ′=1,2 |M (r, r ′ → s, s ′ ) |2 (3.113)

By making use of the completeness relations∑
r=1, 2

{
ur (p)⊗ ūr (p) = p/+me

vr (p)⊗ v̄r (p) = p/−me

(
p0 =

√
p2 +m2

e

)

∑
s=1, 2

{
us (q)⊗ ūs (q) = q/+mµ

vs (q)⊗ v̄s (q) = q/−mµ

(
q0 =

√
q2 +m2

µ

)
we readily arrive to

1
4

∑
r,r ′

∑
s ,s ′

|M |2 =
e 4

s 2
gµν g ρσ × (3.114)

1
4

tr [ (p/ ′ −me ) γ µ (p/+me ) γ ρ ] tr [ (q/+mµ ) γ ν (q/ ′ −mµ ) γ σ ]

The general method of calculating traces consists of successive displacements
of identical matrix four vector. In particular, the trace of an odd number of
gamma matrices does vanish, while we easily find

tr (γµγν) = g µν tr I = 4 g µν (3.115)

tr
(
γκγλγµγν

)
= 4

(
g κλ g µν − g κµ g λν + g κν g λµ

)
(3.116)

Hence the e+e− trace is

4
[
p ′µ p ρ + p ′ ρ p µ − g µρ

(
p · p ′ +m2

e

) ]
and similarly the muon pair trace yields

4
[
q ′σ q ν + q ′ ν q σ − g νσ

(
q · q ′ +m2

µ

) ]
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After contractions of the Lorentz indexes we come to the simple expression

1
4

∑
r,r ′

∑
s ,s ′

|M |2 =
8e 4

s 2
×[

(p · q )(p ′ · q ′ ) + (p · q ′ )(p ′ · q ) + (p · p ′ )m2
µ

+ (q · q ′ )m2
e + 2m2

µm
2
e

]
≡
〈
|M(s, t, u) | 2

〉
(3.117)

Since we have p2 + m2
e = q2 + m2

µ il follows that p · p ′ � q · q ′ � m2
e and

thereby the last two addenda in the RHS of the above equality are absolutely
negligible in respect to the former ones for high energy collisions. Hence, by
neglecting the electron mass, in the center of momentum frame of the e+e−

and µ+µ− pairs we have for me ≈ 0

electron : p p0 =
√

p2 +m2
e ≈ |p |

positron : p ′ = −p p ′0 = p0 ≈ |p |

muon : q , q0 =
√

q2 +m2
µ ≡ E

antimuon : q ′ = −q q ′0 = q0 = p0 = p ′0 = E = 1
2

√
s

The Mandelstam’s variables are

s = (p+ p ′ )2 = (q + q ′ )2 = 4q2
0 = 2m2

µ + 2q · q ′ ≈ 2p · p ′

t = (p− q )2 = (p ′ − q ′ )2 ≈ m2
µ − 2p · q = m2

µ − 2p ′ · q ′

u = (p− q ′ )2 = (q − p ′ )2 ≈ m2
µ − 2p · q ′ = m2

µ − 2p ′ · q

with s+ t+ u ≈ 2m2
µ . Then formulæ (3.100) and (3.104) yield(

dσ

dΩ

)
CM

=
1

(8π
√
s )2

〈
|M(s, t, u) | 2

〉
· |q |
|p |

(3.118)

Since we have

k 2 = s = 4E 2

p · p ′ = E 2 + |p |2 ≈ 2E 2

p · q = p ′ · q ′ = E (E − |q | cos θ )

p · q ′ = p ′ · q = E (E + |q | cos θ )

where θ is the angle between the directions of the incident e+e− pair and the
produced µ+µ− pair in the center of momentum frame, we eventually obtain〈

|M(s, t, u) | 2
〉

=
2e4

s
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×
[

(E − |q | cos θ )2 + (E + |q | cos θ )2 + 2m2
µ

]
+O(me/mµ)2

≈ 4e4

s

(
E2 + E 2 cos2 θ −m2

µ cos2 θ +m2
µ

)
that leads to the differential cross-section(

dσ

dΩ

)
CM

=
α2

4s

√
1−

m2
µ

E 2

×
[

1 +
m2

µ

E 2
+

(
1−

m2
µ

E 2

)
cos2 θ

]
(3.119)

and integrating over the solid angle we get the total cross-section

σ =
4πα2

3s

√
1−

m2
µ

E 2

(
1 +

m2
µ

2E 2

)
=

4πα2

3s

√
1−

4m2
µ

s

(
1 +

2m2
µ

s

)
(3.120)

The differential cross-section can also be written in the equivalent form [1](
dσ

dΩ

)
CM

=
α2

4s
β
[

1 + cos2 θ + (1− β 2) sin2 θ
]

where β = v/c = |q | / q0 is the muon velocity in the center of mass frame
which, in a colliding machine, is the laboratory frame too. In the high energy
limit (q0 � mµ ) these formulæ reduces to(

dσ

dΩ

)
CM

∼ α2

4s
(1 + cos2 θ ) (s � 4m2

µ )

σ ∼ 4π

3

(
α√
s

)2
{

1− 3

8

(
2mµ√
s

)4

− · · ·

}
(ECM � 4m2

µ )

In the high energy regime the only dimensional quantity in the process is the
energy scale

√
s = ECM , in such a manner that dimensional analysis requires

σ ∝ E−2
CM and since we knew that σ ∝ α2 the only remaining geometric

factor to calculate is 4π/3 , the volume of the unit 2-sphere.

The remarkable energy dependence of the cross-section σ ( e+e− → µ+µ− )
sets the scale for all e+e− annihilation processes through a virtual photon and
consequent spin 1

2
point-like fermion-antifermion pairs production

e+e− → γ∗ → f̄f
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At the center of mass square energy ECM =
√
s it is given by

σ
(
e+e− → f̄f

) β→ 1∼ NcQ
2
f

4πα2

3s
(~c)2

= NcQ
2
f

86.8 nb

(ECM in GeV )2

= NcQ
2
f · 1 unit of R(s) (3.121)

where eQf is the fermion charge while Nc is one for leptons and three for
quarks, because each quark in the Standard Model appears in three colors.
Experimentally, the easiest quantity to measure turns out to be the total
rate for the production of all hadrons, the strongly interacting particles. The
present understanding of strong interactions is provided by a field theory
model named Quantum Chromo–Dynamics (QCD) that corresponds to a non-
Abelian generalization of Quantum ElectroDynamics (QED) according to
which all hadrons are composed of elementary Dirac fermions called quarks

Melinda Y. Han & Yoichiro Nambu
Three-Triplet Model with Double SU(3) Symmetry
The Physical Review 139, B1006 - B1010 (1965) [Issue 4B – August 1965]
Harald Fritsch, Murray Gell-Mann & Heinrich Leutwyler
Advantages of the color octet gluon picture
Physics Letters 47B (1973) 365

Quarks appear in a variety of six types, called flavors, with its own mass and
fractional electric charge [1]

Quark Mass Charge

u 2.2 MeV 2
3
e

d 4.7 MeV − 1
3
e

s 96 MeV − 1
3
e

c 1.28 GeV 2
3
e

b 4.18 GeV − 1
3
e

t 173.1 GeV 2
3
e

Quarks also carry an additional internal quantum label, named color,
taking three possible hues: conventionally, red, green and blue. Eventually,
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colour is the charge of the strong interaction. In Quantum Chromo-Dynamics
(QCD) the simplest fundamental process which occurs inside all hadrons is

e+e− → γ∗ → q q̄

namely, the e+e− annihilation processes through a virtual photon with the
consequent production of a quark anti-quark pair. Once they are created,
the strong interaction among quark anti-quark pairs is such that the latter
ones combine to form colourless mesons and baryons.

The astonishing feature predicted by QCD is that in the high energy limit
the effects of the strong interaction on the quark production processes can be
completely neglected: this amazing property is called the asymptotic freedom

Hugh David Politzer
Reliable Perturbative Results for Strong Interactions?
The Physical Review Letters 30 (1973) 1346–1349 [Issue 26 – June 1973]
David Jonathan Gross & Frank Anthony Wilczek
Asymptotically Free Gauge Theories
The Physical Review D 8, 3633 - 3652 (1973) [Issue 10 – November 1973]

It is truly quite remarkable that the non-Abelian gauge field theories, based
upon special unitary groups, turn out to be the only consistent local and
renormalizable models which exhibit the property of the asymptotic freedom
in four space-time dimensions. Asymptotically we expect

σ (e+e− → hadrons)

σ ( e+e− → µ+µ− )

β→ 1∼ 3 ·
( ∑

flavors

Q2
f

)
(3.122)

where the sum runs over all quarks, the masses of which are smaller than
ECM /2 . When the value of ECM /2 is very close to one of the quark masses,
then strong interaction cause large deviations from (3.122), the most striking
effect being the appearance of bound states just below ECM = 2mq , endorsed
by sharp spikes in the cross-section – see Fig. 3.7 and [1] for an up-to-date
review Actually, experimental measurements between 2.5 and 45 GeV agree
quite well with the näıve prediction (3.122) and, in particular, the factor 3
is a strong evidence for the existence of color

σ (e+e− → hadrons)
β→ 1∼ 3 ·

( 4

9
+

1

9
+

1

9
+

4

9
+

1

9

)
R =

11

3
R
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Figure 3.6: the total cross-section e+e− −→ hadrons vs.
√
s GeV

Figure 3.7: the ratio σ(e+e− −→ hadrons, s)/σ(e+e− −→ µ+µ−, s)

144



Figure 3.8: the lowest order amplitude for e−µ− collision

3.4.2 Mott Scattering

Let me now consider another closely related electromagnetic process, i.e. the
electron versus muon scattering

e−µ− → e−µ−

Again, the Feynman rules give at once the lowest order O (e2 ) amplitude,
see figure: namely,

Mr r ′ss ′ (p1, p
′
1; p2, p

′
2 )

= ū s ′ (p
′
2 ) γµ u s (p2 )

e2

(p ′1 − p1 ) 2
ū r ′ (p

′
1 ) γ µ u r (p1) (3.123)

Taking the square modulus as well as the average over the incoming particle
spin and the sum over the final particle spin we find

1
4

∑
r,r ′

∑
s ,s ′

|Mr r ′ss ′ (p1, p
′
1; p2, p

′
2 ) |2 =

(
e2

t

)2

gµν g ρσ × (3.124)

1
4

tr [ (p/ ′1 +me ) γ µ (p/1 +me ) γ ρ ] tr [ (p/ ′2 +mµ ) γ ν (p/2 +mµ ) γ σ ]
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in which I have employed the momentum transfer Mandelstam’s variable
t = ( p ′1 − p1 )2 . It is worthwhile to gather that (3.124) coincides with the
previous expression (3.114) under the replacements

p → p1 p ′ → − p ′1 q → p ′2 q ′ → − p2 s → t

so that, setting once again me ≈ 0 ,

1
4

∑
r,r ′

∑
s ,s ′

|M |2 =
8e4

t2
×[

(p1 · p2 )(p ′1 · p ′2 ) + (p1 · p ′2 )(p ′1 · p2 )− (p1 · p ′1 )m2
µ

]
(3.125)

This trick, which allows to build up the amplitude of the process

e−µ− → e−µ−

from the knowledge of the amplitude of the related one

e+e− → µ+µ−

is a first example of use of a general rule named crossing symmetry. In general,
in fact, the S−matrix element for any process involving a particle of energy
momentum p in the initial state is equal to the S−matrix element for an
otherwise identical process, but for the exchange of the antiparticle with
4-momentum − p in the final state.

Conversely, the kinematics in the center of momentum frame will be
rather different. Actually we have

incoming electron : p1 = p E1 ≈ |p | = p

incoming muon : p2 = −p E2 =
√

p2 +m2
µ = E

outgoing electron : p ′1 = p ′ E ′1 ≈ |p ′ |

outgoing muon : p ′2 = −p ′ E ′2 =
√

p ′ 2 +m2
µ

ECM = E1 + E2 ≈ p+ E ≈ E ′1 + E ′2 ⇔ |p ′ | ≈ p

and thereby

p1 · p2 = p ′1 · p ′2 = p(p+ E ) p1 · p ′2 = p ′1 · p2 = p(p cos θ + E )

p1 · p ′1 = p2 (1− cos θ ) t = (p1 − p ′1 )2 ≈ − 2p2 (1− cos θ )

in such a manner that we can write

1
4

∑
r, r ′

∑
s, s ′

|M | 2 =
e 4

2p 2 sin4(θ/2)
×[

( p+ E )2 + (E + p cos θ )2 −m2
µ(1− cos θ)

]
(3.126)
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Figure 3.9: the Mott differential cross-section

Now we can use the basic formula (3.98) with |p ′ | ≈ |p | = p which yields(
dσ

dΩ

)
CM

=
1

64π2 (p+ E )2
· 1

4

∑
r,r ′

∑
s ,s ′

|M |2

≈ α2

2E 2
CM · 4β 2 sin4(θ/2)

×
[

(1 + β )2 + (1 + β cos θ )2 − 2
(mµ

E

)2

sin2 θ

2

]
where β = v/c ≈ p/E . In the ultra-relativistic limit E ≈ p we find(

dσ

dΩ

)
CM

β→ 1∼ α2

2p2 · 4 sin4(θ/2)

(
1 + cos4(θ/2)

)
Consider now the very same process in the incident muon rest frame and

retaining the electron mass me � mµ but treating the muon mass as very
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large. Then, if we disregard the muon recoil, the kinematics reads

incoming electron : p1 = p E1 =
√

p2 +m2
e = E

incoming muon : p2 = 0 E2 = mµ

outgoing muon : p ′2 ≈ 0 E ′2 ≈ mµ

outgoing electron : p ′1 = p ′ E ′1 ≈ E � mµ

 (3.127)

with |p | = p ≈ |p ′ | , whence

p1 · p2 = Emµ ≈ p ′1 · p ′2 ≈ p1 · p ′2 ≈ p ′1 · p2

p1 · p ′1 = E 2 − p2 cos θ t = (p1 − p ′1 )2 ≈ − 2p2 (1− cos θ )

in such a manner that now we have∑
r,r ′

∑
s ,s ′

1
4
|M |2 =

8e4

t2
×[

(p1 · p2 )(p ′1 · p ′2 ) + (p1 · p ′2 )(p ′1 · p2 )− (p1 · p ′1 )m2
µ

− (p2 · p ′2 )m2
e + 2m2

µm
2
e

]
(3.128)

∑
r,r ′

∑
s ,s ′

1
4
|M |2 =

e4

2p4 sin4(θ/2)
×[

2E 2m2
µ −m2

µ (E 2 − p2 cos θ ) +m2
µm

2
e

]
(3.129)

If one of the two incident particles is sufficiently heavy, like the muon
in the present example, so that its state does not change after the collision,
then its role in the process is equivalent to a fixed target for which recoil
can be disregarded. Turning back to the main basic formula (3.71) for the
differential cross section, in the present case of a 2-particle final state with
one very heavy particle we can use the kinematics (3.127) where θ is now the
scattering angle of the light particle in the heavy particle rest frame, so that

I ≡
√

(p1 · p2)2 −m2M2 = |p |M
2∏

k=1

∫
dp ′k

(2π)3 2ω(p ′k )
(2π)4 δ (p′1 + p′2 − p1 − p2)

=

∫
dΩ(φ, θ)

∫ ∞
0

dp p 2

16π2ME (p)
δ
(
E ′p ′ − E p

)
=

∫
dΩ(φ, θ)

∫ ∞
0

dE p(E )

16π2M
δ (E ′ − E)

=
|p ′ |

16π 2M

∫
dΩ(φ, θ) ≈ |p |

16π 2M

∫
dΩ(φ, θ) (3.130)
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Thus, according to the main formula (3.71) and the above fixed target (FT)
kinematics, as well as the related final 2-particle phase space integration, we
eventually come to the remarkably simple expression

(
dσ

dΩ

)
FT

=
|M(s, t, u) | 2

64π 2M 2
(3.131)

Inserting the spin averaged and summed amplitude (3.129) and setting
M = mµ yields

(
dσ

dΩ

)
Mott

=
α2

4 |p |2 β 2 sin4 (θ/2)

(
1− β 2 sin2 θ

2

)
(3.132)

where β ≡ |p |/E , which is the celebrated Mott formula for the Coulomb
scattering of relativistic electrons.

