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Abstract—Modern Space Launch Vehicles (SLVs), being slender
in shape and due to the use of lightweight materials, are generally
flexible in nature. This structural flexibility, when coupled with sensor
and actuator dynamics, can adversely affect the control of SLV, which
may lead to vehicle instability and, in the worst-case scenario, to
structural failure. This work focuses on modelling and simulation
of rigid and flexible dynamics of an SLV and its interactions with
the control system. SpaceX’s Falcon 9 has been selected for this
study. The flexible modes are calculated using modal analysis in
Ansys. High-fidelity nonlinear simulation is developed which incor-
porates the flexible modes and their interactions with rigid degrees
of freedom. Moreover, linearized models are developed for flexible
body dynamics, over the complete trajectory until the first stage’s
separation. Using classical control methods, attitude controllers, that
keep the SLV on its desired trajectory, are developed, and multiple
filters are designed to suppress the interactions of flexible dynamics.
The designed controllers along with filters are implemented in the
nonlinear simulation. Furthermore, to demonstrate the robustness of
designed controllers, Monte-Carlo simulations are carried out and
results are presented.
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Modes; Gain Stabilization; Notch Filters; Low Pass Filters; Elliptic
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I. INTRODUCTION

Curiosity of the mankind for space exploration has increased

the need for Space Launch Vehicles (SLVs). The minimum

weight objectives of large but slender SLVs have led them to

exhibit structural flexibility. Structural flexibility depends upon

vehicle fineness ratio, whose increase leads to issues related

to vehicle dynamics and control. As flexibility increases, the

modal frequencies of flexible modes get closer to the rigid

body modes that may result in rigid-elastic coupling. In addi-

tion to displacement and acceleration due to rigid body motion,

structural deflections can contribute to the net body motion.

It is important to be able to model this change in behavior

to avoid the deteriorating effects of its interference with the

flight control system. This control structure coupling causes

the vehicle to deviate from desired performance resulting in

instability and in extreme scenarios, structural failure.

Flexibility affects the control loop in two ways. Firstly,

it alters the output of the sensor to include the bending

frequencies in the feedback loop and secondly, it changes

the actuator position and actuator command angle resulting

in altered control command to the vehicle [1]. In general,

this contribution of structural flexibility limits the control

system bandwidth. Proper determination of dominant vibration

modes of launch vehicles is integral in designing the attitude

controller [2]. Problems due to flexibility can be avoided by

modifying the control system by including filters, stiffening

the sensor mounting structure or relocating sensors to locations

where structural flexibility effects are minimum.

There are generally two approaches in literature for control

design of a flexible SLV, i.e. gain stabilization and phase

stabilization [3]. In phase stabilization, loop components and

filters are selected such that the phase of structural feedback

loop is 180◦, whereas, in gain stabilization a filter that has

deep notch is introduced at structural frequency, this keeps

the loop gain well below unity. These filters such as notch

filter, elliptic filter, etc. suppress vehicle’s flexibility and fuel

sloshing dynamics by providing gain attenuation and phase

stabilization [4].

Notch filters requires prior knowledge of exact frequency of

flexible modes. Since the vibration frequency varies through-

out the trajectory as the propellant burns, it is difficult to

calculate the exact value of flexible mode frequencies [5]. This

makes the use of notch filters less practical. To overcome this

issue, other filters are suggested in literature, i.e. Elliptic filters

[6], Kalman filters [7], etc. Another solution is to use adaptive

notch filters. Using sensor output signals, an adaptive notch

filter estimates exactly the frequency of the actual system.

The design parameters of the filter are updated continuously

to match with the actual system parameters [8]. For vehicles

that have two modes close to each other, the adaptive notch

filter can be extended to predict the frequency of these two

modes. This type of adaptive algorithm is useful for flexible

space launch vehicles that have low natural frequencies [5].

For advanced launch vehicle configurations with unstable

aerodynamics, high flexibility, liquid propellent sloshing, and

inertia effects of engine (tail wags) the classic control methods

along with filters are not effective in meeting robustness

margins. For such vehicles adaptive control techniques are

usually employed [9], [10].