Sir Neville Francis Mott (Leeds, 30.09.1905 - Milton Keynes, 8.8.1996)
The Scattering of Fast Electrons by Atomic Nuclei
Proc. Roy. Soc. A 124, 425-442 (1929)

In the non-relativistic limit and for a fixed target of atomic number Z we
readily recover the Rutherford formula. Actually, for

β =
v

c
p ≈ mv E ≈ mc2

we get the leading term(
dσ

dΩ

)
Rutherford

β→0∼ Z 2α2 (~c)2

4m2 v 4 sin4 (θ/2)
(3.133)

Sir Ernest Rutherford, First Baron of Nelson
(Brightwater, 30.08.1871 - Cambridge, 19.10.1937)
The Scattering of α and β Particles
by Matter and the Structure of the Atom
Philosophical Magazine, 21, 669-688 (1911)
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Figure 3.10: the lowest order e−γ collision

3.4.3 Compton Scattering

The electron-photon scattering is described, to the lowest order, by the two
tree-level diagrams which differ by the 2-photon exchange, see figure. Making
use of the rules of correspondence we construct the matrix element

iMAA ′

rr ′ (k,k ′ ) = − ie2 εA
′

µ (k ′ ) ūr ′ (p ′ )M µν εAν (k)ur

= εA
′

µ (k ′ ) ūr ′ (p ′ ) (ie γ µ)S (p+ k ) (ie γ ν)ur ε
A
ν (k )

+ [ photon exchange {k µA } � {(− k ′ ) ν A ′ } ] (3.134)

M µν =
γ µ (p/+ k/+me)γ

ν

(p+ k)2 −m2
e

+
γ ν (p/− k/ ′ +me)γ

µ

(p− k ′ )2 −m2
e

(3.135)

where the initial electron four momentum is pλ = (me, 0, 0, 0). Since p2 = m2
e

and k2 = 0 we can simplify the above denominators as

(p+ k)2 −m2
e = 2 p ρ kρ = 2kme

(p− k ′ )2 −m2
e = − 2 p ρ k ′ρ = − 2k ′me

where k = |k| , k ′ = |k ′| , while the numerators can be rearranged using a
little Dirac algebra

(p/+me ) γ ν us (p) = (2pν − γ ν p/+ γ νme )us (p)

= 2pν us (p)− γ ν (p/−me )us (p)

= 2pν us (p) (3.136)

By doing the same for both numerators we get

M µν =
γ µk/ γ ν + 2γ µ pν

2kme

+
γ ν k/ ′ γ µ − 2γ ν pµ

2k ′me
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in such a manner that by putting altogether we can write

iMAA ′

rr ′ (k,k ′ ) =
− ie2

2kk ′me

ūr ′ (k− k ′ )MAA ′ ur

where

MAA ′ = k ′ εA
′

µ (k ′ ) [ γ µk/ γ ν + 2γ µ pν ] εAν (k)

+ k εAν (k) [ γ ν k/ ′ γ µ − 2γ ν pµ ] εA
′

µ (k ′ )

= k ′ ε/A
′
(k ′ ) k/ ε/A(k) + k ε/A(k) k/ ′ ε/A

′
(k ′ ) (3.137)

in which we have taken properly into account that

p = 0 εA0 (k) = 0 εA
′

0 (k ′ ) = 0 (A,A ′ = 1, 2)

In calculating the probability of the process we have to average over the
initial electron spin index r and sum over the final electron spin index r ′ , so
that we obtain

1
2

∑
r , r ′

∣∣∣MAA ′

rr ′ (k,k ′ )
∣∣∣2 =

e4

8(kk ′me)2

×
∑
r , r ′

ūr ′ (k− k ′ )MAA ′ ur

(
ūr ′ (k− k ′ )MAA ′ ur

)∗
=

e4

8(kk ′me)2

∑
r , r ′

ūr ′ (p ′ )MAA ′ ur ūr M̄
AA ′ ur ′ (p ′ )

=
e4

8(kk ′me)2

∑
r ′

ur ′ (p ′ ) ūr ′ (p ′ )MAA ′
∑
r

ur ūr M̄
AA ′

=
e4

8(kk ′me)2
tr
[

(p/ ′ +me )MAA ′ (p/+me ) M̄AA ′
]

=
e4

8(kk ′me)2
tr QAA ′ (3.138)

where
MAA ′ = k ′ ε/A

′
(k ′ ) k/ ε/A(k) + k ε/A(k) k/ ′ ε/A

′
(k ′ )

M̄AA ′ = k ′ ε/A(k) k/ ε/A
′
(k ′ ) + k ε/A

′
(k ′ ) k/ ′ ε/A(k)

QAA ′ = (p/ ′ +me )MAA ′ (p/+me ) M̄AA ′

The matrix Q may now be suitably presented as the sum of three matrices

Q = Q1 +Q2 +Q3
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where, by omitting photon polarization indexes for the sake of simplicity,

Q1 = (p/+me )M (p/+me ) M̄ (3.139)

Q2 = (k/− k/ ′ )M p/ M̄ (3.140)

Q3 = me (k/− k/ ′ )M M̄ (3.141)

The matrix Q3 contains the product of an odd number of Dirac matrices and
therefore

trQ3 = 0

and for the same reason we have

trQ1 = tr [ p/M p/ M̄ ] +m2
e tr [M M̄ ]

For the calculation of traces we can make use of the transverse-like conditions
for the electromagnetic field

k µ∗ ε
A
µ (k) = k ′µ∗ εA

′

µ (k ′ ) = k µ εAµ (k) = k ′µ εA
′

µ (k ′ ) = 0

where k µ∗ = (k,−k) is the dual light-like four vector, with A,A ′ = 1, 2 , and
the relations

pµ εAµ (k) = pµ εA
′

µ (k ′ ) = 0

pµ k
µ = kme pµ k ′µ = me k

′ kµ k
µ = k ′µ k ′µ = 0

g µν εAµ (k) εAν (k) = g µν εA
′

µ (k ′ ) εA
′

ν (k ′ ) = − 1

In order to calculate trQ1 it is sufficient to anti-commute the first two terms
in Q1 , which yields

p/M = k ′ p/ ε/ ′ k/ ε/+ k p/ ε/ k/ ′ ε/ ′

= − k ′ ε/ ′ p/ k/ ε/− k ε/ p/ k/ ′ ε/ ′

= (− 2me k) k ′ ε/ ′ ε/+ k ′ ε/ ′ k/ p/ ε/

+ (− 2me k
′ ) k ε/ ε/ ′ + k ε/ k/ ′ p/ ε/ ′

= −M p/− 4kk ′me (ε · ε ′ ) I (3.142)

and therefore

trQ1 = tr [ p/M p/ M̄ ] +m2
e tr [M M̄ ]

= − tr [M p/ p/ M̄ ] +m2
e tr [M M̄ ]

− 4kk ′me (ε · ε ′ ) tr [ p/ M̄ ]

= − 4kk ′me (ε · ε ′ ) tr [ k ′ p/ ε/ k/ ε/ ′ + k p/ ε/ ′ k/ ′ ε/ ]

= 32m2
ek

2k ′2 (ε · ε ′ )2 = 32m2
ek

2k ′2 cos2 θ (3.143)
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where the shorthand notation (a · b) = aµ bµ has been used, while θ denotes
the angle between the incident and scattered photon momenta. Moreover,
for the calculation of trQ2 it is convenient to write

trQ2 = tr [ (k/− k/ ′ )M p/ M̄ ] = tr [ M̄ (k/− k/ ′ )M p/ ] (3.144)

and by carrying out the anti-commutations in such a manner that the iden-
tical factors turn out to be next to each other we get

(k/− k/ ′ )M = (k/− k/ ′ ) (k ′ ε/ ′ k/ ε/+ k ε/ k/ ′ ε/ ′ )

= k/(k ′ ε/ ′ k/ ε/+ k ε/ k/ ′ ε/ ′ )− k/ ′ (k ′ ε/ ′ k/ ε/+ k ε/ k/ ′ ε/ ′ )

= k ′ k/ ε/ ′ k/ ε/+ k k/ ε/ k/ ′ ε/ ′ − k ′ k/ ′ ε/ ′ k/ ε/− k k/ ′ ε/ k/ ′ ε/ ′

= k ′ {k/ , ε/ ′} k/ ε/− k ε/ k/ k/ ′ ε/ ′ + k ′ ε/ ′ k/ ′ k/ ε/− k {k/ ′ , ε/} k/ ′ ε/ ′

= k ′ ε/ ′ k/ ′ k/ ε/− k ε/ k/ k/ ′ ε/ ′ + 2(k · ε ′ ) k ′ k/ ε/− 2(k ′ · ε) k k/ ′ ε/ ′

Hence, if we set
a = k ′ ε/ ′ k/ ′ k/ ε/− k ε/ k/ k/ ′ ε/ ′

b = 2(k · ε ′ ) k ′ k/ ε/− 2(k ′ · ε) k k/ ′ ε/ ′

we readily obtain

tr [ M̄ap/ ]

= tr [ (k ′ ε/ k/ ε/ ′ + k ε/ ′ k/ ′ ε/)(k ′ ε/ ′ k/ ′ k/ ε/− k ε/ k/ k/ ′ ε/ ′ ) p/ ]

= − k ′2 tr [ k/ ε/ ′ ε/ ′ k/ ′ k/ ε/ ε/ p/ ] + k 2 tr [ ε/ ′ ε/ ′ k/ ′ ε/ ε/ k/ k/ ′ p/ ]

+ k k ′ tr [ ε/ k/ ε/ ′ k/ ε/ k/ ′ ε/ ′ p/ ]− k k ′ tr [ ε/ ′ k/ ′ ε/ k/ ′ ε/ ′ k/ ε/ p/ ]

= − k ′2 tr [ k/ k/ ′ k/ p/ ] + k 2 tr [ k/ ′k/ k/ ′ p/ ]

+ 2(k · ε ′ ) k k ′ tr [ k/ k/ ′ ε/ ′ p/ ]− 2(k ′ · ε) k k ′ tr [ k/ ′ k/ ε/ p/ ]

= 8k k ′me (k · k ′ )(k − k ′ )
+ 8k k ′me { k (k ′ · ε)2 − k ′ (k · ε ′ )2 } (3.145)

tr [ M̄bp/ ]

= tr [ (k ′ ε/ k/ ε/ ′ + k ε/ ′ k/ ′ ε/){2(k · ε ′ ) k ′ k/ ε/− 2(k ′ · ε) k k/ ′ ε/ ′} p/ ]

= 2(k · ε ′ ) k ′ 2 tr [ {ε/ ′ , k/} k/ p/ ]1/2− 2(k ′ · ε) kk ′ tr [ ε/ k/ k/ ′ p/ ]

+ 2(k · ε ′ ) kk ′tr [ ε/ ′ k/ ′ k/ p/ ]− 2(k ′ · ε) k 2 tr [ {k/ ′ , ε/} k/ ′ p/ ]

= 4(k · ε ′ )2 k ′ 2 tr [ k/ p/ ] + 2(k ′ · ε)2 kk ′ tr [ k/ p/ ]

− 4(k ′ · ε)2 k 2 tr [ k/ ′ p/ ]− 2(k · ε ′ )2 kk ′ tr [ k/ ′ p/ ]

= 16(k · ε ′ )2 k ′ 2 kme + 8(k ′ · ε)2 k 2 k ′me

− 16(k ′ · ε)2 k ′ k 2me + 8(k · ε ′ )2 k k ′ 2me

= − 8k k ′me { k (k ′ · ε)2 − k ′ (k · ε ′ )2 } (3.146)
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By adding all the above trace calculations we get

trQ = 32m2
ek

2k ′2 cos2 θ + 8k k ′me (k · k ′ )(k − k ′ )
= 32m2

ek
2k ′2 (ε · ε ′ )2 + 8k k ′me (k · k ′ )(k − k ′ ) (3.147)

Next, by writing the energy momentum conservation in the form{
k +me = k ′ +

√
p ′ 2 +m2

e

k = k ′ + p ′
(3.148)

and eliminating p ′ we come to the famous Compton kinematic relation

k µ k ′µ ≡ k k ′ (1− cos θ) = me (k − k ′ ) (3.149)

or, in physical units,

c (ν − ν ′ ) = 2π λe νν
′ (1− cos θ) (3.150)

where

λe =
~
me c

= 3.861592678(26)× 10−13 m (3.151)

is the celebrated Compton wave length of the electron.

Arthur Holly Compton (Wooster, 10.09.1892 - Berkeley, 15.03.1962)
A Quantum Theory of the Scattering of X-rays by Light Elements
The Physical Review 21, 483 - 502 (1923)

Notice that after scattering the photon frequency is always shifted towards
the infrared. The Compton relation can also be suggestively rewritten as a
photon wave length shift: namely,

∆λ = λ ′ − λ = 2π λe (1− cos θ)

Solving with respect to the scattered photon frequency we get

k ′ =
k

1 + (1− cos θ)
k

me

Hence we eventually obtain the final result

trQAA ′ = 32m2
ek

2k ′2g µν εAµ (k) εA
′

ν (k ′ ) g ρσ εAρ (k) εA
′

σ (k ′ )

+ 8m2
ek

2k ′2
(
k

k ′
+
k ′

k
− 2

)
= 8m2

ek
2k ′2

{
4
(
εA · εA ′

)2

− 2 +
k

k ′
+
k ′

k

}
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in accordance with N.N. Bogoliubov and D.V. Shirkov, Introduction to the
Theory of Quantized Fields, Interscience Publisher, New York, 1959, p.279.
If one is not interested in detecting photon polarization, then it is convenient
to average over the incident and sum over the scattered photon polarization
that yields

g µν g ρσ
∑
A= 1,2

1
2
εAµ (k) εAρ (k)

∑
A ′= 1,2

εA
′

ν (k ′ ) εA
′

σ (k ′ )

= 1
2
g µν g ρσ Π⊥µρ(k) Π⊥νσ(k ′) (3.152)

where

Π⊥µρ(k) = gµρ −
kµ k

∗
ρ + k ρ k

∗
µ

k · k ∗
( k ∗µ = k µ )

Thus, from the relations

( k · k ∗ ) = 2k 2 ( k ′ · k ′∗ ) = 2k ′ 2 (3.153)

we find

1
2

Π⊥µρ (k) Πµρ
⊥ (k ′ ) =

1

2

(
kµ k

∗
ρ + k ρ k

∗
µ

k · k ∗

)(
k ′µ k ′ ρ∗ + k ′ ρ k ′µ∗

k ′ · k ′∗

)
=

( k · k ′ )( k ∗ · k ′∗ ) + ( k · k ′∗ )( k ∗ · k ′ )
(k · k ∗ )(k ′ · k ′∗ )

(3.154)

and since we have

( k · k ′ ) = kk ′(1− cos θ) = ( k ∗ · k ′∗ )

( k · k ′∗ ) = kk ′(1 + cos θ) = ( k ∗ · k ′ )

we come to the result

1
2

Π⊥µρ (k) Πµρ
⊥ (k ′ ) = 1

2
(1 + cos2 θ) (3.155)

and consequently

1
2

∑
A ,A ′= 1,2

trQAA ′ = 16m2
ek

2k ′2
(
k

k ′
+
k ′

k
− sin2 θ

)
(3.156)

It turns out that the non-polarized differential cross-sections will be given by
the general Golden Formula

dσ =

∫
dk ′

(2π)3 2k ′

∫
dp ′

(2π)3 2E ′
(2π)4 δ(4)(k + p− k ′ − p ′ )
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× 1
4

( pλkλ )−1 · 1
2

∑
A ,A ′=1,2

1
2

∑
r,r ′=1,2

∣∣∣MAA ′

rr ′ (k,k ′ )
∣∣∣2

=

∫ ∞
0

k ′ 2 dk ′

(2π)3 2k ′

∫
dΩ

2E ′(k ′ )
(2π) δ (k ′ + E ′(k ′ )−me − k)

× 1

4kme

· e4

8(kk ′me)2
· 16m2

ek
2k ′2

(
k

k ′
+
k ′

k
− sin2 θ

)
in which

E ′(k ′ ) ≡
√
k ′ 2 + k 2 − 2kk ′ cos θ +m2

e

dΩ = dφ d cos θ ( 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π )

From the theory of the tempered distributions we get the well known relation∫ ∞
0

k ′ dk ′

E ′(k ′ )
δ (k ′ + E ′(k ′ )−me − k) f(k ′ )

=

[
k ′ f(k ′ )

|E ′(k ′ ) + k ′ − k cos θ |

]
k ′= k̃ ′

[ ∀ f ∈ S(R) ]

where

k̃ ′ + E ′( k̃ ′ ) = k +me ⇔ k̃ ′ ≡ kme

me + k (1− cos θ)

in such a manner that[
k ′

|E ′(k ′ ) + k ′ − k cos θ |

]
k ′= k̃ ′

=
k ′

me + k (1− cos θ)
=

k̃ ′ 2

kme

It follows that we finally obtain the non-polarized differential cross-section(
dσ

d cos θ

)
Klein−Nishina

=
e4

16πm2
ec

4

(
k ′

k

)2 (
k

k ′
+
k ′

k
− sin2 θ

)
=

π~2α2

m2
ec

2

(
k ′

k

)2 (
k

k ′
+
k ′

k
− sin2 θ

)
(3.157)

k ′

k
≡ 1

1 + ~k (1− cos θ)/mec

which is the celebrated Klein-Nishina formula, first obtained in 1928 at the
Niels Bohr Institute of Coopenhagen

Oskar Klein (Stockholm, 15.09.1894 - Stockholm, 5.02.1977)
Yoshio Nishina (Hamanaka, 6.12.1890 - Tokyo, 10.01.1951)
Über die Streung von Strahlung durch freie Elektronen
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Figure 3.11: Klein-Nishina differential cross-section vs. angle

nach der neuen relativistischen Quantendynamik von Dirac
Zeitschrift für Physik 52, 853 - 864 (1929)

Y. Nishina, Die Polarisation der Comptonstreung nach der
Diracschen Theorie des Elektrons
Z. Physik 52, 869 - 877 (1929)

Notice that in the low frequency limit k → 0 which entails k ′/k → 1 the
non-relativistic Thomson formula for the differential cross-section of light by
free electrons: namely,(

dσ

d cos θ

)
Thomson

= πα2λ2
e( 1 + cos2 θ ) (3.158)

and after angular integration

σT = 8
3
πα2λ2

e = 8
3
π r2

e = 0.665 245 873(13) barn (3.159)

where re = αλe = 2.817 940 325(28) × 10−13 cm is the classical electron
radius, while 1 barn = 10−28 m2. The Thomson cross section of nearly half
a barn is used as the paradigmatic reference scale for all cross sections of
the high energy sub-nuclear particle Physics. Note that the photons of the
visible part of the electromagnetic spectrum have energies of the eV order.
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Figure 3.12: the direct and exchange diagrams for e−e+ annihilation into a
γγ pair to the lowest order