In this paper, a nonlinear mathematical model for a flexible

space launch vehicle is developed incorporating the effects of

flexibility at sensor and actuator locations. SpaceX’s Falcon

9 is selected as reference SLV because most of relevant data

is available and remaining is obtained using CFD and Modal

analysis. Based on the mathematical model, a high fidelity
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nonlinear simulation is developed. Furthermore, this model is

linearized around a trajectory to obtain a set of linear models.

Using classical control theory, linear controller is designed

along with filters to mitigate the flexibility effects. In this work

we have designed both notch and elliptic filters and compared

their performance and robustness. The designed controller

and filter are then implemented in nonlinear simulation, and

results are presented. Moreover, a Monte-Carlo analysis is

preformed to compare the robustness of both filters towards

the uncertainties and variations in modal frequencies and mode

shapes.

The rest of the paper is organized as follows. Section II

starts with aerodynamic and structural analysis results of Fal-

con 9, followed by nonlinear mathematical model of flexible

SLV along with its linearized version. Thereafter, Section

III presents the designed controller and structural filters for

gain stabilization of flexible modes. In Section IV nonlinear

simulation results are presented. Finally, the discussion is

concluded in Section V.

II. MATHEMATICAL MODELLING

To minimize unnecessary complexity, mathematical mod-

eling does not account for all of the variables present in the

real system. To retain an accurate representation of the system,

the trade-off is to make assumptions that incur minor errors

in computations while considerably reducing complexity. In

this work, earth is assumed to be flat and non-rotating and

considered as an inertial reference frame. Moreover, the fuel

and oxidizer sloshing, and ‘tail wags dog’ effects are ignored

while developing the dynamical model of the flexible SLV.

Before proceeding towards modelling, we introduce some

notation which will be used in this work. I is inertial frame,

with origin at the launch point of vehicle. Br is rigid-body

fixed frame, centered at the c.g. of the SLV, with XB-axis

pointing towards nose and YB-axis pointing towards right. Bf

is the local flexible-body fixed frame at the sensor location.

RF2

F1
represents the transformation matrix from F1 to F2, Re(θ)

represents the rotation of angle θ about unit vector e, also e1,

e2, and e3 represents the unit vectors [1, 0, 0]⊤, [0, 1, 0]⊤, and

[0, 0, 1]⊤, respectively. V represents velocity of c.g. of SLV in

Br, and ω is angular velocity of Br w.r.t. I expressed in Br.

A. Aerodynamic and Inertial Data

As discussed earlier, SpaceX’s Falcon 9 is selected because

of availability of its material and engine propulsive data from

SpaceX website and other internet forums. Its slender body,

with some parts made of composite structure, makes flexibility

a more prominent characteristic in its behavior compared to

metallic bodies of other SLVs. Since aerodynamic and inertial

data is not readily available on internet, we performed CFD

analysis of a CAD model of Falcon 9 from GrabCAD [11].

A simplified 2D version of this CAD model is used for CFD

analysis using Fluent. CFD is done at five values of angle

of attack (α) (0◦, 2◦, 4◦, 6◦, 8◦) and at five values of Mach

number (0.5, 1.5, 4, 7, 10). The data obtained is interpolated

to obtain the values of CL, CD, and Cm, i.e. lift, drag,

pitching moment coefficients, respectively, at each point in the

trajectory. Moreover, symmetry of the SLV shape is exploited

to obtain the aerodynamic data for negative values of angle of

attack, and directional coefficients as a function of side-slip

angle (β) and Mach number. Moreover, the rate derivatives e.g.

Cmα̇ are assumed to be negligible and the dynamic derivatives

(Cmq
, Cnr

, Clp ) are obtained from [12].

Since the mass of space launch vehicles changes rapidly

as the propellent burns during the flight, the value of inertia

and the location of center of gravity also change at each

point. Using CATIA the inertia matrix and the location of

CG is determined for the CAD model. These parameters are

calculated at the different fuel percentages and are tabulated

in Table I. Interpolating these values gives us continuously

changing inertial data corresponding to fuel percentage. This

is achieved by decreasing the mass of fuel tank in the CAD

model as shown in Fig. 1.

B. Structural Analysis

Before flexible body modeling, structural analysis needs to

be done to determine flexible modes through modal analysis.

Ansys Modal workbench is used to first generate a mesh

for a simplified Falcon 9 model and then modal analysis is

performed with both-ends-free boundary condition.

Figure 2 shows an exaggerated view of the shape that the

SLV takes under free vibrations when the first and second

mode bending frequency are excited individually. Our focus

lies on the effects that accrue due to these first two bending

modes. The frequencies for the two modes are tabulated in

Table II.

To calculate the mode shapes, i.e. modal displacements and

their slopes, at the above-mentioned frequencies, a python

library pyAnsys [13] is used, which provides tools to import

and analyze Ansys output files. Damping ratio for each flexible

mode is estimated using classical Rayleigh damping method

and using historical values from literature [3]. Thus, the

displacement and slope of each node along the length of the

SLV are computed for first two modes, in both y and z axis,

and are shown in Fig. 3. It shows modal displacements (φ)

and slopes (σ) in y and z directions, along the x axis. Two

locations along the x-axis are important, the location of nozzle

at 70 m from nose and the location of sensors at 15 m from

nose. These specific locations are denoted by subscripts T

and G, respectively, e.g. φYT
represents value of φY at 70 m,

and σZG
represents value of σZ at 15 m, etc. This assumed

sensor location is where deflection is minimum for first mode

excitement.

Fig. 1: Exploded view of CAD model showing fuel tank



TABLE I: Estimated inertial data at different fuel conditions

Parameter 100% fuel 75% fuel 50% fuel 25% fuel 0% fuel

mass (kg) 581726.686 511784.213 441841.74 371899.268 301956.795

CG [from nose] (mm) 38192.31 38939.239 38542.382 36340.671 31093.342

Jxx (kgm2) 1.516× 10
6

1.408 × 10
6

1.299× 10
6

1.191× 10
6

1.083× 10
6

Jyy, Jzz (kgm2) 2.545× 10
8

2.516 × 10
8

2.506× 10
8

2.388× 10
8

1.94× 10
8

(a) First bending mode (b) Second bending mode

Fig. 2: First two flexible modes
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Fig. 3: Variation of displacement and slope along the length of SLV

TABLE II: Frequency of 1st and 2nd Bending Mode

Mode Mode Type Frequency (Hz) Damping Ratio

7th 1st Bending Mode 4.293 0.0145

8th 1st Bending Mode 4.293 0.0145

9th 2nd Bending Mode 11.559 0.0147

10th 2nd Bending Mode 11.559 0.0147

C. Rigid Body Dynamics

Considering the assumptions described earlier, and noting

that time variations of mass and inertia matrix are significant,

we can write the 6-DOF equation of motion of rigid dynamics

as follows,

m(V̇ + ω × V ) = mgRBr

I e3 + Faero + FT

J̇ω + Jω̇ + ω × Jω = Maero + τ
(1)

where e3 = [0, 0, 1]⊤, V = [u, v, w]⊤ represents body

velocity, ω = [p, q, r]⊤ represents body angular velocity, m

and J are SLV’s mass and inertia matrix, respectively. Faero

and Maero represents the aerodynamic forces and moments,

respectively. Moreover, FT and τ represents the forces and

moments due to all engines and their gimbal deflections,

respectively.

First stage of the Falcon 9 SLV is powered by nine Merlin

engines [14], each of them is equipped with 2D gimballed

nozzles. Consider the schematic shown in Fig. 4, we can write

total engine forces and moment as follows,

FT =

8
∑

i=0

Fi(δi)

τ =
8
∑

i=0





−(L− xcg)
−r sinλi

r cosλi



× Fi(δi)

(2)



(a) Engines configuration

Engine

(b) Gimbal angles

Fig. 4: Engines configuration and gimbal angles convention

where, δ = [δ⊤0 , · · · , δ⊤8 ]
⊤, δi = [µi, ηi]

⊤ represents the

gimbal deflections of ith engine, for all i ∈ [0, 8], L represents

the length of SLV, and

Fi(δi) = Re1(λi)Re3(µi)Re2(ηi)Tie1, (3)

where Ti is the thrust of ith engine, and is assumed to be same

for all engine, and it varies along the altitude as follows [14],

Ti = 914.11− 0.68P [kN], ∀ i ∈ [0, 8] (4)

where is P represents the atmospheric pressure in kPa at a

given altitude.