3.4.4 Annihilation into γ γ of e− e+ Pairs

The two photon annihilation is described, to the lowest order, by the two
tree-level diagrams which differ by the two–photon exchange, see figure. In
the center of momentum frame of the e+e− pair we have

electron : p1 = p E1 =
√
p2 +m2 |p | = p

positron : p2 = −p E2 = E1 = E

first photon : k1 = k , k0
1 = |k |

second photon : k2 = −k , k0
2 = k0

1 = |k | ≡ k

Moreover, since we will finally sum over both photon polarization states, we
associate to the two final photon the real and physical linear polarization
vectors

εAµ (k) (A = 1, 2 ) εBν (k) (B = 1, 2 )

that satisfy

− g µν εAµ (k ) εBν (k ) = δAB A,B = 1, 2

The Mandelstam variables are

s = (p1 + p2)2 = (k1 + k2)2 = 2m2 + 2p1 · p2 = 4E 2 = 2k1 · k2 = 4k 2

that evidently yields E = k together with

t = (p1 − k1)2 = (p2 − k2)2 = m2 − 2p1 · k1 = m2 − 2p2 · k2

u = (p1 − k2)2 = (p2 − k1)2 = m2 − 2p1 · k2 = m2 − 2p2 · k1
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with s+t+u = 2m2 . Making use of the rules of correspondence we construct
the matrix elements

iM = − ie2 εν εµ v̄r(−p)M µν u s(p)

= v̄r(p2) (−ie γ ν) εBν (k2)S(p1 − k1) (−ie γ µ) εAµ (k1)u s(p1)

+ [ photon exchange k1 ↔ k2 A ↔ B µ ↔ ν ]

= − 2ie2 v̄r (−p)Qu s(p) [ (t−m2) (u−m2) ]−1

where we have set

Q = (p1 · k2) ε/2 (p/1 − k/1 +m) ε/1 + (p1 · k1) ε/1 (p/1 − k/2 +m) ε/2

Notice that we have

Qus (p) = (p1 · k2) ε/2 (p/1 − k/1 +m) ε/1 us (p1 )

+ (p1 · k1) ε/1 (p/1 − k/2 +m) ε/2 us (p1 )

= (p1 · k2) ε2 (2p1 · ε1 − k/1ε/1)us (p1 )

+ (p1 · k1) ε1 (2p1 · ε2 − k/2ε/2)us (p1 )

in such a way that we can write

Q =̇ (p1 · k2) ε/2 [ 2(p1 · ε1) − k/1 ε/1 ]

+ (p1 · k1) ε/1 [ 2(p1 · ε2) − k/2 ε/2 ]

where =̇ means equality up to evanescent terms when acting upon u(p) . If
we are looking for annihilation of non-polarized e+e− pairs then we have to
average with respect to the polarization of the incident e−e+ pair so that we
can write

[ v̄r (−p)Qus (p) ] ∗ = ūs (p)
−
Q vr (−p)

so that
−
Q =̇ (p1 · k2) [ 2p1 · ε1 − ε/1 k/1 ] ε/2

+ (p1 · k1) [ 2p1 · ε2 − ε/2 k/2 ] ε/1

As a consequence, after summation over spinor polarization and making use
of the property of the cyclic property of the trace operation, in accordance
with the Golden Formula (3.98) for the quasi-elastic scattering in the center
of momentum frame, we can definitely write(

dσ

dΩ

)
CM

=
( α

4k

)2

· tr [ (p/2 −m)Q (p/1 +m)
−
Q ]

[ ( t−m2 )(u−m2 ) ]2
· k
p

= α2 tr [ (p/2 −m)Q (p/1 +m)
−
Q ]

16pk ( t−m2 )2 (u−m2 )2

≡ α2 tr Υ/[ 16pk (t−m2)2 (u−m2)2 ]
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where tr [ · · · ] refers to trace over spinor indexes. Making use of the law of
the conservation of tetra-momentum

p2 = k1 + k2 − p1

we shall write Υ in the form of the sum

Υ = Υ1 + Υ2 + Υ3

where

Υ1 = (k/1 + k/2)Qp/1

−
Q

Υ2 = − (p/1 +m)Q (p/1 +m)
−
Q

Υ3 = m (k/1 + k/2)Q
−
Q

It is immediate to check by direct inspection that Υ3 is a sum of products of
an odd number of Dirac matrices, whence tr Υ3 = 0 . Moreover, after setting
k1 + k2 = K , we have

tr Υ1 = tr [ (k/1 + k/2)Qp/1

−
Q ]

= tr
{

(p1 · k2)K/ε/2[ 2(p1 · ε1)− k/1ε/1 ]

+ (p1 · k1)K/ε/1[ 2(p1 · ε2)− k/2 ε/2 ]
}

×
{

(p1 · k2) p/1[ 2(p1 · ε1)− ε/1 k/1 ]ε/2

+ (p1 · k1) p/1 [ 2(p1 · ε2)− ε/2 k/2 ] ε/1

}
= tr

{
(p1 · k2)K/ε/2[ 2(p1 · ε1)− k/1 ε/1 ]

}
×

{
(p1 · k2) p/ [ 2(p1 · ε1)− ε/1 k/1 ] ε/2

}
+ tr

{
(p1 · k2)K/ε/2 [ 2( p1 · ε1 )− k/1 ε/1 ]

}
×

{
(p1 · k1) p/ [ 2(p1 · ε2)− ε/2 k/2 ] ε/1

}
+

{
1 ↔ 2

}
This expression contains the sum of two groups of sixteen terms which are
related by the exchange operation {1 ↔ 2} . In turn, each group is done of
traces of products of four, six and eight Dirac matrices. The general method
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of calculating traces consists of successive displacements of identical matrix-
four-vector. The calculation of tr Υ1 and tr Υ2 is then straightforward and
elementary, although tedious. For this calculation we shall use

tr (γµγν) = gµν tr I = 4 g µν

1
4

tr
(
γκγλγµγν

)
= gκλ gµν − gκµ gλν + gκν gλµ

as well as the forthcoming relations, which are a direct consequence of the
corresponding definitions: namely,

k2
1 = k2

2 = 0 , k1 · k2 = 2k2

k1 · ε1 = k2 · ε2 = k1 · ε2 = k2 · ε1 = 0

k1 · p1 = k ω p − k1 · p1 = k ( k − p cos θ )

k2 · p1 = k ω p − k2 · p1 = k ( k + p cos θ )

where θ is the angle between the vectors k1 and p1 . The result is

tr Υ1 = 32 k 2 (p1 · k1) (p1 · k2)

× [ 2(ε1 · ε2)(p1 · ε1)(p1 · ε2) + k 2 + (p1 · ε1)2 + (p1 · ε2)2 ]

tr Υ2 = − 32 k 2 (p1 · k1) (p1 · k2)

× [ 2(ε1 · ε2)(p1 · ε1)(p1 · ε2) + (p1 · ε1)2 + (p1 · ε2)2 ]

− 32 [ 2k 2 (p1 · ε1)(p1 · ε2) + (ε1 · ε2)(p1 · k1)(p1 · k2) ]2

tr Υ = 32 (p1 · k1)2 (p1 · k2)2

{
k 4

(p1 · k1)(p1 · k2)
− (ε1 · ε2)2 −

− 4k 4 (p1 · ε1)2(p1 · ε2)2

(p1 · k1)2(p1 · k2)2
− 4k 2 (ε1 · ε2)(p1 · ε1)(p1 · ε2)

(p1 · k1)(p1 · k2)

}
The very last expression contains a shorthand notation, though the various
addenda do actually depend upon two physical polarization indexes, just like
in the Compton scattering. For example we have

(ε1 · ε2)2 = g µνεAµ (k)εBν (k) g ρσεAρ (k)εBσ (k)

so that the sum over all the physical polarization indexes yields

g µν g ρσ
∑
A= 1, 2

εAµ (k) εAρ (k)
∑

B= 1, 2

εBν (k) εBσ (k) = g µν g ρσ Π⊥µρ(k) Π⊥νσ(k)

where projector on the physical polarization two dimensional space is

Π⊥µρ(k) = gµρ −
kµk

∗
ρ + kρk

∗
µ

k · k ∗
( k ∗µ = k µ )

161



Now, since we obtain

Π⊥µρ(k) Πµρ
⊥ (k) = tr Π⊥ = 2

we definitely get ∑
A= 1, 2

∑
B= 1, 2

( εA1 · εB2 ) 2 = 2

Quite analogously we obtain∑
A= 1, 2

(
p1 · εA1

)2
=
∑
A= 1, 2

(
p1 · εA2

)2

= gµν gρσ p
µ
1 p

ρ
1

∑
A= 1, 2

ε νA(k) εσA(k) = pµ1 p
ρ
1 Π⊥µρ(k)

= m2 − ( p1 · k)( p1 · k∗)
k2

= m2 − (E − p cos θ)(E + p cos θ)

= − p 2 sin2 θ

Finally we get ∑
A= 1, 2

∑
B= 1, 2

( εA1 · εB2 ) ( p1 · εA1 ) ( p1 · εB2 )

= pµ1 p
ρ
1 Π⊥µν(k) Π⊥ρσ(k) g νσ = pµ1 p

ρ
1 Π⊥µρ(k) = − p 2 sin2 θ

Putting altogether we obtain∑
A= 1, 2

∑
B= 1, 2

tr ΥAB = 4 (2p1 · k1)2 (2p1 · k2)2 ×

×
{
k 2 + p 2 (1 + sin2 θ)

k 2 − p 2 cos2 θ
− 2 p 4 sin4 θ

( k 2 − p 2 cos2 θ )2

}
In the center of momentum frame we have

2p1 · k1 = m2 − t 2p1 · k2 = m2 − u s = 4 k 2

so that, by substituting the above expression for tr Υ we obtain the mass
independent formula for the differential cross-section for the annihilation of a
particle-antiparticle pair first obtained by Paul Adrian Maurice Dirac (1930)(

dσ

dΩ

)
CM

=
α2

4kp

{
k 2 + p 2 ( 1 + sin2 θ )

k 2 − p 2 cos2 θ
− 2 p 4 sin4 θ

( k 2 − p 2 cos2 θ )2

}
according to [7] § 23 eq. (23.12) p. 282 and [6] § 88 eq. (88,13) p. 431.
Let us calculate the lowest order total cross-section for the process of e−e+
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pairs production out of quantum electromagnetic radiation in spinor QED.
Actually we have

σ( e−e+ ↔ 2γ ) = 2π

∫ 1

0

d cos θ

(
dσ

dΩ

)
CM

=
πα2

pk

(
1

2
+ p 2I1 − J2

)
where

I1 ≡
∫ 1

0

dx

k 2 − p 2x2
=

1

2pk
ln

1 + χ

1− χ
=

1

pk
Arcthχ > 0

I2 ≡
∫ 1

0

dx

(k 2 − p 2x2)2
= − 1

2k
· ∂I1

∂k
=

1

2pk 3

[
χ

1− χ2
+ Arcthχ

]
with χ ≡ p/k (0 ≤ χ < 1) whereas

J2 =

∫ 1

0

dx

[
p 2(1− x2)

k 2 − p 2x2

]2

=

∫ 1

0

dx

[
1− k 2 − p 2

k 2 − p 2x2

]2

= 1− 2k 2(1− χ2)I1 + k 4(1− χ2)2I2

= 1 +
1

2
(1− χ2)

(
1− 3 + χ2

χ
Arcthχ

)
so that we definitely obtain

σ 2γ→ e−e+ =
πα2

pk

[
χArcthχ− 1

2
− 1

2
(1− χ2)

(
1− 3 + χ2

χ
Arcthχ

)]
=

πα2

pk

[
− 1

2
+

1

2

(
2 + χ2

)
+ · · ·

]
' πα2

2pk
(3.160)

which becomes very large close to the threshold }k = mec ⇔ p = 0 .
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3.5 Appendix A

Here we shall first report the so called heuristic memento derivation of
the differential cross section formula – V.B. Berestetskij, E.M. Lif̌sits and
L.P. Pitaevskij, Teoria quantistica relativistica, Editori Riuniti, Roma, 1978,
§ 65 eq. (65,18) p. 302. From the basic formula

Sf←ι = 〈 f |S | ι 〉 = διf + (2π)4 i δ (P ′f − Pι)M( pι 7→ p ′f )

for the scattering process 1 + 2 + . . . + M 7−→ 1′ + 2 ′ + . . . + N ′ , we
immediately obtain that the transition probability over all space-time is then
formally given by

dwf←ι = [ (2π)4 δ (P ′f − Pι) ] 2 |M( pι 7→ p ′f ) | 2 dPι dP ′f (3.161)

where

dPι =
M∏
j=1

[ (2π)3 2ω(pj) ]−1 dpj dP ′f =
N∏
k=1

[ (2π)3 2ω(p′k) ]−1 dp ′k

The square of the δ–distribution is understood in the sense that (2π)4 δ (4)(0)
is nothing but the space-time total volume. This can be readily seen in terms
of the formal identities

2π δ(p) = lim
L→∞

∫ L

−L
e ipx dx

= lim
L→∞

2

p
sin(pL)

lim
p→0

2πδ(p) = lim
L→∞

2L
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Notice that in natural units ~ = c = 1 we have the following canonical
engineering dimensions:

[ |k 〉 ] = cm , [M( pι 7→ p ′f ) ] = cmM+N−4

[ |M( pι 7→ p ′f ) | 2 δ (P ′f − Pι) ] = cm2M+2N−4

It follows that the transition probability per element of space-time is

dWf←ι = (2π)4 δ (P ′f − Pι) |M( pι 7→ p ′f ) | 2 dPι dP ′f (3.162)

In scattering experiments one is usually interested in the differential cross
section of two incident particles into many. For two incident particles we
have

dWf←ι =
1

16π2
δ (P ′f − p1 − p2) |M( p1, p2 7→ p ′f ) | 2

∆p1∆p2

ω(p1)ω(p2)
dP ′f

= 1
4

(2π)4 δ (P ′f − p1 − p2)
|M( p1, p2 7→ p ′f ) | 2

ω(p1)ω(p2) ∆V1 ∆V2

dP ′f

where ∆p1 , ∆p2 are very small regions in momentum space centered around
p1 and p2 respectively. Then, taking eq. (3.77) into account, we eventually
find the differential cross-section in the form

dσ (1 + 2 7−→ 1′ + 2 ′ + . . .+N ′ )

≡ (2π)3

∆p1

· (2π)3

∆p2

· dWf←ι

vrel

=
1

βrel

∆V1 ∆V2 dWf←ι

= 1
4

[ (p1 · p2)2 −m2
1m

2
2 ]−1/2 (2π)4 δ (P ′f − Pι)

× |M( p1, p2 7→ p ′f ) | 2
N∏
k=1

[ (2π)3 2ω(p′k) ]−1 dp ′k (3.163)

in perfect agreement with eq. (3.71).
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Chapter 4

Radiative Corrections

4.1 Evaluation of Feynman Integrals

The Feynman rules lead to loop integrals which are admittedly poorly defined
divergent expressions. The divergences we have to face with are caused by
the bad large wave number behavior of the loop integrating functions: these
are the ultraviolet divergences of quantum field theories. In the case of field
theory models involving mass-less particles, e.g. photons, another kind of
low 4−momentum non-integrable singularities indeed appear, the so named
infrared divergences, which will not be treated in the present context.

The simplest examples arise immediately in the real scalar self-interacting
field theory and in the Yukawa spinor-meson field theory. Specifically, from
the lowest order expressions (2.27) and (2.28) for the 2−point and 4−point
connected Green’s functions in momentum space, after truncation of the
external free propagators, we can pick out the divergent parts

Σ1(0) ' λ

2

∫
d 4`

(2π)4

i

`2 −m2 + iε

4∏
=1

(k 2
 −m2 ) G̃(4)

c (k1, k2, k3, k4) + iλ ' 1
2

(− iλ)2
∑
( ı  )

(2π)4

×
∫

d 4`1

(2π)4

i

`2
1 −m2 + iε

∫
d 4`2

(2π)4

i

`2
2 −m2 + iε

δ (`1 + `2 − kı − k )

where the sum ( ı  ) runs over the three pairs (12), (13), (14) , which turns
out to be related, as we shall see further on, to the first radiative correction
to the self-interaction coupling λ .
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Finally, the first two divergent terms arising in the perturbative expansion
of the fermion determinant (2.36) in the Yukawa field theory formally read

Γ2 (0/)
def
= − iy

∫
d4p

(2π)4
tr

i

p/−M + iε
(spinor tadpole) (4.1)

Σ2(k/)
def
= iy 2

∫
d4p

(2π)4
tr

i

p/−M + iε
· i

p/+ k/−M + iε
(4.2)

which corresponds to the so called π0 meson (neutral pion) self-energy.
In order to give a precise mathematical meaning to the above listed ill

defined integral expressions, we have to introduce from the outset some kind
of regularization procedure, the aim of which is to build up absolutely
convergent loop integrals. Thus, I will briefly review here below the most
commonly used ultraviolet regulators, by applying the latter ones to the
above written paradigmatic simple divergent loop integrals.

4.1.1 Cut−Off Regularization

This is the most intuitive and physically motivated ultraviolet regulator,
that I have already employed in the discussion of the vacuum energy and the
cosmological constant – see the First Semester Course. It is based upon the
rather plausible belief that the validity of the principles of modern quantum
field theory, as well as the classical theory of gravitation based upon Einstein
general relativity, can not be pushed beyond a very high energy scale such
as the Planck scale

MP =
√

~c/GN = 1.22090(9)× 10 19 GeV/c2

= 2.17645(16)× 10−11 g ≈ 20 pg

GN = 6.6742(10)× 10−8 cm3 g−1 s−2

= 6.7087(10)× 10−39 ~c (GeV/c2)−2

where GN is the Newtonian gravitational constant. The matter is that at
the Plack scale some new physics is expected to govern the quantum gravity
phenomena, a realm which does not seem to be experimentally accessible
nowadays 1. If we trust in general relativity and in quantum field theory up

1 Nonetheless, at the moment there are indeed big efforts in trying to detect ultra-high
energy cosmic rays (UHECR), ultrahigh energy γ−ray bursts as well as black hole particle
physics effects at LHC, due to the possible existence of space-time extra-dimensions.
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Figure 4.1: the amputated scalar tadpole

to the Planck scale but not beyond, it turns out to be quite natural to cut-off
the loop integrations at a very high wave number of the order

K '
√
c3/8π~GN = (8πGN)−1/2

Consider therefore the cut-off regularized scalar tadpole

regΣ1 (0 ; K ) = (− i)(k 2 −m2 )2 G̃(2)
c (k ;K)

def
=

λ

2

∫
d`

(2π)4
θ (K2 − `2 )

∫ ∞
−∞

d`0
i

`2
0 − `2 −m2 + iε

=
λ

4

∫
d`

(2π)3
θ (K2 − `2 )

(
`2 +m2

)−1/2

=
λ

8π 2

∫ K

0

d` `2
(
`2 +m2

)−1/2

=
λ

m
· d

dm

∫ K

0

d`

8π 2
`2
√
`2 +m2 =

λ

m
· d〈 ρ 〉

dm
(4.3)

where the quantity 〈ρ〉 is nothing but the vacuum energy density that I
have already introduced in the first part of these notes and which is related
to the so called zero−point energy of the quantized scalar field. From [14]
eq. 2.2723. p. 105 we obtain

regΣ1 (0 ; K ) =
λK2

16π 2

{√
1 +m2/K 2 − m2

K2

×
[

ln
K

m
+ ln

(
1 +

√
1 +m2/K 2

)]}
(4.4)
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and from the explicit expression of the vacuum energy density

〈 ρ 〉 =
K4

16π2
+
K2m2

16π2
− m4

32π2

[
ln
K

m
− 1

4
+ ln 2 +O

(m
K

)2
]

we eventually understand the ultraviolet cut−off regularized scalar tadpole
as follows : namely,

regΣ1(0 ; K )
def
=

λ

16π2

{
K2 −m2

[
ln
K

m
− 1

2
+ ln 2 +O

(m
K

)2
]}

(4.5)

which means a quadratic divergence and a logarithmic divergence at the
Planck scale. It follows that if we remove the zero-point vacuum energy
through normal ordering then the divergent scalar tadpole disappears.

The spinor tadpole can be treated in the very same way: namely,

regΓ2(0/) =
g

(2π)4

∫
dp θ (K2 − p2 )

∫ ∞
−∞

tr (p/+M ) dp0

p 2
0 − p 2 −M 2 + iε

=
4gM

iπ2

∫ K

0

p2 dp√
(p2 +M2)

=
4gM

2iπ2

{
K
√
K2 +M2 −M2 ln

[
K

M
+

√
1 +

K2

M2

]}

=
2gM

iπ2

{
K2 −M2

[
ln
K

M
− 1

2
+ ln 2 +O

(
M

K

)2
]}

(4.6)

which means, as expected, that we have again a quadratic divergence and a
logarithmic divergence at the Planck scale.

4.1.2 Pauli−Villars Regularization

This method for the ultraviolet regularization of fermion cycles has been
introduced in the quantum field theory by one of the main Father Founders
and one of his students

Wolfgang Pauli & Felix Villars
(Swiss Federal Institute of Technology, Zurich, Switzerland)
On the Invariant Regularization in Relativistic Quantum Theory
Review of Modern Physics 21, 434 - 444 (1949) [ Issue 3 − July 1949 ]

See also : Claude Itzykson and Jean−Bernard Zuber, Quantum Field Theory, McGraw-

Hill, New York, 1980, § 7-1-1 p. 319 ; Nicolai Nicolaievic Bogoliubov and D.M. Shirkov,
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Figure 4.2: the pion self-energy 1-loop diagram

Introduction to the theory of quantized fields, Interscience Publishers, New York, 1959,

§ 30.2, p. 364 ; Ludwig Dimitrievich Fadde’ev & Andrei Alexe’evich Slavnov, Gauge

fields. Introduction to quantum theory, Benjamin, Reading (MA), 1980, § 4.3, p. 131.

To implement it consider the spinor propagator in momentum space

SF (p , M ) =
i

p/−M + iε
=

i (p/+M )

p2 −M 2 + iε

and let me define the pion self-energy, or the vacuum polarization scalar, for
the Yukawa theory with the Pauli−Villars regularization, viz.

regΣ(k/ ; Λ)
def
= iy 2

∫
d4p

(2π)4

S∑
s=0

Cs trSF (p , Ms )SF (p+ k , Ms )

where M0 = M , C0 = 1 while {Ms ≡ λsM |λs � 1 ( s = 1, 2, . . . , S ) } is
a collection of very large auxiliary masses. The set of constants Cs will be
suitably selected, as we shall see in the sequel, in such a manner to obtain a
specific and mathematically meaningful form for the ultraviolet divergences
that will manifest themselves in the limit λs →∞. Further, we have denoted
the collection of very large auxiliary masses Ms ( s = 1, 2, . . . , S ) by the
symbol Λ . Then we get

regΣ(k/ ; Λ) =

− iy 2

∫
d4p

(2π)4

S∑
s=0

Cs tr [ (p/+Ms ) (p/+ k/+Ms ) ]

(p2 −M 2
s + iε) [ (p+ k )2 −M 2

s + iε ]

Taking into account that we have
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tr (γ µ γ ν ) = g µν tr I = 4g µν tr γ λ = 0

we can write

regΣ(k/ ; Λ) =

− 4iy 2

∫
d4p

(2π)4

S∑
s=0

Cs (p2 + p · k +M 2
s )

(p2 −M 2
s + iε) [ (p+ k )2 −M 2

s + iε ]

It is convenient to introduce the Feynman parametric formula

1

(p2 −M 2
s + iε) [ (p+ k)2 −M 2

s + iε ]
=∫ 1

0

dx

{x (p2 −M 2
s ) + (1− x) [ (p+ k)2 −M 2

s ] + iε }2

=

∫ 1

0

dx

[ p2 −M 2
s + 2p · k (1− x) + (1− x) k 2 + iε ]2

and by exchanging the integrals

regΣ(k/ ; Λ) = − 4iy 2

∫ 1

0

dx

∫
d4 p

(2π)4

S∑
s=0

Cs (p2 + p · k +M 2
s )

[ p2 −M 2
s + 2p · k (1− x) + (1− x) k 2 + iε ]2

Let us shift the integration variable

p 7→ p ′ = p+ k (1− x)

which yields

regΣ(k/ ; Λ) = − 4iy 2

∫ 1

0

dx

∫
d4 p ′

(2π)4

S∑
s=0

Cs
M 2

s − x(1− x) k 2 + p ′ 2 − p ′ · k (1− 2x)

[ p ′ 2 −M 2
s + x(1− x) k 2 + iε ]2

The very last term in the numerator is odd and vanishes after integration.
Thus we are left with

regΣ(k/; Λ) =

− 4iy 2

∫ 1

0

dx
S∑
s=0

Cs

∫
d4 p

(2π)4

p2 +M 2
s − x(1− x) k 2

[ p2 −M 2
s − (x2 − x) k 2 + iε ]2
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Figure 4.3: the oriented contour γ+

Notice that, for k 2 < 4M 2
s , the integrating function does exhibit two double

poles for each s = 0, 1, 2, . . . , S at

p0
s =

{ √
p2 + k 2R (x, as)− iε

−
√

p2 + k 2R (x, as) + iε

(
as ≡M 2

s /k
2
)

because

k 2R (x, as) = k 2
(
x2 − x+ as

)
> 0 ⇔ k 2 < 4M 2

s

To go further on let me first wisely perform the Wick rotation, that is,
let us consider the closed oriented contour γ+ in the complex energy plane.
Note that, thanks to the causal prescription, the set of pairs of double poles
{p0

s | s = 0, 1, 2, . . . , S} of the integrating function lie outside the contour γ+

for k 2 < M 2 = min {M 2
s | s = 0, 1, 2, . . . , S} . Since the contributions due

to the two arcs of the large circle of radius R do vanish when R → ∞ we
obtain

regΣE (kE ; Λ) = 4y 2

∫
d4 pE
(2π)4

S∑
s=0

Cs
M 2

s + x(1− x)k 2
E − p2

E

[ p2
E +M 2

s + x(1− x)k 2
E ]2
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in which I have set k 0 = ik4 , p
0 = ip4 and pEµ = (p , p4 ) , p2

E = p2 + p2
4 .

Let us now consider the Pauli−Villars regularization for the generating
integral representation that reads

In (zE , Λ) ≡ (−1)n
∫

d4pE
(2π)4

S∑
s=0

Cs
exp{ ipE · zE }
(p2

E + ∆2
s )n

(4.7)

in which I have set for short ∆2
s = λ2

sM
2 + x(1− x) k 2

E . It follows that we
can write

regΣE (kE ; Λ) = 4g 2

∫ 1

0

dx lim
zE→ 0

(
2∆2 I 2 + I1

)
exp{ ikE · zE }

where

∆2 I 2 ≡
∫

d4pE
(2π)4

S∑
s=0

Cs ∆2
s

exp{ ipE · zE }
(p2

E + ∆2
s ) 2

Taking the Mellin transform we find

In (zE , Λ) =
1

(2π)4

∫
d4pE

S∑
s=0

Cs
(−1)n

Γ(n)

×
∫ ∞

0

dt tn−1 exp{−t p2
E − t∆2

s + i pE · zE}

=
(−1)n

Γ(n)

∫ ∞
0

dt tn−1

S∑
s=0

Cs exp{− t∆2
s}

× 1

(2π)4

∫
d4pE exp

{
− t
(
pE − i

zE
2t

)2

− z 2
E

4t

}
=

(−1)n

16π2 Γ(n)

∫ ∞
0

dt tn−3

S∑
s=0

Cs exp{− t∆2
s − z 2

E /4t}

=
2(−1)n

16π2 Γ(n)

S∑
s=0

Cs

(
2∆s

| zE |

)2−n

K 2−n(∆s |zE |)

where

|zE | =
√

z2 + z 2
4 =

√
z2 − z 2

0 =
√
− z 2 (z 2 < 0)

For n = 1 and zs ≡ ∆s |zE | we obtain

I1 (zE , Λ) = −
(

1

2πzE

)2 S∑
s=0

Cs zsK 1 (zs )
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=

(
1

2πzE

)2 S∑
s=0

Cs zs
d

dzs
K 0 (zs )

I2 (zE , Λ) =
1

8π2

S∑
s=0

CsK0 (zs ) (4.8)

where K0 is the modified Bessel function of the third kind, also named
Basset−McDonald function, of order zero, the series representation of which
is provided by

K0(z) =
∞∑
k=0

1

(k ! )2

(z
2

)2k [
ψ (k + 1)− ln

z

2

]
while

K1 (z ) =
1

z
+
∞∑
k=0

(z
2

)2k+1 1

k !(k + 1)!

[
ln
z

2
− 1

2
ψ (k + 1)− 1

2
ψ (k + 2)

]
Now if we fix the auxiliary constants C1, C2, . . . , Cs so that

S∑
s=0

Cs = 0
S∑
s=0

Cs λ
2
s = 0 (4.9)

then we eventually obtain a regular and finite generating integral In(zE,Λ)
in the limit zE → 0, viz.,

I1 + 2∆2 I 2 =

(
1

2πzE

)2 S∑
s=0

Cs
[
z 2
s K0 (zs ) − zsK 1 (zs )

]
=

(
1

2πzE

)2 S∑
s=0

Cs zs

(
zs +

d

dzs

)
K0 (zs )

= − 3

4

(
1

2π

)2 S∑
s=0

Cs ∆2
s ln zs + O (z 2

E )

and finally

− lim
zE→ 0

{2∆2 I 2 (zE , Λ) + I1 (zE , Λ)} =

3M 2

16π2

S∑
s=0

Cs

[
λ2
s + x(1− x)

k 2
E

M 2

]
ln

[
λ2
s + x(1− x)

k 2
E

M 2

]
(4.10)
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with
S∑
s=1

Cs = − 1
S∑
s=1

Cs λ
2
s = − 1 (4.11)

the minimal choice being S = 2 that yields

C0 = λ0 = 1 C1 =
λ2

2 − 1

λ2
1 − λ2

2

C2 =
λ2

1 − 1

λ2
2 − λ2

1

Turning back to the invariant polarization function we obtain

regΣE (kE ; Λ) = − 3y2M 2

4π2

S∑
s=0

Cs

∫ 1

0

dx

[
λ2
s + x(1− x)

k 2
E

M 2

]
× ln

[
λ2
s + x(1− x)

k 2
E

M 2

]
and thereby

regΣE (kE ; Λ) = − 3y 2M 2

4π 2

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2

]
× ln

[
1 + x(1− x)

k 2
E

M 2

]
− 3y2M 2

4π2

S∑
s=1

Cs

∫ 1

0

dx

[
λ2
s + x(1− x)

k 2
E

M 2

]
× ln

[
λ2
s + x(1− x)

k 2
E

M 2

]
which clearly suggests how to segregate the divergent and finite parts in the
limit λs → ∞ ( s = 1, 2, . . . , S ) of very large nonphysical auxiliary fermion
masses. As a matter of fact, we can rewrite the very last term of the right-
hand-side of the above expression in the form∫ 1

0

dx
S∑
s=1

Csλ
2
s

[
1 + x(1− x)

k 2
E

M 2
s

]
lnλ2

s

[
1 + x(1− x)

k 2
E

M 2
s

]

=
S∑
s=1

Cs λ
2
s lnλ2

s

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2
s

]

+
S∑
s=1

Csλ
2
s

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2
s

]
ln

[
1 + x(1− x)

k 2
E

M 2
s

]
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so that
S∑
s=1

Cs λ
2
s lnλ2

s

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2
s

]

=
S∑
s=1

Cs lnλ2
s

[
λ2
s +

k 2
E

6M 2

]
S∑
s=1

Csλ
2
s

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2
s

]
ln

[
1 + x(1− x)

k 2
E

M 2
s

]

=
k 2
E

M 2

S∑
s=1

Cs

∫ 1

0

dx x(1− x)

[
1 + x(1− x)

k 2
E

M 2
s

]
+O

(
Λ− 4

)
= − k 2

E

6M 2
+ evanescent terms

Then we eventually come to the suggestive result

regΣE (kE ; Λ) =
y 2

8π 2

[
k 2
E −

S∑
s=1

Cs ln λ2
s

(
k 2
E + 6M 2

s

) ]

− 3y 2M 2

4π 2

∫ 1

0

dx

[
1 + x(1− x)

k 2
E

M 2

]
ln

[
1 + x(1− x)

k 2
E

M 2

]
and turning back to Minkowski space

regΣ(k/ ; Λ) =
y 2

8π 2

S∑
s=1

Cs ln λ2
s

(
k 2 − 6M 2

s

)
− y 2

8π 2

[
k 2 + (6M 2 − k 2) ln

k2

M2

]
− 3y 2

4π 2

∫ 1

0

dx
[
M 2 − x(1− x) k 2

]
ln(x2 − x+M 2/k 2) (4.12)

It is convenient to rewrite the above expression in a more convenient and
standard form. To this purpose let me define the quantities

a ≡ M 2

k 2
R ≡ a− x+ x2 (4.13)

Ī0 =

∫ 1

0

dx ln
a

R
Ī2 =

∫ 1

0

dx x(1− x) ln
a

R
(4.14)

so that the vacuum polarization function for the Yukawa field theory in the
Pauli−Villars regularization can be eventually cast in the simple form

regΣ(k/,M ; Λ) =
y 2

8π 2

S∑
s=1

Cs ln λ2
s

(
k 2 − 6M 2

s

)
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− y 2k 2

8π 2
− 3y 2

4π 2
(M 2 Ī0 − k 2 Ī2 ) (4.15)

Consider the finite part of the pion self-energy

reg Σ̂ (k 2 ; M ) = − y 2k 2

8π 2
− 3y 2

4π 2

∫ 1

0

dx [M 2 − k 2x(1− x) ] ln
k 2R

M 2

and let me look at the analytic structure of the integrand in the complex
s−plane with <e s = k 2 . One can readily verify that the argument of the
logarithm is always positive definite for k 2 < 4M 2 and 0 ≤ x ≤ 1 , while it
becomes negative definite for

<e s > 4M 2 ∨ 1

2
− β

2
< x <

1

2
+
β

2
β =

√
1− 4M 2

k 2
0 < β < 1

It follows that for k 2 < 4M 2 the vacuum polarization invariant function is
real and analytic ∀x ∈ [ 0, 1 ], while the logarithm develops a branch point
when R = 0, viz.,