D. Flexible Modes Dynamics

In reality, a flexible structure contains an infinite degrees of

freedom, making an exact analysis nearly impossible. How-

ever, by restricting the system to a finite number of degrees of

freedom, an approximate analysis can be accomplished. We

employed a finite element method (FEM) based strategy to

reduce the degrees of freedom. FEM model was developed in

Ansys Modal workbench as discussed in section II-B, only first

four modes (first two bending modes) are considered [3], and

the mass normalized mode shapes are obtained. Restricting

to these selected modes, we can write flexible dynamics as

follows,

[

ξ̇

ξ̈

]

=

[

0 I

−Ω2 −2ζΩ

] [

ξ

ξ̇

]

+ φT

8
∑

i=0

Fi(δi) (5)

where ξ ∈ R
nf represents normalized deflection, Fi(δi)

as in Eq. (3), Ω = diag(Ω1,Ω2, · · · ,Ωnf
), ζ =

diag(ζ1, ζ2, · · · , ζnf
). Where Ωj and ζj represents the modal

frequency and damping of jth flexible mode for all j in [1, nf ],
here nf is the number of flexible modes considered. In this

paper we have selected nf = 4, and

φT =
[

0 φYT
φZT

]

∈ R
nf×3 (6)

where φYT
and φZT

represents the mode shapes as defined in

section II-B.

E. Interactions of Flexible and Rigid Modes

To develop the complete nonlinear model of flexible SLV,

we also need to model the effects of flexibility on rigid

dynamics. We followed a similar approach as in [1], [15],

and considered the following effects.

1) Flexibility Effects on Engine Gimbals: Structural flexi-

bility affects gimbal deflections. Forces and moments due to

all nine engines gets modified due the bending effects. For

that total engine forces and moments in Eq. (1) FT and τ will

get replaced by F̂T and τ̂ , respectively, which are expressed

as follows,

F̂T =

8
∑

i=0

F̂i(δi)

τ̂ =

8
∑

i=0









−(L− xcg)
−r sinλi

r cosλi



+ φ⊤
T ξ



 × F̂i(δi)

(7)

where,

F̂i(δi) = Re3(σ
⊤
YT

ξ)Re2(σ
⊤
ZT

ξ)Fi(δi) (8)

where, Fi(δi) is the ith engine force vector without bending

as described in Eq. (3), and σYT
and σZT

are mode slopes at

engine gimbal location as defined in section II-B.

2) Flexibility Effects on Sensor Measurements: Another

key effect of flexible modes is their contribution in sensor

measurements, which if not properly taken care of, can get

fed back into the system through control and may results in

an unstable positive feedback loop. Let Bf be the local frame

at sensor location, and aligned with the body frame Br in the

absence of bending. Then in case of bending we can write,

R
Bf

I = R
Bf

Br
RBr

I (9)

With small angle assumption, i.e. bending effects are small in

magnitude, and using Rodrigues’ formula we can write R
Bf

Br

as follows

R
Bf

Br
≈





1 −σ⊤
YG

ξ σ⊤
ZG

ξ

σ⊤
YG

ξ 1 0
−σ⊤

ZG
ξ 0 1



 (10)

Similarly, we can write body rates measured by the gyroscopes

ωm as follows,

ωm = σ⊤
G ξ̇ +R

Bf

Br
ω ≈ σ⊤

G ξ̇ + ω (11)

where,

σG =
[

0 σZG
σYG

]

∈ R
nf×3 (12)

where σZG
and σYG

are the modal slopes at sensor location. It

is worth noting that since only bending modes are considered,

roll angle and roll rate aren’t affected by flexibility.

F. Control Allocation

Assuming same thrust for all engines (Ti = T ), and small

gimbal deflections (δ) we can linearize Eq. (2) as,

τ ≅ TΛGδ , TΛ





δA
δE
δR



 (13)

where,

Λ =





8r 0 0
0 −9(L− xcg) 0
0 0 −9(L− xcg)







Fig. 5: Control architecture

and G = [G0, G1 · · · , G8], where Gi =
1
T
Λ−1

(

∂τ
∂δi

)

, for all

i ∈ [0, 8]. So, using pseudo-inverse we can write the control

allocation as,

δ = G†





δA
δE
δR



 (14)

where G† = G⊤
(

GG⊤
)−1

.

G. Linearized Dynamics

In the process of control system design for the flexible space

launch vehicle, it is necessary to obtain a set of linear model.

In this regard, we linearized the complete flexible dynamics

discussed in previous subsections, and assumed the decoupling

between different channels. The resulting short period approx-

imation of longitudinal model is same as presented in [1], as

described below.