{k 2 = 4M 2 ∨ x = 1
2
} ∪ {k 2 > 4M 2 ∨ x = 1

2
± β

2
}

Notice that k2 = 4M2 precisely corresponds to the threshold for a creation of
a fermion-antifermion real pair, in such a manner that the complex s−plane
has a cut just above the threshold, i.e. for <e s > 4M 2 . As a consequence,
the imaginary part of the the vacuum polarization invariant function can be
readily obtained above/below the cut by

ln

[
k 2 ± i0
M 2

(
x2 − x+

M 2

k 2 ± i0

)]
= ln

[
k 2

M 2
(−R )

]
∓ iπ (R < 0)

which yields

=m Σ̂(k 2 ± i0 , M 2 ) = ± 3y 2

4π

∫ (1+β )/2

(1−β )/2

dx [M 2 − k 2x(1− x) ]

= ± y 2k 2

8π

(
1− 4M2

k2

)3/2

(4.16)

Moreover, the parametric integrals of the Appendix eventually yield

reg Σ̂(k 2 ; M ) = M 2 3y 2

4π 2
Ī0 − k 2 3y 2

4π 2

(
1
6

+ Ī2

)
(4.17)
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The first addendum in the right hand side of the above equality is closely
related to the invariant polarization function of Quantum Electrodynamics
and can be rewritten for 0 < k 2 < 4M 2 as

y 2k 2

4π 2

{
− 1

3
+

(
1 +

2M 2

k 2

)
×

[(
4M2

k2
− 1

)1/2

arcctg

(
4M2

k2
− 1

)1/2

− 1

]}

Exercise : let me compare the second and third line of the above equality with eq. (7-9) §
7-1-1 p. 323 of the book by Claude Itzykson and Jean−Bernard Zuber, Quantum Field
Theory, McGraw−Hill, New York, 1980. We find

− k 2 3y 2

4π 2
Ī2 =

y 2 k 2

2 · 4π 2

∫ 1

0

dx

R

(
4x4 − 8x3 + 3x2

)
=

y 2

4π
· k

2

2π

{44

6
− 4a+

4− 16a+ 8a2

2

∫ 1

0

dx

R

−12− (4− 12a)

∫ 1

0

dx

R
+ 3 +

3− 6a

2

∫ 1

0

dx

R

}
=

y 2

4π
· k

2

2π

{
− 5

3
− 4M2

k2
+

[
M2

k2

(
1 +

4M2

k2

)
− 1

2

] ∫ 1

0

dx

R

}
for 0 < k2 < 4M2 we have∫ 1

0

dx

R
=

4√
∆

arcctg
√

∆ ∆ =
4M2

k2
− 1

and thereby

− k 2 3y 2

4π 2
Ī2 =

g 2 k 2

2 · 4π 2

∫ 1

0

dx

R

(
4x4 − 8x3 + 3x2

)
=

y 2

4π
· k

2

2π

{
− 5

3
− 4M2

k2
+

[
4M2

k2
(2 + ∆)− 2

]
1√
∆

arcctg
√

∆

}
=

y 2

4π
· k

2

2π

{
− 5

3
− 4M2

k2
+ 2

(
1 +

2M2

k2

) √
∆ arcctg

√
∆

}
=

y 2

4π
· k

2

2π

{
1

3
+ 2

(
1 +

2M2

k2

) [(
4M2

k2
− 1

)1/2

× arcctg

(
4M2

k2
− 1

)1/2

− 1

]}
which is in perfect agreement. Quod Erat Demonstrandum

It turns out that the very same first addendum in the right hand side of
eq. (4.17) can be eventually recast in the form

M 2 3y 2

4π 2
Ī0 =

3y 2M 2

2π 2

{
1−

(
4M2

k2
− 1

)1/2

arcctg

(
4M2

k2
− 1

)1/2
}
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so that putting altogether we finally obtain

regΣ(k 2,M 2 ; Λ) =
y 2

8π 2

S∑
s=1

Cs ln λ2
s

(
k 2 − 6M 2

s

)
(4.18)

+
3y 2M 2

2π 2

{
1−

(
4M2

k2
− 1

)1/2

arcctg

(
4M2

k2
− 1

)1/2
}

− y 2k 2

4π 2

{
1

3
−
(

1 +
2M 2

k 2

)[(
4M2

k2
− 1

)1/2

arcctg

(
4M2

k2
− 1

)1/2

−1

]}

=
3y 2

4π 2

S∑
s=1

Cs ln λ2
s

(
1
6
k 2 −M 2

s

)
+

y 2

π 2
(M 2 − 1

3
k 2 )

− y 2k 2

4π 2

(
4M2

k2
− 1

)3/2

arcctg

(
4M2

k2
− 1

)1/2

(4.19)

4.1.3 Dimensional Regularization

The technique of dimensional regularization has been invented by

Gerardus ’t Hooft and Martinus Justinus Godefriedus Veltman
Regularization and renormalization of gauge fields
Nuclear Physics B 44, 189-213 (1972)
C.G. Bollini and J.J. Giambiagi
Lowest order divergent graphs in v-dimensional space
Physics Letters B 40, 566-568 (1972)
J. F. Ashmore
A method of gauge invariant regularization
Lettere al Nuovo Cimento 4, 289-290 (1972)
G. M. Cicuta and E. Montaldi
Analytic renormalization via continuous space dimension
Lettere al Nuovo Cimento 4, 329-332 (1972)

The basic idea behind this tool is very simple : by lowering the number of
dimensions over which one integrates, it might happen that the divergences
trivially disappear. Then we can give a precise meaning to some divergent
loop integral trough the method of analytic continuation in the number of
space-time dimensions D that could be eventually turned into a complex
number 2ω ∈ C . In so doing, the divergences appear as poles in the complex
ω−plane. Let me do a simple calculation to understand how this technique
is at work.
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Consider a D−dimensional Minkowski space R1, D−1 with D − 1 space
dimensions with negative signature and one temporal dimension of positive
signature. Then we can perform the Wick rotation to calculate any Feynman
integral and produce an absolutely convergent integral in a 2ω−dimensional
Euclidean space with ω integer and sufficiently small. A paradigmatic case
is actually provided by

I = µ4−2ω

∫
d 2ωkE
(2π)2ω

(k 2
E + ∆)−2

with ∆ > 0 , which is absolutely convergent for ω < 2 . The arbitrary mass
scale µ has been introduced with a suitable power, in such manner to deal
with a dimensionless quantity I . The spherical polar coordinates of kEµ are
k, φ, θ1, θ2, . . . , θ2ω−2 and we have

k1 = k cos θ1

k2 = k sin θ1 cos θ2

k3 = k sin θ1 sin θ2 cos θ3

· · · · · · · · ·
k2ω−1 = k sin θ1 sin θ2 · · · sin θ2ω−2 cosφ
k2ω = k sin θ1 sin θ2 · · · sin θ2ω−2 sinφ

with 0 ≤ θı ≤ π for ı = 1, 2, . . . , 2ω − 2 and 0 ≤ φ ≤ 2π while k = |kE| ≥ 0 .
It turns out that

∂ (k1, k2, · · · , k2ω)

∂ (k, φ, θ1, · · · , θ2ω−2)
= k 2ω−1(sin θ1)2ω−2(sin θ2)2ω−3 · · · (sin θ2ω−2)

Hence we immediately obtain

I =
µ4−2ω

(2π)2ω

∫ ∞
0

dk k 2ω−1

(k2 + ∆)2

× (2π)
2ω−2∏
=1

∫ π

0

dθ (sin θ)
2ω−−1

Now we have∫ π

0

dθ (sin θ )
2ω−j−1 = 2

∫ 1

0

dt (1− t2
 )ω−1−/2

=

∫ 1

0

dy y−1/2 (1− y)ω−1−/2 = B(1/2, ω − /2) =
Γ(ω − j/2)

√
π

Γ(ω − j/2 + 1/2)

where

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
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is the Euler Beta function, so that

(2π )
2ω−2∏
=1

∫ π

0

dθ (sin θ)
2ω−−1

=
2πω Γ(1)Γ(3/2)Γ(2) · · ·Γ(ω − 1/2)

Γ(3/2)Γ(2) · · ·Γ(ω − 1/2)Γ(ω)
=

2π ω

Γ(ω )
(4.20)

and thereby

I =
2π ωµ4−2ω

Γ(ω )(2π)2ω

∫ ∞
0

k dk
(k 2 )ω−1

(k2 + ∆)2

=
µ4−2ω

(4π)ωΓ(ω )

∫ ∞
0

dq q ω−1

(q + ∆)2

=
µ4−2ω

(4π)ωΓ(ω )

(
− d

d∆

)∫ ∞
0

dq q ω−1

q + ∆

=
µ4−2ω

(4π)ωΓ(ω )

(
− d

d∆

)∫ ∞
0

dq q ω−1

∫ ∞
0

dt exp{− tq − t∆}

=
µ4−2ω

(4π)ωΓ(ω )

(
− d

d∆

)∫ ∞
0

dt e− t∆
∫ ∞

0

dq q ω−1 e−tq

=
µ4−2ω

(4π)ω

∫ ∞
0

dt t1−ω e− t∆ =
Γ(2− ω )

(4π)ω

(
µ2

∆

)2−ω

(4.21)

which is legitimate in the strip <eω < 2 of the complex ω−plane. Expanding
around 2− ω ≡ ε , 0 < ε < 1 , we find

Γ(−n + ε) =
(−1)n

n !

{
1

ε
+ ψ(n+ 1)

+
ε

2

[
π 2

3
+ ψ 2(n+ 1)− ψ ′(n+ 1)

]}
+ O

(
ε2
)

n = 0, 1, 2, . . . (4.22)

where

ψ(z) =
d

dz
ln Γ(z)

ψ (n+ 1) = 1 +
1

2
+

1

3
+ · · · +

1

n
−C

ψ ′(n+ 1) =
π 2

6
+

n∑
=1

− 2
[
ψ ′(1) = π 2/6

]
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Figure 4.4: the Sweet Candy 1-loop diagram

C being the Euler−Mascheroni constant

ψ(1) = −C = − 0.5772 . . .

Hence we finally come to the expansion

I =
1

16π 2

(
1

ε
− C + · · ·

)(
1 + ε ln

4πµ2

∆
+ · · ·

)
=

1

16π 2

(
1

ε
− C + ln

4πµ2

∆

)
+O(ε) (4.23)

which shows that the divergence can be segregated as a simple pole in the so
named ε−expansion.

4.1.4 λφ4
4 Elastic Scattering Amplitude

Consider now the so called Sweet Candy diagram which corresponds to any of
the three diagrams contributing to the 4−point connected Green’s functions
in momentum space

J12 (k) ≡ 1

2i
(− iλ)2

∫
d`

(2π)4

i

`2 −m2 + iε
· i

(`− k )2 −m2 + iε
(4.24)

where k = k1 + k2 and after setting for the sake of brevity∫
`

def
= µ2ε

∫
d 2ω`

(2π)2ω
[ ε = 2− ω ]
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we come to the dimensional regularized Feynman integral

Js (k) =
λ2

2i

∫
`

1

(`2 −m2 + iε)[ (`− k )2 −m2 + iε ]
(4.25)

the index s standing for the Mandelstam variable s = (k1 + k2)2 . Using
Feynman parametric formula we get

Js (k) =
λ2

2i

∫ 1

0

dx

∫
`

1

[`2 −m2 − 2` · k (1− x) + k 2 (1− x) + iε ]2

and after a shift of the integration variable

` ′ = `− (1− x) k

we end up with

Js (k) =
λ2

2i

∫ 1

0

dx

∫
`

1

[`2 −m2 + x(1− x)k 2 + iε ]2
(4.26)

The denominator in the integrating function can be rewritten as[
`2 − k 2

(
x2 − x+

m2

k 2

)
+ iε

]2

≡
[
`2 − k 2R(x, a) + iε

]2
where a ≡ m2/k 2 and 0 ≤ x ≤ 1 . Since we have

dR

dx
= 2x− 1

d2R

dx2
= 2 R(0, a) = R(1, a) = a

we find that the 1-parameter family of parabolas y = R(x, a) exhibits the
vertexes at x = 1

2
with

R(1
2
, a) = a− 1

4
≡ ∆

4

{
≥ 0 for 0 < k 2 ≤ 4m2

≤ 0 for k 2 < 0 ∨ k 2 ≥ 4m2

in such a manner that we eventually find

k 2R(x, a) > 0 for 0 ≤ x ≤ 1 ∨ k 2 < 4m2

i.e. below the threshold for two real scalar particles production, so that the
integrand (4.26) has two double poles at

`0 =


√
`2 + k 2R(x, a)− i0+

−
√
`2 + k 2R(x, a) + i0+

183



Now we can safely perform the Wick rotation for k 2 < 4m2 with `0 = i`4

and get

Js (k) =
λ2

2

∫ 1

0

dx

∫
`E

1

[`2
E +m2 + x(1− x)k 2

E ]2

with k0 = ik4 and k 2
E = k2 + k 2

4 > 0 . Taking the Mellin transform

Js (k) =
λ2

2

∫ 1

0

dx

∫ ∞
0

t dt exp{− t [m2 + x(1− x)k 2
E ]}

∫
`E

exp{− t`2
E}

=
λ2

2

∫ 1

0

dx

∫ ∞
0

t1−ω dt exp{− t [m2 + x(1− x)k 2
E ]} µ2ε

(4π)ω

=
λ2

32π 2
Γ(ε)

∫ 1

0

dx

[
4πµ2

m2 + x(1− x)k 2
E

]ε
=

λ2

32π 2

{
1

ε
−C +

∫ 1

0

dx ln
4πµ2

m2 − x(1− x)k 2

}
+ irrelevant

=̇
λ2

32π 2

{
1

ε
+ ψ(2)− ln

m2

4πµ2
−
∫ 1

0

dx

(
1 + ln

k 2R

m2

)}
Notice that in the very last integral the argument of the logarithm is such
that

k 2R(x, a)

m2


> 0 for k 2 < 4m2 ∨ 0 ≤ x ≤ 1
= 0 for {x± = 1

2
± 1

2

√
−∆ |∆ < 0} ∨ {k2 = 0}

< 0 for x− < x < x+ ∨ k 2 > 4m2

Now, for example, when 0 < k2 < 4m2 and ∆ > 0 we obtain

Js (k) =̇
λ2

32π 2

{
1

ε
−C + ln

4πµ2

m2
+

∫ 1

0

dx

R
(2x2 − x)

}
=

λ2

32π 2

{
1

ε
−C + ln

4πµ2

m2
+ 2

(
1−
√

∆ arcctg
√

∆
)}

=
λ2

32π 2

{
1

ε
+ ψ(2)− ln

m2

4πµ2

+ 1− 2

(
4m2

k2
− 1

) 1
2

arcctg

√
4m2

k2
− 1

}
(4.27)

We have to remember that in the evaluation of the 4−point connected Green’s
function for the self-interacting real scalar field theory, there will be three
such contributions with

k12 = k1 + k2 k23 = k2 + k3 k31 = k3 + k1
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corresponding to the s , u and t channels respectively, owing to

s = (k1 + k2)2 t = (k2 + k3)2 u = (k1 + k3)2

all four momenta being incoming.

Unitarity Relation and the Optical Theorem.
From the definition (3.57) we can translate the requirement of unitarity for the scattering
operator into the suggestive relations

S S † = S †S = I = ( I + i T )
(
I− i T †

)
that yields the so called unitarity relation for the transition or reaction matrix

− i (T − T † ) = T T † (4.28)

which must be satisfied order by order in perturbation theory. Hence, going back to the
LSZ reduction formulas (3.18) for e.g. the elastic scattering of two neutral scalar particles
we obtain

〈 k3 k4 |S | k1 k2 〉 = (2π)4 δ( k1 + k2 + k3 + k4 )

× 1
2

4∏
= 1

lim
k 2
 →m 2

(
,m 2 − k 2



)
× G̃ (4)

c (k1, k2 ; − k3,− k4)

that yields for e.g. the s−channel with (k1 + k2)2 = s = (k3 + k4)2

〈 k3 k4 |T | k1 k2 〉 = (2π)4 δ ( k1 + k2 + k3 + k4 )M(k1k2 → k3k4)

iM(s) ≡ 1
2

4∏
= 1

lim
k 2
 →m 2

(
m 2 − k 2



)
× G̃ (4)

c (k1, k2 ; − k3,− k4)

= − 1
2 i {λ− J(s)}+O(λ3)

where, using dimensional regularization, we understand

J(s) =
λ2

32π2

{
1

ε
−C + ln

4πµ2

m 2
−
∫ 1

0

dx ln
sR

m 2

}
+O(ε)

To the lowest order we obviously have M(s) = − 1
2λ so that the unitarity relation (4.28)

is trivially satisfied. Turning to the second order in λ on the one hand we can write

(− i)〈 k3 k4 |T − T † | k1 k2 〉 =
i

2
(2π)4 δ( k1 + k2 + k3 + k4 ) [J(s+ i0)− J∗(s− i0) ]

J(s+ i0)− J∗(s− i0) = 2i=m Js(k) =
λ2

16π2
(− iπ)(x+ − x−)

= (− i) λ2

16π

√
1− 4m 2

s

where x± are the solutions of sR(x, a) = 0 with s 6= 0 , so that

(− i)〈 k3 k4 |T − T † | k1 k2 〉 =
λ2

32π

√
1− 4m 2

s
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On the other hand, taking equations (3.97) and (3.102) properly into account, we readily
find up to the same approximation

〈 k3 k4 |T T † | k1 k2 〉 = (2π)4 δ( k1 + k2 + k3 + k4 )

×
∫
Dp

∫
Dp ′ 〈 k3 k4 |T | p p ′ 〉 〈 p ′ p |T † | k1 k2 〉

= (2π)4 δ ( k1 + k2 + k3 + k4 )

×
∫
Dp

∫
Dp ′ (2π)4 δ(k1 + k2 + p+ p ′ ) | M(k1k2 → pp ′ ) |2

where ∫
Dp

∫
Dp ′ 〈 k3 k4 |T | p p ′ 〉 〈 p ′ p |T † | k1 k2 〉

=
(
− 1

2 λ
)2 ∫

Dp

∫
Dp ′ (2π)4 δ(k3 + k4 + p+ p ′ )

= 1
4 λ

2 F (s,m2)
∫

dΩ/32π2s

=
λ2

32π

√
1− 4m 2

s

which vindicates the unitarity relation O(λ2) as expected.
For the important special case of the forward scattering, in which k1 +k3 = 0 = k2 +k4 ,

we obtain a simpler formula. Taking the supplementary kinematical flux factor (3.99) into
account, with k = k1 = −k3 , we can write the relationships

I fw = |k |
√
s = 2 |k |ECM = 1

2F (s,m)(
dσ

dΩ

)
fw

=
| M(s) |2

64π2s
≈ λ2

4
· 1

64π2s
+O(λ4)

so that we come to the standard form of the so called Optical Theorem

=mM(k1k2 → k1k2) = F (s,m)σ( k1k2 → anything )

This important equality connects the forward scattering amplitude with the total cross
section for production of all the final states. Since the imaginary part of the forward
scattering amplitude describes the absorption of the forward going wave as the beam
crosses the target, it is intuitive that this quantity has to be proportional to the probability
of the diffusion. This is nothing but the requirement of conservation of the probability
i.e. the unitarity of the scattering operator. Finally, it is worthwhile to notice that to the
lowest order in perturbation theory and in the non-relativistic limit, taking eq.s (3.51) and
(3.52) suitably into account, we can write the non-relativistic potential the corresponds to
the λφ4

4 interaction: namely,

f(θ) = Tk =
}

8πmc
M(k1k3 → k2k4) ' }

8πmc

(
− 1

2 λ
)

Ṽ (k3 − k1) = − 2π} 2

m
·
(
− 1

2 λ
)
· }

8πmc
⇐⇒ V (r) =

λ} 3

8m2c
δ(r)

that represents the so called repulsive contact interaction.
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Figure 4.5: the 1-loop vacuum polarization diagram in QED

4.2 Vacuum Polarization

The calculation of the 1-loop diagram called vacuum polarization or photon
self-energy is truly very instructive, since it allows to appreciate one of the
most surprising consequences and predictions of perturbative quantum field
theory: namely, the charge screening effect, just provided by the emission
and absorption of virtual particle-antiparticle pairs, leading to a modification
of the classical Coulomb interaction between point-like charges in the non-
relativistic limit. It turns out that charge screening by radiative corrections
is an observable effect that leads to the spectacular energy levels hyper-fine
splitting of hydrogen-like atoms. On the other side, in the high energy-
momentum limit, the vacuum polarization effect drives to the effective fine
structure coupling, which appears to increase with energy in a way which is
experimentally verified in the High Energy Particle Physics.

4.2.1 The Self-Energy Tensor in QED

Consider the photon self-energy diagram in quantum electrodynamics that
gives rise to the vacuum polarization tensor which is defined to be

iregΠ ρσ(k,M, µ) = (−1)(ie)2

∫
p

tr γ ρSF (p,M)γ σSF (p+ k,M)

where ∫
p

def
= µ 2ε

∫
d 2ωp

(2π)2ω
[ ε = 2− ω ]

Taking the traces

tr γ µ γ ν = g µν tr I = 2ω g µν

tr γκγλγµγν = 2ω
(
g κλ g µν − g κµ g λν + g κν g λµ

)
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we readily come to the expression

regΠµν(k,M, µ) = 2ω ie2

∫
p

2pµp ν + pµk ν + p νk µ

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

− 2ω ie2

∫
p

g µν [ p · (p+ k)−M2 ]

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

To calculate the integrals it is convenient to employ the Feynman parameter
in such a manner that we can write∫

p

2pµp ν + pµk ν + p νk µ + (M 2 − p 2 − p · k) g µν

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

=

∫ 1

0

dx

∫
p

2pµp ν + pµk ν + p νk µ + g µν [M 2 − p · (p+ k) ]

[ p2 −M2 + iε+ 2p · k (1− x) + k2 (1− x) ]2

A translation of the integration variable `µ = pµ + x k µ yields∫ 1

0

dx

∫
`

2`µ` ν − g µν` 2 − 2x(1− x)k µk ν + g µν [M 2 + x(1− x)k 2 ]

[ ` 2 −M 2 + x(1− x)k 2 + iε ]2

up to terms linear in ` which are irrelevant for we evidently get∫
`

`µ [ ` 2 − k 2R(x , a) + iε ]z ≡ 0 ( ∀ z ∈ C )

owing to symmetric integration, where R(x , a) ≡ x2 − x + a , a = M2/k2 .
Moreover, the obvious replacement holds true, owing again to symmetric
integration: namely, ∫

p

pµp ν f(p 2) =

∫
p

g µν
p 2

2ω
f(p 2)

Then we can write

regΠµν = 2ω ie2
{
g µν [ J2 + J1 ]− k µk ν J0

}
where

J2(k,M, µ) =

(
1

ω
− 1

)∫ 1

0

dx

∫
`

` 2

[ ` 2 − k 2R(x , a) + iε ]2

J0(k,M, µ) =

∫ 1

0

dx

∫
`

2x(1− x)

[ ` 2 − k 2R(x , a) + iε ]2

J1(k,M, µ) =

∫ 1

0

dx

∫
`

M 2 + x(1− x)k 2

[ ` 2 − k 2R(x , a) + iε ]2

188



Figure 4.6: the oriented contour γ+

As we have already seen in the previous paragraph, for k 2 < 4M 2 we can
evaluate the above integrals by performing the Wick rotation and referring to
the oriented contour γ+ in the complex energy plane. Since the contributions
of the two large arcs do vanish when R → ∞, for `0 = i `4 , k0 = ik4 , after
setting `Eµ = (`1, `2, . . . , `2ω−1, `4) and kEµ = (k1, k2, k3, k4) we get

J2(k,M, µ) = − i
(

1

ω
− 1

)∫ 1

0

dx

∫ ∞
0

dt t e−t[M
2+x(1−x)k 2

E ]

∫
`E

` 2
E e
−t` 2E

= − i (4π)−ω (1− ω)µ 4−2ω

∫ 1

0

dx

∫ ∞
0

dt t−ω e−t[M
2+x(1−x)k 2

E ]

=
− i

16π 2

(
4πµ 2

)ε
Γ(ε)

∫ 1

0

dx [M 2 + x(1− x)k 2
E ] 1−ε

=
− i

16π 2
Γ(ε)

∫ 1

0

dx [M 2 − x(1− x)k 2 ]

(
4πµ 2

k 2R

)ε
J1(k,M, µ) =

i

16π2
Γ(ε)

∫ 1

0

dx [M 2 + x(1− x)k 2 ]

(
4πµ2

Rk2

)ε
J0(k,M, µ) =

i

16π2
Γ(ε)

∫ 1

0

dx 2x(1− x)

(
4πµ2

Rk2

)ε
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Then we definitely obtain

regΠµν(k,M, µ) =
(
k 2 g µν − k µk ν

)
regΠ(k 2,M 2) (4.29)

in which the invariant vacuum polarization or photon self-energy function in
D = 2ω space-time dimensions is provided by the parametric integral

regΠ(k 2,M 2) =

(−2)
α

π
Γ(ε)

∫ 1

0

dx x(1− x)

[
2πµ2

M2 − x(1− x)k2

]ε
(4.30)

It is very important to gather the fact that dimensional regularization
provides an expression for the photon self-energy tensor which satisfies the
Ward identity (see in the sequel)

kµ regΠµν(k,M, µ) = 0

which is nothing but the expression of gauge invariance in QED.
The Laurent expansion of the nvariant vacuum polarization function

around ω = 2 yields

regΠ(k 2,M 2) = (−2)
α

π

∫ 1

0

dx x(1− x)

×
{

1

ε
−C− ln

[
M2 − x(1− x)k2

2πµ2

]
+ O(ε)

}
=̇
−α
3π

{
1

ε
−C + ln

2πµ2

M2

}
+ Π̂(k 2,M 2) (4.31)

where the finite part of the invariant vacuum polarization function reads

Π̂(k 2,M 2) ≡ Π(k 2,M 2)− Π(0,M 2)

=
− 2α

π

∫ 1

0

dx x(1− x) ln
M 2

Rk 2
(4.32)

Consistency check. From ref. [14] eq. 2.172 p. 81, eq. 2.1741. p. 82 with

a =
M2

k2
> 0 b = − 1 c = 1 ∆ =

4M2

k2
− 1 > 0

for 0 < k2 < 4M2 we get

Π̂(k 2,M 2) =
α

3π

∫ 1

0

dx

R

(
4x 4 − 8x 3 + 3x 2

)
= − 2α

π
Ī2

=
−α
3π

{
5

3
+

4M2

k2
−
[
M2

k2

(
1 +

4M2

k2

)
− 1

2

] ∫ 1

0

dx

R

}
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=
α

3π

{
1

3
+ 2

(
1 +

2M2

k2

) [(
4M2

k2
− 1

)1/2

× arcctg

(
4M2

k2
− 1

)1/2

− 1

]}
(4.33)

in agreement with [16] § 7-1-1 eq. (7-9) p. 323. Notice that in the neighborhood of
the photon mass shell k 2 = 0 , that means in the vicinity of the light-cone, we have the
behavior

−α
3π

∫ 1

0

dx

R

(
4x4 − 8x3 + 3x2

)
∼ αk 2

15πM2
(k 2 → 0)

�

Now, in order to unravel the analytic structure of the invariant polarization
function it is convenient to come back to the integral representation

Π̂(k 2,M 2 ) =
2α

π

∫ 1

0

dx x(1− x) ln
k 2R

M 2

After setting k 2 = <e s , it appears that the integrating function is real and
analytic in s ∈ C for k 2 < 4M 2 ∨ 0 ≤ x ≤ 1 , while it exhibits a branch point
when the argument of the logarithm does vanish, which drives to a cut in the
complex s−plane when the argument of the logarithm is negative: namely,

R(x, a) = x 2 − x+
M 2

k 2
≤ 0

m

<e s = k 2 ≥ 4M 2 ∨ 1

2
− β

2
≤ x ≤ 1

2
+
β

2

β ≡
√

1− 4M2

k2
[ 0 ≤ β < 1 ]

As a consequence, the imaginary part of the the polarization function can be
readily obtained above/below the cut by

ln

(
x 2 − x+

M 2

k 2 ± i0

)
= ln(−R)∓ iπ (R < 0 )

which yields

=m Π̂(k 2 ± i0,M 2) = ∓ 2α

∫ (1+β)/2

(1−β)/2

dx x(1− x)

= ∓ α

3

(
1 +

2M2

k 2

)√
1− 4M2

k2
(4.34)
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in accordance 2 with [22] § 7.5 eq. (7.92) p. 253 and [16] § 7-1-1 eq. (7-11)
p. 323. It turns out that the discontinuity across the cut

regΠ(k 2 + i0,M 2)− regΠ(k 2 − i0,M 2) = 2i=m Π̂(k 2 + i0,M 2)

does not depend upon regularization, i.e. it is finite. Furthermore, it is not
by an accident albeit just because of the unitarity relation (4.28) that the
discontinuity across the cut has exactly the same energy dependence, up to
the substitution k2 ↔ E 2

CM = 4E 2 , of the cross-section (3.120) for the
production of a fermion anti-fermion pair, the parameter β being precisely
the fermion velocity in the center of momentum frame.

Exercise: it is quite interesting to calculate the one loop photon self-energy in QED using
the UV cut-off regularisation. To this concern one has to suitably introduce a very large
cut-off for the photon wave number, of the order e.g. of the inverse of the Planck length
K = l−1

P , where cMP = }l−1
P ' 1019 GeV/c. The starting point is again

regΠ ρσ(k,M, µ) = i (ie)2

∫
p

tr γ ρSF (p,M)γ σSF (p+ k,M)

where pµ = (E, ~p ) with ∫
p

≡ i
∫ ∞
−∞

dE

2πi

∫
d~p

(2π)3
θ(K2 − ~p 2)

so that manifest Lorentz covariance is evidently lost in the intermediate steps of the
calculations. By taking trace over gamma matrices we get

regΠµν(k,M ;K) = 4ie2

∫
p

2pµp ν + pµk ν + p νk µ

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

− 4ie2

∫
p

g µν [ p · (p+ k)−M2 ]

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

To calculate the integrals it is convenient to set

regΠµν(k,M ;K) = A(k,M ;K) k 2g µν +B(k,M ;K) k µk ν

where the Lorentz invariant and dimensionless form factors A and B can be obtained by
the Lorentz contractions

kµ kν ( k2)−2 regΠµν(k,M ;K) = A(k,M ;K) +B(k,M ;K)

=
4ie2

(k2)2

∫
p

2p · k (k2 + p · k)− k2 p · k − k2( p 2 −M2)

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

=
4ie2

(k2)2

∫
p

p · k (k2 + 2p · k)

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

− 4ie2

k2

∫
p

1

( p+ k )2 −M2 + iε

2Notice however that the two textbooks use opposite signs, i.e. ω̄(k2,m,Λ) = −Π2(q2) .
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=
4ie2

(k2)2

∫
p

p · k [ (k + p)2 − p 2 ]

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

− 4ie2

k2

∫
p

1

( p+ k )2 −M2 + iε

=
4ie2

(k2)2

∫
p

[
p · k

p2 −M2 + iε
− (k + p) · k

( p+ k )2 −M2 + iε

]
Now, it turns out that the first addendum in the above expression vanishes owing to

symmetric integration, viz., ∫ ∞
−∞

E dE

E2 − ~p 2 −M2 + iε
= 0∫

d~p θ(M2
P − ~p 2)

~p

E2 − ~p 2 −M2 + iε
= 0

Moreover, if we translate the integration variable in the second addendum of the above
expression according to ~p = ~q − ~k ,E = E − k0 then we obtain∫

d~q θ(K2 − ~q 2 − ~k 2 + 2~q · ~k )

∫ ∞
−∞

dE E k0 − ~q · ~k
E 2 − ~q 2 −M2 + iε

= −~k ·
∫
~q d~q θ(K2 − ~q 2 − ~k 2 + 2~q · ~k )

∫ ∞
−∞

dE
E 2 − ~q 2 −M2 + iε

≡ 0

the latter identity being evidently true, either because the Heaviside distribution vanishes
or by symmetric integration when the step function equals one.