α̇ =
Zα

V
α+ q +

ZδE

V
δE +

nf
∑

r=1

Zδσ
(r)
T

V
ξr

q̇ = Mαα+MδEδE +

nf
∑

r=1

(

MδEσ
(r)
T +

mZδφ
(r)
T

Iy

)

ξr

θ̇ = q

ξ̈r = −ω2
rξr − 2ζωrξ̇r +mZδEσ

(r)
T δE , ∀ r ∈ [1, nf ]

(15)

Moreover, since the effects of flexibility on roll dynamics

are negligible, therefore, for roll channel, linear models are

same as that of rigid dynamics and are shown below.

φ̇ = p

ṗ = Lpp+ LδAδA
(16)

III. CONTROL DESIGN

In this section linear control design is presented. The

linearized equations presented in section II-G, which account

for the impact of flexibility effects, are used. These equations

capture the short period dynamics of the flexible space launch

vehicle while considering the influence of its inherent flex-

ibility. Along a trajectory similar to that used in [16] a set

of linear models are developed for different angle of attack

conditions. Control architecture for pitch and yaw channels is

shown in Fig. 5. Similar architecture but without any bending

mode filters is used for roll channel. As pitch and yaw channels

are symmetric, so only pitch controller is presented. Moreover,

since roll dynamics and its control design is trivial so it is

skipped.

The first step in a control design process is to select a

single linear model, from of the set of linear models. For that
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Fig. 6: Comparison of rigid and flexible dynamics

purpose, the design point for the controller is selected where

the system is most unstable. The rigid alone, and rigid and

flexible combined transfer functions are shown in Eqs. (17)

and (18), respectively. By incorporating four bending modes

at two distinct frequencies, the transfer function for the pitch

angle undergoes a significant transformation, as shown in Eq.

(18). The resulting transfer function now includes eight addi-

tional poles, further complicating the dynamics of the system.

The inclusion of these bending modes in the transfer function

allows for a more accurate representation of the flexible effects

present in the space launch vehicle. By capturing the dynamics

associated with bending modes at different frequencies, we

gain a more comprehensive understanding of the system’s

behavior and can design a controller that effectively addresses

these additional complexities.

θ(s)

δE(s)
=

−0.017725(s+ 0.02853)

s(s− 0.4067)(s+ 0.4557)
(17)

θ(s)

δE(s)
=

−0.0142(s− 193.4)(s+ 184.2)(s+ 11.44)

(s− 11.58)(s+ 0.02848)

s(s+ 0.4557)(s2 + 0.7826s+ 727.6)

(s− 0.4067)(s2 + 2.14s+ 5275)

(18)

The comparison of the bode plots of transfer functions in

Eqs. (17) and (18) are shown in Fig. 6. Observing the Bode

plots, distinct peaks can be observed in the red line for the

flexible body. These peaks correspond to the presence of two

bending modes that are not adequately attenuated. The pres-

ence of these peaks signifies potential instability in the system,

as they introduce significant resonance and amplification at

specific frequencies associated with the bending modes.

To address the destabilizing peaks in the frequency response

of the system, the incorporation of filters into the controller is

required. In the introduction section, various filters have been

mentioned. Among the available filter types, the elliptic filter

stands out as an ideal choice for our system due to its ability

to provide a sharp cut-off and effectively attenuate specific

frequencies associated with the bending modes [6]. Moreover,

elliptic filter has wide stopband allowing for effective rejection



Fig. 7: Step response comparison: Notch and Elliptic filters

of frequencies outside the desired passband. On the other hand,

notch filters provide an efficient solution in terms of phase

lag if modal frequencies are accurately known. Therefore, in

this work we considered both elliptic and notch filters and

compared their performance. For notch filter we used a double

notch whose transfer function is shown below,

GN (s) =
(s2 + 0.27s+ 727.4)(s2 + 0.73s+ 5275)

(s2 + 37.76s+ 727.4)(s2 + 101.7s+ 5275)
(19)

The elliptic filter parameters are selected as follows:

• First order (n) is 3.

• Passband Frequency (Wp) is 10 rad/s.

• Passband ripple (Rp) is 1 dB.

• Stopband sttenuation (Rs) is 40 dB.