As a consequence A + B = 0 , which means that gauge invariance of the vacuum
polarization tensor holds true even in 1-loop QED with UV cut-off regularisation, viz.,

regΠµν(k,M ;K) = A(k,M ;K)( k 2g µν − k µk ν )

so that we can definitely write

A(k,M ;K) = gµν( 3k2)−1 regΠµν(k,M ;K)

=
4ie2

3k2

∫
p

4M2 − 2p · k − 2p 2

( p2 −M2 + iε ) [ ( p+ k )2 −M2 + iε ]

From the customary Feynman parametrisation formula we obtain

A(k,M ;K) =
4ie2

3k2

∫ 1

0

dx

∫
p

4M2 − 2p · k − 2p 2

[ ( p+ xk )2 + x(1− x)k2 −M2 + iε ]
2

in such a manner that, after setting p = q − xk with q = (E, ~q ) and disregarding terms
which vanish owing to symmetric integration, we readily get

4M2 − 2p · k − 2p 2 = 4M2 − 2k · (q − xk)− 2(q 2 − 2xk · q + x2k2)

w 4M2 + 2x(1− x)k2 − 2q 2

so that

A(k,M ;K) = − 8e2

3k2

∫ 1

0

dx

∫
d~q

(2π)3
θ(K2 − ~q 2 − x2~k 2 + 2x~q · ~k )
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×
∫ ∞
−∞

dE

2πi

M2 + 2x(1− x)k2 − [E 2 − ~q 2 − k2R(x, a) ]

[E 2 − ~q 2 + x(1− x)k2 −M2 + iε ]2

$
8e2

3k2

∫ 1

0

dx

∫
d~q

(2π)3
θ(4K2 − ~q 2)

{
I1 − [M2 + 2x(1− x)k2 ]I2

}
where R(x, a) ≡ x2 − x+ a ( a = M2/k2 ) , whereas

I1 ≡ 1

2πi

∫ ∞
−∞

dE

E 2 − ~q 2 − k2R(x, a) + iε
I2 =

1

2M
· ∂I1
∂M

while, in order to find a general UV upper bound which could be homogeneous for all
0 ≤ x ≤ 1 and for any photon wave number within the UV cut-off |~k | ≤ K , we can always
conservatively and safely set | ~q | ≤ 2K . From the basic elementary Cauchy integral

1

2πi

∫ ∞
−∞

dx

x2 − η2 + i0
= − 1

2η
( η > 0 )

Hence, for k2 < 0 we find

I1 = − 1
2

[
~q 2 − x(1− x)k2 +M2

]−1/2

I2 = 1
4

[
~q 2 − x(1− x)k2 +M2

]−3/2

and consequently

A(k,M ;K) =
− e2

3π2k2

∫ 1

0

dx

∫ 2K

0

dq q 2

×

{
M2 + 2x(1− x)k2

[ q 2 − x(1− x)k2 +M2 ]
3/2

+
2

[ q 2 − x(1− x)k2 +M2 ]
1/2

}

≡ − 4α

3π
[A3(k,M ;K) + 2A1(k,M ;K) ]

Consider u =
√
υ + y2 where υ = [M2−x(1−x)k2 ]/4K2 > 0, then from [14] eq.(2.2724.)

p. 86 we get the elementary result∫ 1

0

dy
y2

u3
=
[
− y

u
+ ln(y + u)

]1
0

=
−1√
υ + 1

+ ln
(
1 +
√
υ + 1

)
− ln

√
υ

For a very large cut-off K →∞ we obtain

A3(k,M ;K) =

∫ 1

0

dx [ a+ 2x(1− x) ]

×
{
−1 + 2 ln 2 +

1

2
ln

4K2

k2R(x, a)

}
+ evanescent

$

(
2 ln 2− 1 +

1

2
ln

4K2

M2

)(
a+

1

3

)
− 1

2

∫ 1

0

dx [ a+ 2x(1− x) ] ln
k2R

M2
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Moreover we have from eq. (2.2723.) of Ref. [14]

2

∫ 1

0

dy
y2

u
=

[ y
u
− υ ln(y + u)

]1
0

=
1√

1 + υ
− υ ln

(
1 +
√
υ + 1

)
+
υ

2
ln υ

= 1− υ

2
− υ ln 2 +

υ

2
ln υ +O(υ 2)

that yields

2A1(k,M ;K) =
4K2

k2

∫ 1

0

dx

{
1−

(
1

2
+ ln 2

)
M2 − x(1− x)k2

4K2

+
1

2
· M

2 − x(1− x)k2

4K2
ln
M2 − x(1− x)k2

4K2

}
+ evanescent

=
4K2

k2
− 1

2

∫ 1

0

dx

[
1 + ln 4 + ln

4K2

k2R(x, a)

]
R(x, a) + evanescent

$
4K2

k2
− 1

2

(
1 + 2 ln 2 + ln

4K2

M2

)(
a− 1

6

)
+

1

2

∫ 1

0

dx[ a− x(1− x) ] ln
k2R

M2

Summing up we eventually find out

regΠµν(k,M ;K)|UV = ( gµν k
2 − kµkν ) regΠ(k,M ;K)|UV

A(k,M ;K) ≡ − 4α

3π
[A3(k,M ;K) + 2A1(k,M ;K) ]

=
−α
3π

[
(4K)2

k2
+ ln

K2

M2
+ 4 ln 2

(
4

3
− M2

k2

)
− 1− 6M2

k2

]
+

2α

π

∫ 1

0

dxx(1− x) ln

[
1− x(1− x)

k2

M2

]
≡ regΠ(k,M ;K)|UV

It is interesting and instructive to make a comparison between the results of the
dimensional and UV cut-off regularisations. We have

regΠ(k,M ;µε)|DR =
−α
3π

{
1

ε
−C + ln

2πµ2

M2

}
+

2α

π

∫ 1

0

dxx(1− x) ln

[
1− x(1− x)

k2

M2

]
It turns out that

∅ DR UV
divergent part {−α/3πε} {(−α/3π)

[
(4K)2/k2 + 2 ln(K/M)

]
}

finite arbitrary {−C + ln 2πµ2/M2} {4 ln 2(4/3−M2/k2)− 1− 6M2/k2}

finite physical Π̂(k,M) Π̂(k,M)

Π̂(k,M) ≡ 2α

π

∫ 1

0

dxx(1− x) ln

[
1− x(1− x)

k2

M2

]
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the physical part being distinguished by the behavior limk2→0 Π̂(k,M) = 0 and by the
crucial feature that it develops an imaginary part for k2 > 4M2 , i.e. the threshold for the
producion of a fermion-antifermion pair.

Exercise: let us calculate the 1-loop neutral meson π0−self-energy of Yukawa theory with
dimensional regularization and compare the result with Pauli−Villars regularization of
eq. (4.19). Accordingly we start from the expression

regΣ(k ;µ, ω) ≡ iy 2 µ 4−2ω (2π)− 2ω

∫
d 2ωp tr [SF (p)SF (p+ k) ]

= − 2ωiy 2

∫
p

p2 +M2 + p · k
(p2 −M2 + iε)[ (p+ k)2 −M2 + iε ]

= − 2ωiy 2

∫
p

2M2 + p · k
(p2 −M2 + iε)[ (p+ k)2 −M2 + iε ]

− 2ωiy 2

∫
p

1

(p+ k)2 −M2 + iε

where the Clifford algebra is understood in 2ω space-time dimensions. By making use of
the list of integrals in the Appendix we readily get

regΣ(k ;µ, ω) = − 4iy 2
{
g µν Iµν(1, 1)− k µ Iµ(1, 1) +M2 I(1, 1)

}
=̇

3y2M2

4π2

(
1

ε
−C + I0 +

2

3

)
− y2k2

8π2

(
1

ε
−C + 6I2 +

2

3

)
=

3y2

4π2

(
M2 − 1

6 k
2
) (1

ε
−C + ln

4πµ2

M2
+

2

3

)
− 3y2

4π2
(Ī2 k

2 − Ī0M2)

=
3y2

4π2

(
M2 − 1

6 k
2
) (1

ε
−C + ln

4πµ2

M2

)
− 7y 2k 2

24π 2

+
3y 2M 2

2π 2
− y 2k 2

4π 2

(
4M2

k2
− 1

)3/2

arcctg

(
4M2

k2
− 1

)1/2

It is important to realize that the sign of the divergent part, as well as the whole non-
polynomial part, i.e. the very last term

− y 2k 2

4π 2

(
4M2

k2
− 1

)3/2

arcctg

(
4M2

k2
− 1

)1/2

exactly coincide with the corresponding quantities (4.19) which has been obtained in the

Pauli−Villars regularization. In other words, it turns out that the arbitrariness in the

finite part of the above 1−loop regularized quantity does merely concern the polynomial

part in momentum space, that is the local part in configuration space. This feature will

represent, as we shall see further on, the key point of the renormalization procedure.

196



Figure 4.7: the 1-loop correction to the Coulomb potential

4.2.2 Vacuum Polarization Effects

Next let us examine how the finite part of the invariant polarization function
Π̂(k 2,M 2) does modify the electromagnetic interaction. Actually, it turns
out that in the non-relativistic limit it makes sense to compute the potential
V (r) , that will contain the modifications to the classical Coulomb potential
caused by the Heisenberg Uncertainty Principle and the Theory of Relativity:
the emission and absorption of virtual pairs, that is the vacuum polarization
effect. Let me recall that for two incoming and two outgoing distinguishable
particles of equal mass M but unlike charges −e and −Ze respectively, the
leading order contribution to the scattering amplitude is given by eq. (3.55)

ū r ′ (p
′ ) ( ieγ µ )u r (p)

− i gµν
(p− p ′ )2

ū s ′ (q
′ ) ( i Zeγ ν )u s (q )

Now, after inclusion of the lowest order radiative correction of Figure 4.7 we
readily get

ū r ′ (p
′ ) ( ieγ µ )u r (p) G̃(2)

µν (p− p ′) ū s ′ (q ′ ) ( i Zeγ ν )u s (q ) (4.35)

G̃(2)
µν (k) =

− i
k 2

[
gµν + regΠ(k 2,M 2)

(
gµν −

kµkν
k 2

)]
(4.36)

As already emphasized – see equation (3.56) – the very last term in the RHS
of the above equality does not contribute for k = p− p ′ , owing to the gauge
invariance and the Ward identities, so that we can safely write

G̃(2)
µν (k) =

gµν
ik 2

[ 1 + regΠ(k 2,M 2) ] ≈ − igµν
k 2 [ 1− regΠ(k 2,M 2) ]

. Thus, once again, in the non-relativistic limit we can write

k2 = (p− p ′ )2 ≈ −k2 ū r ′ (p
′ ) γ0 u r (p) ≈ 2M δ r r ′

where M is the particle mass in such a manner that we can write

− iZe2

|p− p ′ |2
2M δ r r ′ 2M δ s s ′ = 4πi Tp ,p ′ 2M δ r r ′ δ s s ′
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and consequently

Tp ,p ′ = f(θ) =
− 2MZα

|p− p ′ |2

which corresponds to the repulsive Coulomb potential

V (r) =
Ze2

4πr
= Z

α

r

so that(
dσ

dΩ

)
CM

= | f(θ) |2 =
Z 2α2

4M 2 v 4 sin4(θ/2)
(p = M v )

which is nothing but the celebrated Rutherford classical cross-section.
Now, to the aim of taking into account the radiative corrections in the

non-relativistic limit, I can write in analogy

V̂ (r) =
Ze2

(2π)3

∫
dk

e ik·r

k2 [ 1− regΠ(−k2,M 2) ]

' lim
µ→0

− iZe2

4π 2 r

∫ ∞
−∞

dk
k e ikr

k 2 + µ2

[
1 + regΠ(− k 2 ,M 2)

]
(4.37)

where I have introduced the small photon mass µ as an infrared regulator
for the Coulomb potential. To calculate this integral – see the exercise here
below – we consider the complex k−plane and a big half-circle in the upper
half-plane centered at the origin, with diameter on the real axis and very large
ray R → ∞ . Notice however the the upper half-plane has a cut starting from
=m k = 2M to infinity, for the invariant polarization function has a branch
point at − k 2 = (ik)2 = 4M 2 , as I have discussed before. Furthermore
there is a simple pole at k = iµ , leading to the Coulomb potential after
removal of the infrared regulator µ . Since the real part of the finite quantity
regΠ (− k 2 ,M 2) takes the same value on both sides of the cut, it follows
that the modifications to the Coulomb potential are solely due to
the imaginary part of the invariant polarization function, i.e. to its
discontinuity. Consequently, it is crucial to gather that the vacuum polarization
effect does not depend neither upon the divergent part of the photon self-energy
tensor, nor upon the regulator mass or length scale - e.g. µ in the dimensional
regularization - as it does for a true and real physical effect. Hence we readily
obtain from eq. (4.34)

δ V̂ (r) =
Ze2

2π 2 r

∫ ∞
2M

dk
e− k r

k
=m Π̂(k 2 − i0 ,M 2)

=
2Zα2

3πr

∫ ∞
2M

dk
e− k r

k

(
1 +

2M2

k2

)√
1− 4M2

k2
(4.38)
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and changing the integration variable according to k = 2M(1 + ξ) we find

δ V̂ (r) =
2Zα 2

3π r
e− 2Mr

∫ ∞
0

dξ e− 2Mr ξ f(ξ)

f(ξ) =
1

1 + ξ

[
1 +

1

2(1 + ξ)2

]√
1−

(
1

1 + ξ

)2

At large distances r � 1/M this integral is dominated by the region where
ξ ' 0 , so that we can safely approximate the the integrating function f(ξ)
with its leading value around ξ = 0 : namely,

f(ξ) ' 3
2

√
1− (1− ξ)2 ' 3

2

√
2ξ ( ξ ' 0 )

in such a manner that we can eventually write

δ V̂ (r) ≈ Zα 2

π r
e− 2Mr

∫ ∞
0

dξ e− 2Mr ξ
√

2ξ

=
Zα 2

2π r
e− 2Mr(Mr)−3/2 Γ(3

2
)

≈ Zα 2

4 r
√
π

(Mr)− 3/2 e− 2M r (Mr � 1 ) (4.39)

Thus we see that the range of the correction term is of the order of the
Compton wavelength ~/Mc of the particles. The radiative correction to the
Coulomb potential is named the Serber−Uehling potential

Robert Serber
Linear Modifications in the Maxwell Field Equations
Physical Review 48 (1935) 49 - 54 [ Issue 1 – July 1935 ]
Edwin A. Uehling
Polarization Effects in the Positron Theory
Physical Review 48 (1935) 55 - 63 [ Issue 1 – July 1935 ]

We can interpret the result as being due to charge screening effect. When the
two point-like charges, for instance two electrons, are at the distance of the
electron Compton wavelength λ e = ~/m e c = 3.861 592 678(26)× 10−13 m '
386 fm , then the continuous emission and absorption of virtual e−e+ pairs,
owing to the energy-time uncertainty principle, is such that the vacuum acts
as a dielectric medium, in which the apparent finite charge e is less than the
divergent bare charge e0 or, in other words,

αeff(r,M) ∼ α

1− α

4
√
π

(Mr)− 3/2 e− 2M r
r � ~

Mc
(4.40)
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Figure 4.8: the charge screening effect in QED
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At shorter and shorter distances we begin to penetrate the polarization cloud
and see the bare charge, which is bigger and bigger as far as we penetrate
closer and closer. This is known as the vacuum polarization effect, which can
be unraveled experimentally in the famous Lamb shift discovered by Lamb
and Retherford in 1947 in hydrogen

Willis E. Lamb, Jr. and Robert C. Retherford (1947)
Fine Structure of the Hydrogen Atom by a Microwave Method
The Physical Review 72, 241-243.

The radiative correction to the Coulomb potential breaks the degeneracy
between the 2S1/2 and 2P1/2 states of the relativistic hydrogen atom, as it is
described by the Dirac equation. The current experimental value is

∆E

h
= ∆νexp = 1, 057.845(9) MHz

to be compared with the theoretical value

∆νth = 1, 057.86 MHz

Actually the pair of very accurate experimental findings, i.e. the discovery
of the 2S1/2 and 2P1/2 level shift in hydrogen along with the anomaly in the
magnetic moment of the electron discovered by Foley and Kush in the very
same year, did enormously trigger the rapid development of the Quantum
Field Theory. Conversely, in the very small distances limit k2 = − k 2 �M 2

we can safely approximate

Π̂(k 2 , M 2 ) =
2α

π

∫ 1

0

dx x(1− x) ln

[
M2 − x(1− x)k2

M2

]
≈ 2α

π

∫ 1

0

dx x(1− x)

{
ln

(
− k 2

M 2

)
+ ln[ x(1− x) ]

}
=

α

3π

{
ln

(
− k 2

e 5/3M 2

)
+ O (M 2 /k 2 )

}
(4.41)

As a consequence the effective electric coupling in the limit of very short
distances becomes approximately

αeff (k,M) ≈ α

[
1 +

α

3π
ln

(
− k 2

e 5/3M 2

)]
≈ α

[
1− α

3π
ln

(
− k 2

e 5/3M 2

)]− 1

(4.42)
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Of course, the above approximate short−distance behavior of the effective
charge can be trusted as long as

α

3π
ln

(
− k 2

e 5/3M 2

)
< 1 (4.43)

and leads to a singularity for

|k | = Mc

~
exp

{
5

6
+

3π

2α

}
the famous Landau−Pomerančuk3 singularity, which corresponds to the huge
energy scale

~c |k | = me c
2 exp

{
5

6
+

3π

2α

}
≈ 10277 GeV

However, well before we reach such an enormously large scale, much higher
than the Planck scale ∼ 1019 GeV, the perturbative approximate equality
(4.42) has to be amended by higher order corrections which are no longer
negligible.

The combined vacuum polarization effects for e−e+ plus heavier charged
leptons and quarks makes the value of αeff(k) to increase by about 5% from
k = 0 to k = 30 GeV, as observed in high energy experiments, with αeff (0) ≡
α .More precisely from the Particle Data Group we find α−1

eff (mτ ) = 133.452±
0.016 while α−1

eff (MZ) = 127.923 ± 0.016 with mτ = 1776.84 ± 0.17 MeV
and MZ = 91.1876 ± 0.0021 GeV. The idea of a distance dependent, or
scale dependent or even running coupling parameter is the main result of the
renormalization group invariance of perturbative renormalizable quantum field
theories, as will be better focused in the sequel.

Exercise : calculate the contour integral leading to the Serber-Uehling radiative correction
δ V (r) to the classical Coulomb potential. To this purpose, consider the functions of the
complex variable z = x+ iy

f(z) =
z e izr

z 2 + µ2
g (z) r > 0

g(z) =

∫ 1

0

dx x(1− x) ln

[
− z 2

M 2

(
x2 − x− M 2

z2

)]

in such a manner that we have

δ V (r) = Z
2π

3r

(α
π

)2
∫ ∞
−∞

dx f(x)

3L.D. Landau and I. Ja. Pomeranchuk, Doklady Akad. Nauk USSR, 102 (1955) 489.
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Figure 4.9: the running coupling in QED

The complex function g(z) exhibits a branch point in the upper half-plane at y = 2M ,
leading to a cut along the positive imaginary axis from 2M to infinity. It turns out that
the real part <e g(z) is continuous across the cut, while the imaginary part =m g(z) has a
discontinuity across the cut which is given by

=m g(0+ + iy)−=m g(0− + iy) =

(
1 +

2M2

y2

)√
1− 4M2

y2
(y > 2M)

Consider now the oriented contour γ+ so that∮
γ+

f(z) dz = 2πi lim
ζ→ iµ

(ζ − iµ) f(ζ) (4.44)

The contributions from the two large arcs (z = Reiθ , η → 0+ ) yield

iR2

(∫ π/2−η

0

+

∫ π

η+π/2

)(
R2 + µ2e−2iθ

)−1
exp{ irR cos θ − rR sin θ}

×
{

1
6 ln

R2

M 2
+

∫ 1

0

dx x(1− x) ln

[
M 2

R2
− x(1− x) e2iθ

]}
dθ

R→∞−→ 0 (4.45)

which rapidly vanish when R → ∞ . Similarly, the contribution from the small circle
around the branch point ( z = 2iM + ρeiφ , η → 0+ ) does vanish, viz.,

iρ

∫ π/2−η

η+π/2

dφ eiφ f
(
2iM + ρ eiφ

) ρ→ 0−→ 0 (4.46)

For the contributions along the cut (z = ± η + iy , µ < 2M < y < R , η → 0+ ) we have∫ R

2M

dy
iy e− ry

µ2 − y2

[
g(iy + 0−) − g(iy + 0+)

]
(4.47)
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The oriented contour γ+ leading to the Serber-Uheling potential

It turns out that

<e
[
g(iy + 0−) − g(iy + 0+)

]
= 0 (y > 2M )

while

=m
[
g(0+ + iy)− g(0− + iy)

]
=

(
1 +

2M2

y2

)√
1− 4M2

y2
(y > 2M)

Putting altogether we eventually obtain

lim
R→∞

lim
ρ→ 0

∮
γ+

f(z) dz =

∫ ∞
−∞

dx f(x)

+

∫ ∞
2M

dy
y e− ry

µ2 − y2

(
1 +

2M2

y2

)√
1− 4M2

y2

= πi e−µr
∫ 1

0

dx x(1− x) ln

[
µ2

M 2

(
x2 − x+

M 2

µ2

)]
in such a manner that in the limit µ → 0 we finally get Serber−Uehling correction to the
classical Coulomb repulsive potential

δ V (r) = Z
2π

3r

(α
π

)2

lim
µ→ 0

∫ ∞
−∞

dx f(x)

= Z
2π

3r

(α
π

)2
∫ ∞

2M

dy

y
e− ry

(
1 +

2M2

y2

)√
1− 4M2

y2
(4.48)

in accordance with eq. (4.38).

204



Chapter 5

Complements

In this Appendix I want to list some very useful technical tools, such as the
values of many fundamental physical constants involved in Quantum Physics,
the main formulæ of dimensional regularization, as well as the values of the
1-loop tensor integrals leading to the radiative corrections of basic physical
quantities.

5.1 Physical Constants

Precisely known physical constants [1]

Speed of light in vacuum c = 299 792 458 m s−1

Planck constant, reduced ~ = h/2π = 1.054 571 68(18)× 10−34 J s
= 6.582 119 15(56)× 10−22 MeV s

electron charge magnitude e = 4.803 204 41(41)× 10−10 esu
fine-structure constant α = e2/4π~c = 7.297 352 568(24)× 10−3

Fermi coupling constant GF/(~c)3 = 1.166 37(1)× 10−5 GeV−2

electron mass m e = 0.510 998 918(44) MeV/c2

proton mass m p = 938.272 029(80) MeV/c2

Bohr radius (~/αm e c) a∞ = 0.529 177 2108(18)× 10−10 m
e− Compton wavelength λ e = ~/m ec = 3.861 592 678(26)× 10−13 m
classical electron radius re = αλ e = 2.817 940 325(28)× 10−13 cm
Thomson cross section σT = 8

3
πr2

e = 0.665 245 873(13) barn
1 unit of R ≡ 4

3
π(α~c/

√
s )2 = 86.8 nb

√
s = ECM = 1 GeV

205



Conversion factors :

~c = 197.326 968(17) MeV fm
(~c) 1 cm−1 ' 2× 10−14 GeV
(~c) 1 GeV−1 = 0.1973 fm 1 fm ' (~c) 5 GeV−1

(~c)2 1 GeV−2 = 0.3894 mb
1 barn = 10−28 m2

(~c) 1 eV m−1 = 1.973× 10−25 GeV 2

(e~c) 1 Tesla = (e~c) 10 4 Gauss = 5.916× 10−25 GeV 2

Electromagnetic Units :

1 statvolt = 299.8 V
1 Gauß = 1 statvolt/cm = 299.8 V/cm = 29.98 KV/m
1 Tesla = 104 Gauß = 299.8 MV/m
Emax = 24 KV/cm = 2.4 MV/m is the typical laboratory field beyond
which the Ohm law is no longer valid for metals (' 100 Gauß )
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5.2 Dimensional Regularization

Here we list some useful identities concerning dimensional regularization. Let
me first recall the the completely antisymmetric Levi Civita symbol in the
four dimensional Minkowski space-time is normalized according to

ε 0123 = − ε 0123 ≡ 1 (5.1)

in such a way that the following identity holds true in the four dimensional
Minkowski space: namely,

εµναβε λρσµ = gνρgαλgβσ + gαρgβλgνσ + gβρgνλgασ

− gνλgαρgβσ − gαλgβρgνσ − gβλgνρgασ (5.2)

Concerning dimensional regularization, we collect here below the definitions
and key properties [30] for the 2ω × 2ω γ−matrices in a 2ω−dimensional
space-time with a Minkowski signature

γ µ =

{
γ̄ µ µ = 0, 1, 2, 3
γ̂ µ µ = 4, . . . , 2ω − 4

(5.3)

{γ̄ µ, γ̄ν} = 2ḡ µν I {γ̂ µ, γ̂ν} = 2ĝ µν I {γ̄ µ, γ̂ν} = 0 (5.4)

‖ ḡ ‖ = diag (+,−,−,−) ‖ ĝ ‖ = − Î (5.5)

γ5 ≡ iγ̄0γ̄1γ̄2γ̄3 γ2
5 = I {γ̄ µ, γ5} = 0 = [ γ̂ µ, γ5 ] (5.6)

where I denotes the identity 2ω × 2ω square matrix, whereas Î denotes the
identity matrix in the 2ω − 4 dimensional Euclidean space. Taking all the
above listed equations into account, it is not difficult to check the following
trace formulæ :

tr (γµγν) = gµν tr I = 2ω g µν (5.7)

2−ωtr
(
γκγλγµγν

)
= gκλ gµν − gκµ gλν + gκν gλµ (5.8)

2−ωtr
(
γκγλγµγνγργσ

)
= gκλ gµσ gνρ − gκλ gµρ gνσ − gκµ gλσ gνρ

+ gκµ gλρ gνσ + gκν gλσ gµρ − gκν gλρ gµσ

+ gλµ gκσ gνρ − gλµ gκρ gνσ − gλν gκσ gµρ

+ gλν gκρ gµσ − gµν gκρ gλσ + gµν gκσ gλρ

+ gκν gλµ gρσ − gκµ gλν gρσ + gκλ gµν gρσ

tr
(
γ̄κγ̄λγ̂µγ̂ν

)
= 2ω ḡκλ ĝµν

tr
(
γ5γ̄

µγ̄λγ̄ργ̄ν
)

= − i 2ωεµλρν

tr
(
γ5γ̄

µγ̄λγ̄ργ̄ν γ̄σγ̄τ
)

= i 2ω
(
ε νστµ ḡλρ + ε νστρ ḡλµ + εµλρσ ḡντ

)
− i 2ω

(
ε νστλ ḡµρ + εµλρν ḡστ + εµλρτ ḡνσ

)
(5.9)
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Traces involving an odd number of Dirac matrices do vanish.
Remark : in d = 2n , n ∈ N , the standard representation of the Dirac
matrices has dimension 2n , whereas in the dimensional regularization the
Dirac matrices are infinite dimensional. Nevertheless, if we set tr1 ≡ f(ω) ,
it is not necessary to choose f(ω) = 2ω . It is usually convenient to set
f(ω) = f(2) = 4 , ∀ω ∈ C [ see J. Collins, Renormalization, Cambridge
University Press (1984) p. 84 ]. We can definitely agree on that.
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5.3 Glossary: 1-Loop Integrals

General Feynman parametric formula

D− a11 D− a22 · · · D− akk =
Γ(a1 + a2 + · · · + ak)

Γ(a1)Γ(a2) · · · Γ(ak)∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dxk δ(1− x1 − x2 − · · · − xk)

xa1−1
1 · · ·xak−1

k (x1D1 + x2D2 + · · · + xkDk )− a1−a2− ···−ak (5.10)

Definitions :

R(x, a) = x2 − x+
m2

k2
= x2 − x+ a ∆ = −1 +

4m2

k2∫
p

= µ4−2ω

∫
d2ωp

(2π)2ω

I (r , s) =

∫
p

(p2 −m2 + iε)− r [ (p− k )2 −m2 + iε ]− s

I µ (r , s) =

∫
p

pµ

(p2 −m2 + iε) r [ (p− k )2 −m2 + iε ] s

I µν (r , s) =

∫
p

pµ p ν

(p2 −m2 + iε) r [ (p− k )2 −m2 + iε ] s

I µν ρ (r , s) =

∫
p

pµ p ν p ρ

(p2 −m2 + iε) r [ (p− k )2 −m2 + iε ] s

I µν ρσ (r , s) =

∫
p

pµ p ν p ρ pσ

(p2 −m2 + iε) r [ (p− k )2 −m2 + iε ] s

Parametric Integrals

∫ 1

0

dx

R
=

4√
∆

arcctg
√

∆ for 0 < k 2 < 4m2 (5.11)

= − 4 for k 2 = 4m2

=
− 4√
−∆

Arcth
√
−∆

=
2√
−∆

ln

√
−∆− 1

1 +
√
−∆

for k 2 > 4m2 ∨ k 2 < 0
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I0 ≡
∫ 1

0

dx ln

(
4πµ2

Rk2

)
= ln

4πµ2

k2
−
∫ 1

0

dx lnR

= ln
4πµ2

m2
+

∫ 1

0

dx
2x2 − x
R

= 2 + ln
4πµ2

m2
+

1

2
(1− 4a)

∫ 1

0

dx

R
(5.12)

I1 ≡
∫ 1

0

dx x ln

(
4πµ2

Rk2

)
= 1 +

1

2
ln

4πµ2

m2
+

1

4
(1− 4a)

∫ 1

0

dx

R
(5.13)

I2 ≡
∫ 1

0

dx x(1− x) ln

(
4πµ2

Rk2

)
=

1

6
ln

4πµ2

m2
− 1

6

∫ 1

0

dx

R
(4x4 − 8x3 + 3x2 )

=
5

18
+

1

6
ln

4πµ2

m2
+

2a

3
+

1− 2a− 8a2

12

∫ 1

0

dx

R
(5.14)

a = m2/k2

Scalar Integrals

I(2, 0) = I(0, 2) =
i

16π2
Γ(2− ω)

(
4πµ2

m2

)2−ω

(5.15)

lim
ω→2

m2 I(3, 0) = − i

32π2
(5.16)

I(1, 1) =
i

16π2
Γ(2− ω)

∫ 1

0

dx

(
4πµ2

Rk2

)2−ω

.
=

i

16π2

{
1

ε
−C + I0

}
(5.17)

I(2, 1) = I(1, 2) = − i

16π2

∫ 1

0

dx

R k2
x (5.18)

I(2, 2) =
i

16π2

∫ 1

0

dx

[Rk2 ]2
x(1− x) (5.19)

I(3, 1) = I(1, 3) =
i

32π2

∫ 1

0

dx

[Rk2 ]2
x2 (5.20)
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Vector Integrals

Iν(1, 1) =
i

16π2
kν Γ(2− ω)

∫ 1

0

dx x

(
4πµ2

Rk2

)2−ω

.
=

i kν
32π2

{
1

ε
−C + 2I1

}
(5.21)

Iν(2, 1) = − ikν
16π2

∫ 1

0

dx

R k2
x(1− x) (5.22)

Iν(1, 2) = − ikν
16π2

∫ 1

0

dx

R k2
x2 (5.23)

Iν(2, 2) =
ikν

16π2

∫ 1

0

dx

[Rk2 ]2
x2 (1− x) (5.24)

Iν(3, 1) =
ikν

32π2

∫ 1

0

dx

[Rk2 ]2
x2(1− x) (5.25)

Iν(1, 3) =
ikν

32π2

∫ 1

0

dx

[Rk2 ]2
x3 (5.26)

Rank Two Tensor Integrals

Iλρ(2, 0) = − i

16π2
m2 gλρ

Γ(2− ω)

2− 2ω

(
4πµ2

m2

)2−ω

(5.27)

Iλρ(0, 2) = Iλρ(2, 0) + kλkρ I(2, 0) (5.28)

Iλρ(3, 0) =
i

16π2
gλρ

Γ(2− ω)

2 · 2!

(
4πµ2

m2

)2−ω

(5.29)

lim
ω→2

m2 Iλρ(4, 0) =
− i

192π2
gλρ (5.30)

Iλν(1, 1) =
i

16π2
Γ(2− ω)

∫ 1

0

dx

(
4πµ2

Rk2

)2−ω

×
{
x2kλ kν −

gλν
2ω − 2

[
x(1− x)k2 −m2

]}
=̇

i

48π2
kλ kν

{
1

ε
−C + 3 [ I1 − I2 ]

}
− i

32π2
k2gλν

{
1

6ε
− C

6
+

1

6
+ I2

}
+

i

32π2
m2gλν

{
1

ε
−C + 1 + I0

}
(5.31)
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Iλν(2, 1) =
i

32π2
gλν Γ(2− ω)

∫ 1

0

dx x

(
4πµ2

Rk2

)2−ω

− i

16π2
kλ kν

∫ 1

0

dx

R k2
x2 (1− x)

=̇
i

64π2
gλν
{

1

ε
−C + 2I1

}
− i

16π2
kλ kν

∫ 1

0

dx

Rk2
(1− x)x2

(5.32)

Iλν(1, 2) =
i

32π2
gλν Γ(2− ω)

∫ 1

0

dx x

(
4πµ2

Rk2

)2−ω

− i

16π2
kλ kν

∫ 1

0

dx

R k2
x3

=̇
i

64π2
gλν
{

1

ε
−C + 2I1

}
− i

16π2
kλ kν

∫ 1

0

dx

Rk2
x3

(5.33)

Iλν(2, 2) =
−i

32π2

{
gλν
∫ 1

0

dx

Rk2
x(1− x)− 2kλkν

∫ 1

0

dx

[Rk2 ]2
x3 (1− x)

}
(5.34)

Iλν(3, 1) =
−i

64π2

{
gλν
∫ 1

0

dx

Rk2
x2 − 2kλkν

∫ 1

0

dx

[Rk2 ]2
x2(1− x)2

}
(5.35)

Rank Three Tensor Integrals

Iλνρ(1, 1) =
i

16π2
Γ(2− ω)

∫ 1

0

dx

(
4πµ2

Rk2

)2−ω

(2ω − 2)−1

×
{[
xm2 − x2(1− x)k2

]
(gλν k ρ + gνρ kλ + gρλ kν)

+ (1− x)3kλ kν k ρ
}

(5.36)

Iλνρ(2, 2) =
i

32π2

{
2 kλ kν kρ

∫ 1

0

dx

[Rk2 ]2
x4 (1− x)

− (gλν k ρ + gνρ kλ + gρλ kν)

∫ 1

0

dx

R k2
x2 (1− x)

}
(5.37)
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Iλνρ(3, 1) =
i

64π2

{
2 kλ kν kρ

∫ 1

0

dx

[Rk2 ]2
x3 (1− x)2

− (gλν k ρ + gνρ kλ + gρλ kν)

∫ 1

0

dx

R k2
x2 (1− x)

}
(5.38)

Rank Four Tensor Integrals

Iλρστ (4, 0) =
i

384π2
Γ(2− ω)

(
4πµ2

m2

)2−ω

× (gλρ gστ + gλσ gτρ + gλτ gρσ) ; (5.39)

Iλνρσ(2, 2) =
i

64π2
Γ(2− ω)

(
gλν gρσ + gνρ gλσ + gρλ gνσ

)
×

∫ 1

0

dx x(1− x)

(
4πµ2

Rk2

)2−ω

+
i

16π2
kλ kν k ρ kσ

∫ 1

0

dx

[Rk2 ]2
x5 (1− x)

−
(
gνλ k ρ kσ + cycl. perm.

) i

32π2

∫ 1

0

dx

R k2
x3 (1− x)

=̇
i

384π2
(gλν gρσ + gνρ gλσ + gρλ gνσ)

{
1

ε
− γ + 6I2(ξ)

}
+

i

16π2
kλ kν k ρ kσ

∫ 1

0

dx

[Rk2 ]2
x5 (1− x)

−
(
gνλ k ρ kσ + cycl. perm.

)
× i

32π2

∫ 1

0

dx

R k2
x3 (1− x) (5.40)

Iλνρσ(3, 1) =
i

128π2
Γ(2− ω)

(
gλν gρσ + gνρ gλσ + gρλ gνσ

)
×

∫ 1

0

dx x2

(
4πµ2

Rk2

)2−ω

+
i

32π2
kλ kν k ρ kσ

∫ 1

0

dx

[Rk2 ]2
x4 (1− x)2

−
(
gνλ k ρ kσ + cycl. perm.

) i

64π2

∫ 1

0

dx

R k2
x2(1− x)2
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=̇
i

384π2
(gλν gρσ + gνρ gλσ + gρλ gνσ)

×
{

1

ε
−C + 3I1 − 3I2

}
+

i

32π2
kλ kν k ρ kσ

∫ 1

0

dx

[Rk2 ]2
x4(1− x)2

−
(
gνλ k ρ kσ + cycl. perm.

) ∫ 1

0

dx

R k2
x2(1− x)2 (5.41)
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