These values gives the following elliptic filter using MATLAB

ellip command,

GE(s) =
0.69201(s2 + 760.8)

(s+ 5.237)(s2 + 4.545s+ 100.5)
(20)

Controller gains and compensator are tuned, and following

values were selected,

• KP = −114.5916
• KPI(s) = −214.2862

(

1 + 0.1
s

)

This controller, along with both filters separately, was

analyzed on flexible models of the space launch vehicle. Fig.

7 shows comparison of step responses with both filters and

it can be seen that they are almost similar. However, form

loop shape bode plot comparison shown in Fig. 8, we can see

that the notch filter provides better gain and phase margins as

compared to the elliptic filter.

IV. NONLINEAR SIMULATION

The designed controller and filter are implemented in non-

linear simulation developed in Simulink as shown in Fig. 9.

The dynamics block of the Falcon 9 SLV is shown in Fig. 10.

A reference trajectory for pitch and yaw angle is to be followed

by Falcon 9. For pitch angle trajectory it is assumed that the

SLV remains completely vertical for the first 10 seconds and

then pitch angle decreases linearly from 90◦ to 40◦ for the rest

of the trajectory. Similarly for yaw angle it is assumed that

-100

-50

0

50

100

M
ag

ni
tu

de
 (

dB
)

From: deltaE  To: deltaE

10-3 10-2 10-1 100 101 102 103
-180

-90

0

90

180

270

P
ha

se
 (

de
g)

Notch Filter
Elliptic Filter

GM = 2.22 at 19.41 (rad/s) and PM = 63.44 at 2.63 (rad/s)
GM = 2.02 at 6.92 (rad/s) and PM = 40.93 at 2.50 (rad/s)

Frequency  (rad/s)

Fig. 8: Frequency response comparison: Notch and Elliptic

filters

Fig. 9: Nonlinear simulation

Falcon 9 is on a trajectory to the International Space Station,

thus the launch azimuth angle required from Cape Canaveral

is 135◦. Only trajectory, similar to that in [16], till first stage

separation is considered, that is about 165 seconds.

The nonlinear simulation results for both Notch and Elliptic

filters, are shown in Figs. 11 and 12. In these simulations,

nominal values of all parameters are considered, and wind of

10 knots is applied along north and east direction. Fig. 11

depicts the attitude angle and it can be seen that the SLV

follows the reference trajectory for pitch and yaw angle quite

accurately, and the attitude errors remains within a fraction of

a degree over the complete trajectory. Similarly, as shown Fig.

12 controller commands are also small. Moreover, both filters

have same the performance in the nominal scenario.

To compare the robustness of controller with each filter

towards the uncertainty in modal parameters, i.e. mode fre-

quencies and mode shapes, Monte-Carlo type simulations were

performed. Despite their similar nominal performance, with

Elliptic filter closed loop remained stable upto ±34% variation

in modal parameters, while with Notch filter it was stable only

upto ±3% variations. This observation, in contrast to fact that

controller with notch filters has more gain and phase margins,

is consistent with the results in [6]. Which further emphasize

that the elliptic filters are preferable for gain stabilization,

while simple notch filters should be used only when modal

parameters are precisely known.

V. CONCLUSION

This paper considered the problem of attitude control of

a flexible SLV. Falcon 9 was selected for this study. A



Fig. 10: Falcon 9 dynamics block

Fig. 11: Nominal performance: Euler angles and attitude errors

nonlinear model of SLV dynamics (both rigid and flexible)

was developed. Moreover, a classical PID type controller along

with different filters was designed to mitigate the flexibility

effects during the ascent phase. Specifically, notch and elliptic

filters were designed and compared. The simulation results

showed that the designed controller along with both filters

was able to keep the SLV on the desired trajectory. Monte-

Carlo analyses were also performed to compare the robustness

properties of both filters. It was shown that the elliptic filter

can tolerate up to ±34% variations in modal frequencies and

mode shapes, while the notch filter could only handle ±3%
variations.

In future, this work can be extended to further increase

the fidelity of the mathematical model by incorporating the

effects of inertial forces due to movement of gimballed nozzles
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Fig. 12: Nominal performance: Controller commands

and liquid propellant sloshing. Moreover, for off-nominal

conditions and in the presence of uncertainties adaptive control

algorithms can be designed to suppress the destabilizing

effects.
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